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Abstract: The mountainous areas in the western part of Sichuan Province are mostly Alpine Gorge
regions with high mountains, steep slopes, complex topography and geomorphology, special climatic
conditions, infertile soils, and fragile ecological environments. In this study, a geohazard risk
assessment was carried out in the Alpine Gorge region to prevent geohazards from hindering socio-
economic development, affecting the lives and safety of residents, and undermining sustainable
development in the region. With the help of a geographic information system (GIS), the analysis
of geohazard influence factors was carried out; eight indicators, such as elevation and slope aspect,
were selected to construct the evaluation index system. Additionally, the time and space distribution
pattern of each influence factor and geohazard was analyzed. Geologic hazards in the region are
influenced mainly by precipitation and human engineering activities. The prediction and evaluation
of geohazard risk in Jiulong County are based on the Information Value model (IV), the Logistic
Regression model (LR), and the Random Forest model (RF). Comparing the Receiver operating
characteristic (ROC) curves of the three models for the accuracy test, the results show that all
three models are suitable for the Alpine Gorge region, and the Logistic Regression model has the
highest accuracy. Based on the evaluation results, measures and countermeasures for geologic
disaster prevention and mitigation are proposed in light of the reality of geologic disaster prevention
and mitigation work in Jiulong County. The research results can guide the government’s disaster
prevention and mitigation work, provide a scientific basis for formulating regional geologic disaster
prevention and control strategies, and ultimately promote the region’s sustainable development.

Keywords: alpine gorge region; geological disasters; risk assessment; model accuracy; disaster
prevention and mitigation

1. Introduction

Geologic hazards are geodynamic activities or phenomena, such as landslides and
mudslides, that are formed by the interaction of natural or human-made factors and cause
a loss of human life and property and environmental damage [1,2]. Geohazard risk eval-
uation mainly studies the probability and distribution of the occurrence of geohazards
due to the combination of multiple influencing factors in a certain area [3,4]. The Alpine
Gorge region in southwestern China, with its abundant rainfall, steep topography, and
active tectonic movements, is the most vulnerable area to mudslide disasters in China [5,6].
Geological hazards often have serious consequences, causing social and economic dis-
ruption, destroying the environment, and causing enormous losses of life and property,
with serious implications for the sustainable development of the region [7–9]. In order to
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mitigate the losses resulting from geohazards, geohazard risk assessment emerged as a
major area of interest for academics and a crucial component of global catastrophe pre-
vention and mitigation plans [10–13]. However, the systematic analysis and research on
the evaluation of the risk of geologic hazards in an Alpine Gorge region near Sichuan and
Tibet and the factors affecting them are not thorough enough. Therefore, conducting a risk
assessment of mountain geohazards in the Alpine Gorge region of Sichuan Province and an
examination of the elements that influence them is extremely important, both theoretically
and practically.

Currently, with the rapid development of geographic information system (GIS) tech-
nology, people have conducted much research on geohazard risk assessment and achieved
fruitful results [14,15]. Scientific and accurate geohazard risk assessment is the key to the
research of geohazard prevention and control. A large number of scholars carried out
in-depth research and practice in this regard [16,17]. In terms of research content, the
analysis of the key factors and the best combination of the main influencing factors in the
formation of geohazards is relatively insufficient. From the perspective of research methods,
the development trend of geohazard risk evaluation methods evolved from qualitative
methods to quantitative methods [10]. The most popular ones are the Analytic Hierarchy
Process (AHP) evaluation system [18–21], Information Value (IV) [22,23], Logistic Regres-
sion (LR) [24,25], Artificial Neural Networks (ANN) [26,27], Random Forest (RF) [28–30],
and so on. All of the evaluation techniques described above have limitations and cannot
fully capture the geographical pattern of geohazards in the Alpine Gorge region and their
affecting factors. To directly represent the degree and severity of geological hazard risk in
the research region and avoid natural catastrophes, many academics examine the geological
hazard risk assessment through the comparison of various models [31,32] or improve a
single model to achieve higher accuracy [33]. However, all of them have certain limitations,
mainly focusing on a certain defined area as the main research subject and rarely studying
a certain type of area from a macroscopic point of view. In order to meet the needs of
sustainable development and environmental improvement in the future, future research
should pay more attention to the difficult geological elements that are seldom studied at
present, and this will be an important research trend [34,35].

In summary, this study takes Jiulong County, Sichuan Province, as the study area,
analyzes the spatial and temporal distribution characteristics of geologic hazards in the
Alpine Gorge region and their influencing factors by comparing three different models,
and arrives at the best applicable model for evaluating the risk of geologic hazards in the
Alpine Gorge region by comparing the Receiver operating characteristic (ROC) curves
of the three algorithms. Finally, disaster prevention and mitigation countermeasures are
proposed based on the evaluation results to develop effective disaster prevention strategies
for local governments to ensure environmental safety and ultimately promote sustainable
regional development.

2. Materials and Methods
2.1. Overview of the Study Area

Sichuan Province is located in the interior of southwest China, and Jiulong County
belongs to Ganzi Tibetan Autonomous Prefecture of the Sichuan Province, which is located
at the junction of the western Panxi region of Sichuan Province and the Tibetan Plateau, as
shown in Figure 1. The river valleys in Jiulong County are mostly “V”-shaped valleys, typical
of the southwest Alpine Gorge region. The area is characterized by high mountains, steep
slopes, complex topography and geomorphology, special climatic conditions, infertile soil,
and a fragile ecological environment. The terrain of this area has great undulation, showing
a terrain high in the north and low in the south, with a big height difference, mainly divided
into four major landforms: high mountains, very high mountains, mountains, and river
valleys. The altitude of the high mountains in the north ranges from 4000 to 6000 m, with a
maximum of 6010 m; the valleys are generally between 2000 and 3000 m. The extremely high
mountains are mainly in the north, covered with snow and ice all year round.
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Figure 1. Geographic location of the study area in Jiulong County, Chengdu, China.

This area belongs to the continental plateau mountain monsoon climate; the summer
rainfall is abundant, the climate is warm and cool, the winter is drier, the temperature is
low, with a large temperature difference between day and night, and there are no obvious
four seasons. The air temperature varies greatly with the altitude; the higher the altitude,
the lower the temperature. From 1990 to 2019, the average annual temperature was 10.9 ◦C,
the winter time was long, the frost-free period was short, and the average annual frost-free
period was 182.2 days. There is an obvious dry rain season; the average annual precipitation
is 918.57 mm. The light intensity is high, the sunshine is abundant, and the annual sunshine
hours reach 1982.35 h. The rainy season extends from the middle of May to the end of
September.

2.2. Data Acquisition and Preprocessing

Table 1 shows the data type and source. Based on the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM)
30 M resolution digital elevation model, the spatial data analysis of the 499 geohazard
hazardous sites was carried out to obtain the detailed distribution of the geohazardous
sites. These data can be superimposed and modeled in the projection coordinate system.
The meaning of NIR in Table 1 is Near Infrared.
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Table 1. Data sources.

Data Type Method for Data Acquisition Data Format Data Source

Geological hazard
points Spatialization of geological hazard points Vector point

data Related government statistical reports

Elevation Extracted using DEM Raster data Geospatial data cloud
Slope Calculated using DEM Raster data Digital elevation model

Slope aspect Calculated using DEM Raster data Geospatial data cloud
Terrain relief Calculated using DEM Raster data Geospatial data cloud

Lithology Vectorization from geological maps Vector data Geological map of Sichuan Province
Annual

precipitation
Kriging interpolation from multiyear mean

precipitation Raster data Sichuan Meteorological Bureau

NDVI (NIR-Red)/(NIR+Red) Raster data
Data Center of Resources and

Environmental Sciences, Chinese
Academy of Sciences

Land-use type Interpreted by Landsat image remote
sensing Raster data

Data Center of Resources and
Environmental Sciences, Chinese

Academy of Sciences

2.3. Risk Assessment Model Construction
2.3.1. Selection of Evaluation Indexes

The development of geological disasters is affected by many factors, and different
factors have different contributions to its development. Scientific selection of the evaluation
index system is the key to regional geological hazard risk assessment. In view of the
special topographic and geomorphic features of the study area, elevation, slope, slope
aspect, NDVI, lithology, land-use type, average annual precipitation, and terrain relief
were selected as the indicators for geohazard risk evaluation in Jiulong County from the
perspective of the influencing geohazard factors in the Alpine Gorge region. The spatial
distribution characteristics of each indicator are shown in Figure 2.

From among these eight indicators, elevation, slope, slope aspect, and topographic
relief were chosen to characterize the influence of topographic and geomorphic features
on geohazards, which affect geohazards by influencing the stability of regional rock and
soil [12,36]. Stratigraphic lithology shows the fragility of rocks, and it can also impact
the occurrence and evolution of geologic hazards [37]. Annual average precipitation
is an important factor inducing the formation and development of regional geological
disasters [38,39]. The region’s NDIV and land use both indicate the extent to which human
engineering operations disturbed the natural environment. Construction land use, in
particular, has the potential to seriously undermine the region’s geotechnical stability and
result in geologic hazards [40].
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2.3.2. Evaluation Factor Correlation Analysis

In this paper, based on the selected evaluation factors, the evaluation study of geologi-
cal hazard risks in Jiulong County is conducted to avoid the data redundancy phenomenon
between the evaluation factors due to too much similarity, which leads to the failure of the
model. Based on this, it is necessary to test the independence of each evaluation factor. In
the evaluation of hazards, multicollinearity can be a good test of the degree of association
between the factors [41]. Multicollinearity can indicate the correlation between factors, i.e.,
the phenomenon that the change of one variable causes the change of another variable.
Multicollinearity improves the model prediction accuracy by calculating the correlation
between the evaluation factors and removing the evaluation factors with excessive correla-
tion, and the variance inflation factor (VIF) is commonly used in the literature to test the
multicollinearity of geohazard evaluation factors [42,43].
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Using Statistical Product and Service Solutions (SPSS), the VIF was calculated, the
correlation among the evaluation factors was analyzed, and the selected evaluation factors
were analyzed by collinearity test. When the VIF value is greater than 10, it indicates that
the index has a high collinear relationship.

VIF = 1/(1 − R2
i ) (1)

In Formula (1), the coefficient is the complex correlation coefficient of the first inde-
pendent variable to the other independent variables. The VIF values of each evaluation
factor in Jiulong County are shown in Table 2. It can be seen from the table that the VIF
values of the evaluation factors are all less than 10, which meets the requirements of the
collinearity test. Therefore, all eight evaluation factors are applied to the risk assessment of
geological disasters in Jiulong County.

Table 2. Evaluation factor collinearity test.

Evaluation Factors Significance VIF

Elevation 0.000 1.511
Slope 0.611 1.615

Slope aspect 0.175 1.102
Terrain relief 0.307 1.602

Lithology 0.000 1.264
Annual precipitation 0.139 1.571

NDVI 0.359 1.238
Land-use type 0.440 1.075

2.4. Hazard Evaluation Methods
2.4.1. Information Value

IV is simple to calculate, highly accurate, and widely used in the risk evaluation of
landslides and other geohazards. The informativeness model is used to reflect the degree
of contribution of each evaluation unit to the development of geohazards by analyzing the
actual situation of the study area and converting the measured values of the influencing
factors reflecting the occurrence of geohazards into informativeness values, which are used
as quantitative indicators of vulnerability zoning [44,45].

For a geohazard event Y, Xi are the influencing factors that induce geohazards, i is the
geohazard hazard indicator (i = 1, 2, 3,..., n), and I(Xi, Y) is the value of the amount of geo-
hazard information provided by each evaluation indicator. The steps of the IV calculation
are as follows: (1) Calculate the informativeness value I(Xi, Y) for each evaluation indicator
Xi

I(Xi, Y) = ln(
Ni/N
Si/S

) (2)

In Equation (2): N is the total number of geohazard hazard sites developed in the
study area; S is the total area of the study area; Ni is the number of geohazard hazard sites
developed of a certain category distributed within the evaluation unit indicator Xi; Si is
the study area of the evaluation indicator Xi contained in the zone. (2) Calculate the total
information Ii: In Equation (3): n is the number of causative factors.

Ii = I(Xi, Y) =
n

∑
i=1

ln(
Ni/N
Si/S

) (3)

The eight evaluation indexes selected by the research institute were counted, analyzed,
and calculated by the GIS system to obtain the total Information Value of geological
hazards in Jiulong County. When the value of information is greater than 0, it means that
the disaster-causing factor is favorable to the development of geological hazards, and vice
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versa means that it is unfavorable to the development of geological hazards. The greater
the value of information, the more dangerous the area.

2.4.2. Logistic Regression

LR is a regression analysis model for dichotomous variables, where the dependent
variable is a dichotomous variable, and the independent variables can be either continuous
or discontinuous variables [46]. LR is widely used in geohazard risk assessment because of
its nonlinear characteristics and clear physical significance [47,48]. The dependent variable
of binary Logistic Regression is dichotomous, and the outcome of the dependent variable
can only be “yes” or “no”, usually expressed as “1” or “0”. The result of the dependent
variable can only be “yes” or “no”, which is generally indicated by “1” or “0”. In the
prediction and evaluation of geologic hazard risk, a value of “1” means that a geologic
hazard occurs, and a value of “0” means that no hazard occurs [49]. The probability of a
disaster occurring is p, and the function f (p) is set to perform a logical transformation:

f (p) = ln
p

1 − p
(4)

ln
p

1 − p
= β0 + β1x1 + β2x1 + · · · · · ·+ βixi (5)

z =β0 + β1x1 + β2x1 + · · · · · ·+ βixi (6)

In Equations (5) and (6): β0, β1, β2,..., βi are Logistic Regression coefficients; z is the
geohazard sensitivity function, which is related to the geoenvironmental factor Xi and
is linear. The probability of geohazard occurrence is obtained by bringing in the above
equation:

p =
1

1 + e−z (7)

In Equation (7): p is the probability of occurrence of geohazards, taking the value range
[0, 1], and the regional geohazard risk prediction can be obtained through GIS calculation
and analysis.

2.4.3. Random Forest

Random Forest is an ensemble learning method, constructing multiple decision trees
through different data subsets and voting on the results of multiple decision trees to obtain
the output of the Random Forest [50]. RF is a common integrated machine learning model
in the current geohazard risk assessment research, based on the data iteration, which
can significantly reduce the amount of computation. RF is a combined model from the
combination of each decision tree, which utilizes Bootstrap for sampling. N samples are
extracted from the original training set to form a training set, and the sample size of each
sample is the same as that of the original training set. The unsampled samples are called
out-of-bag (OOB), which can be used to assess the reliability of the model, called OOB
estimation [51]. Assuming that the sample has a total of M features, set a feature number
P less than or equal to M and randomly select P features from it as the split feature set.
Create a decision tree and out-of-band data, respectively. Compose the generated decision
tree into a Random Forest and then perform classification prediction or regression analysis.
Geological hazard risk assessment is used for classification prediction, and finally, each
record is voted according to various classification results to finalize its classification [52]. It
is important to avoid subjectivity in parameter setting when constructing a Random Forest
model and to improve the predictive ability of the model by constructing different training
sets so that the variability among its classification models increases [53].
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3. Results
3.1. Characteristics of the Temporal Distribution of Geologic Hazards

Figure 3 represents the distribution of the number of geologic hazards by month in
Jiulong County during the period from 1999 to 2020, where yellow, blue, and red correspond
to debris flows, collapses, and landslides, respectively. Statistics show that when the annual
rainfall is less than 920 mm, the proportion of earthquake disasters is 22.85%. When the
annual rainfall is greater than 920 mm and less than 940 mm, the proportion of earthquake
disasters is 41.08%. When the annual rainfall is greater than 940 mm, the proportion of
earthquake disasters is 36.7%. In recent years, precipitation has played an important role in
geological disasters. As one of the important inducements of regional geological disasters,
its influence on geological disasters in Jiulong County is mainly based on the dividing
line of annual rainfall 920 mm. Years greater than this value are more prone to geological
disasters. Moreover, the occurrence of geological disasters has a certain fluctuation. During
the period from May to August every year, geological disasters have an overall increasing
trend, which is positively related to the monthly rainfall. The increase in precipitation
destabilizes the slopes and increases the possibility of geologic hazards. The possibility of
geohazards is higher in areas with relatively high rainfall because rainfall causes rainwater
to erode the geotechnical body, which increases the gravitational force on the material
on the slope, leading to an increase in the downward force. At the same time, the water
content also increases, the geotechnical body becomes softer, the shear strength becomes
lower, and the stability decreases and, ultimately, induces geohazards.
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3.2. Characteristics of the Spatial Distribution of Geologic Hazards

The interplay of elements, including the natural environment and human activity,
affects the formation of geologic hazards. Due to the complex geological conditions in
the whole study area, geologic hazards are characterized by a large number and wide
distribution. As analyzed in Figure 2, the geologic hazard sites in Jiulong County are
mainly distributed between elevations of 2000 and 2800 m, slopes between 10 and 30◦, and
slope aspects due east and southeast.

3.3. Analysis of Factors Affecting the Occurrence of Geologic Hazards

Analyzing the causes of geologic disasters can clarify the spatial distribution charac-
teristics of geologic disasters, reduce the losses of geologic disasters, promote sustainable
development in the region, and provide a basis for successful disaster prevention and
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mitigation. The influencing factors of geohazards in the Alpine Gorge region are mainly
divided into two aspects, including natural factors and human activity factors. For example,
heavy rainfall, as an important natural factor, is the main cause of geohazards such as land-
slides, avalanches, and mudslides, which, in turn, lead to serious casualties and economic
losses; at the same time, since heavy rainfall occurs mostly in May–August, May–August
is also the most frequent period of geohazards. From the viewpoint of human activity
factors, engineering construction, slope excavation, mining, and other human engineering
activities will have a certain impact on the topography and geomorphology. Engineering
construction will increase the burden of the slope body, make the slope body lose its original
stability, and under the combined influence of various factors, lead to slope instability, thus
inducing geological disasters.

Table 3 describes the construction time of hydropower plants in Jiulong County,
average annual energy production, etc. The mainstream section of Jiulong River adopts
the “one reservoir, five stages” gradient development program, which consists of Xigu
Reservoir, Wuyiqiao, Shaping, Pianqiao, and Jiangbian Hydropower Station from top to
bottom, and the first-grade tributary of Taca River on the left bank, which consists of two
graded hydropower stations, namely, Xieka Hydropower Station and Taca Hydropower
Station, from top to bottom. These hydropower plants generate an average of about
150 Billion kwH per year, guaranteeing sustainable development in the region. The water
system of the basin is developed in the form of feathers, and the rock layer along the river
is strongly weathered, cut, and broken. The stability of the bank slopes is poor, coupled
with the frequent development of hydropower along the coast as well as the construction of
large- and medium-sized projects, the basin suffers from landslides, avalanches, mudslides,
and other geologic hazards, which are becoming more and more serious.

Table 3. Development of hydropower plant construction in Jiulong County.

Hydropower Station Building Time Elevation Mean Annual Energy Production

Xigu 2010–2013 2860 m 10.55 Billion kW·h
Wuyiqiao 2008–2009 2200 m 6.24 Billion kW·h
Shaping 2005–2008 2187 m 7.80 Billion kW·h
Pianqiao 2005–2008 2005 m 10.91 Billion kW·h
Jiangbian 2008–2011 1797 m 110.43 Billion kW·h

Xieka 2009–2014 3168 m 5.18 Billion kW·h
Taka 2008–2010 2657 m 4.96 Billion kW·h

Data sources: Large Dam Safety Supervision Center, National Energy Administration.

Figure 4 indicates that the annual number of geological disasters that occurred in Jiulong
County from 1999 to 2020 will be a disaster year every few years. The number of geolog-
ical disasters in Jiulong County was higher in 2005, 2008, and 2012, during which several
hydropower stations began to be constructed. It can be visualized that in the early stages
of hydropower plant construction, geohazards increased to a certain extent. The frequent
development of hydropower projects in the Alpine Gorge region makes geologic disasters in
the region inevitable, and it is indispensable to analyze the factors affecting geologic disasters
in the Alpine Gorge region to guarantee a stable power supply every year, promote economic
development, and facilitate the sustainable development of the region.
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4. Discussion
4.1. Verification of the Accuracy of Geohazard Evaluations

The Receiver operating characteristic curves are a common method for verifying the
accuracy of geologic hazard-prone areas. Drawing the ROC curve does not need to select
the classification threshold, which avoids the interference of too many human factors on
the accuracy verification and has better objectivity [54,55].

4.2. Comparison of Evaluation Results of Different Models

Based on the features of their individual research domains, many academics selected
appropriate assessment models and subsequently assessed the geohazard risk in the area.
Nonetheless, the range of applicability for various assessment frameworks varies. Next, we
mainly compare the relationship between the distribution of geohazard sites and the risk
zoning of the following three models. Table 4 divides the risk level into five levels, the area
and percentage occupied by the three different modeling methods in different risk levels,
and the relationship between the distribution of geohazard sites and the risk level zoning.

Table 4. Relationship between the distribution of geologic hazard sites and hazard zoning.

Modeling Approach Risk Level Area (km2) Area Proportion Number of
Disaster Points

Percentage of
Disaster Points

Information Value

Low risk 2350.69 34.72% 0 0
Medium–low risk 2037.27 30.09% 1 0.20%

Medium risk 1018.63 15.03% 16 3.21%
Medium–high risk 940.28 13.89% 88 17.64%

High risk 423.13 6.25% 394 78.96%

Logistic Regression

Low risk 2187.15 32.31% 0 0
Medium–low risk 2269.17 33.52% 2 0.41%

Medium risk 1214.65 17.94% 35 7.01%
Medium–high risk 747.54 11.04% 105 21.04%

High risk 351.51 5.19% 357 71.54%

Random Forest

Low risk 3342.30 49.37% 0 0
Medium–low risk 1264.83 18.68% 14 2.81%

Medium risk 916.46 13.54% 36 7.21%
Medium–high risk 689.94 10.19% 119 23.85%

High risk 556.46 8.22% 327 66.13%
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Through the zoning classification by GIS using the natural breakpoint method, the area
of hazardous zones of the three models is roughly the same. None of the low hazardous
zones has the distribution of hidden hazard points, and the number and surface density
of hidden hazard points in the high hazardous zones are the largest. Moreover, with the
increase in the degree of danger, the number and surface density of geohazard development
increases, but the area of danger zoning decreases, and the results are in line with the actual
distribution law of hidden hazard points. The area of high-risk zone accounts for about
6% of the total area in Jiulong County, of which the distribution of geologic hazard sites
accounts for about 70%. Among them, the distribution of LR zoning and geologic hazard
sites is shown in Figure 5. On the left side, the risk class zones of the Logistic Regression
model are shown, and on the right side, the distribution of hazard sites is labeled on the
left side, and it is easy to find that the number and density of sites in the high-risk area are
the largest. According to the geographic terrain, the terrain is high in the north and low
in the south, with many “V”-shaped valleys, which is typical of the Alpine Gorge region.
The high-risk area is more in the south than in the north and in the center than in the east
and west, and it is concentrated in populated areas such as rivers and highways. High-risk
areas are more in the south than in the north, more in the center than in the east and west,
and are mainly concentrated in densely populated areas such as rivers and highways.
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The ROC curves of different models are shown in Figure 6; the area under the curve of
the IV model, LR model, and RF model is 0.901, 0.914, and 0.875, respectively, which indicates
that the results of the geohazard risk assessment of the three models are accurate and reliable
in this region, and the LR model has the largest area under the curve, which is the most
suitable model to be used for geohazard risk assessment in the Alpine Gorge region.

Sustainability 2024, 16, x FOR PEER REVIEW  12  of  17 
 

 

Figure 5. LR model zoning and distribution of geologic hazard sites. 

The ROC curves of different models are shown in Figure 6; the area under the curve 

of the IV model, LR model, and RF model is 0.901, 0.914, and 0.875, respectively, which 

indicates that the results of the geohazard risk assessment of the three models are accurate 

and reliable in this region, and the LR model has the largest area under the curve, which 

is the most suitable model to be used for geohazard risk assessment in the Alpine Gorge 

region. 

 

Figure 6. Evaluation of model ROC curves. 

4.3. Strategy for the Development of Geohazardous Priority Areas 

The purpose of the risk assessment of geologic hazards in the Alpine Gorge region is 

the prevention and control of geologic hazards, clarification of the factors affecting geo-

logic hazards, provision of a theoretical basis for prevention and control, improvement of 

the comprehensive disaster prevention and mitigation capacity, and ultimately, promo-

tion of sustainable development in the region. 

Combined with  the  actual  situation  in  Jiulong  County,  an  emergency  shelter  is 

planned in each township. For high-risk areas to avoid geological disasters in time, it is 

also  recommended  to  reduce  the  loss  through  relocation.  Additionally,  protective 

measures can be conducted in advance, early warning can be emphasized, and the source 

of danger can be eliminated;  for other hazardous areas,  through monitoring and early 

warning as well as the planning of the emergency shelter, disaster reduction can also be 

Figure 6. Evaluation of model ROC curves.



Sustainability 2024, 16, 1949 12 of 16

4.3. Strategy for the Development of Geohazardous Priority Areas

The purpose of the risk assessment of geologic hazards in the Alpine Gorge region is
the prevention and control of geologic hazards, clarification of the factors affecting geologic
hazards, provision of a theoretical basis for prevention and control, improvement of the
comprehensive disaster prevention and mitigation capacity, and ultimately, promotion of
sustainable development in the region.

Combined with the actual situation in Jiulong County, an emergency shelter is planned
in each township. For high-risk areas to avoid geological disasters in time, it is also
recommended to reduce the loss through relocation. Additionally, protective measures
can be conducted in advance, early warning can be emphasized, and the source of danger
can be eliminated; for other hazardous areas, through monitoring and early warning as
well as the planning of the emergency shelter, disaster reduction can also be achieved.
Based on GIS technology, according to the results of risk prediction and evaluation, the
emergency refuge sites in Jiulong County are selected. There are three principles governing
the location and layout of emergency shelters: accessibility—emergency shelters should be
as close as possible to residential areas, roads, and towns and should be within reach when
danger occurs; scientific—the selection of emergency refuge sites should avoid medium-
and high-risk areas to prevent secondary disasters; safety—the service area of emergency
refuge should be set according to the number of residents to meet the refuge needs of
residents and ensure the safety of residents. Moreover, an emergency command center
should be set up near the emergency refuge, the public and relevant departments should
receive early notification and warning in a timely manner, and disaster prevention and
reduction in the region should be improved through the provision of necessary rescue and
evacuation guidelines. The proposed layout of the emergency refuge is shown in Figure 7.
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5. Conclusions and Recommendations
5.1. Conclusions

The temporal and spatial distribution and influencing factors of geohazard risk in
the Alpine Gorge region are analyzed based on three different models and validated for
comparison. The main conclusions are as follows.

1. The Alpine Gorge region experiences geological disasters as a result of human activity
and the environment working together. The natural environment is mainly reflected
in the fact that the development of disasters coincides with the cycle of precipitation,
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which is mainly concentrated in May–August. Human activities together are mainly
reflected in the fact that the years of heavy disasters often correspond to the early
stage of hydropower project construction in the Alpine Gorge region. Precipitation
and human engineering activities are the main factors inducing geohazards in the
Alpine Gorge region.

2. Geological hazard sites in Jiulong County are mainly distributed between elevations
of 2000 and 2800 m, with slopes between 10 and 30◦ and slope aspects due east and
southeast. The high-risk areas are more in the south than in the north, more in the
center than in the east and west, and are mainly concentrated in densely populated
areas such as rivers and highways.

3. The IV model, LR model, and RF model can be applied in the risk assessment of
Alpine Canyon. The LR model was verified by the ROC curve to be the most accurate
and more suitable for the Alpine Gorge region.

5.2. Recommendations

The western part of Sichuan Province is characterized by complex geological condi-
tions, high mountains and steep slopes, complex topography and geomorphology, special
climatic conditions, infertile soil, and a fragile ecological environment. The frequent oc-
currence of geologic disasters and severe disaster situations seriously hinder social and
economic development and affect the life and safety of residents, and the development
of geologic disaster risk assessment is a need for the sustainable development of the re-
gion. Future studies should focus more on the challenging geological elements that are
currently understudied. Additionally, to conduct research appropriate for particular global
regions, data fusion, processing, and association mining must be investigated to enhance
and compare the accuracy of various models.

This study can improve the scientific nature of the government’s geohazard preven-
tion and control strategy formulation, and the specific recommendations are as follows:
local governments should formulate targeted regional sustainable development strate-
gies around the core areas with large geohazards; additionally, the government needs to
pay more attention to ecological and environmental issues, avoid the impact of human
engineering activities on the sustainable development of energy resources in the region,
strengthen the awareness of geohazard prevention, and improve preventive capabilities
in the development of hydroelectricity and the construction of large- and medium-sized
projects. Moreover, the government should improve preventive capacity and increase
the frequency of emergency drills during the rainfall season to improve the residents’
awareness of geologic disaster prevention and emergency response. In the case of disasters,
timely forecasts and warnings of geologic disasters will be made to reduce the possible
hazards caused by geologic disasters.
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