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Abstract: The Vaippar basin in southern India is economically important for rainfed and irrigated
agriculture, mainly depending on the northeast monsoon (NEM) during October–December, and
any changes in rainfall patterns directly affect crop ecosystems. This study aimed to analyze spatio-
temporal rainfall changes using the monthly data from 13 scattered rain gauge stations in the Vaippar
basin, India. They were converted into gridded rainfall data by creating 26 equally spaced grids
with a spacing of 0.125◦ × 0.125◦ for the period between 1971 and 2019 through interpolation
technique. Three methods, namely Simple Linear Regression (SLR), Mann–Kendell/modified Mann–
Kendell (MK/MMK), and Sen’s Innovation trend analysis (ITA), were employed to detect trends
and magnitudes for annual and seasonal gridded rainfall series. The results showed significant
trends at 2.3%, 7.7%, and 44.6% of grid points using SLR, MK/MMK, and ITA methods, respectively.
Notably, ITA analysis revealed significant trends in annual and NEM rainfall at 57.69% and 76.92% of
the grid points, respectively, at a 5% significance level. The southwestern and central parts of the
basin exhibited a higher number of significant upward trends in annual rainfall. Similarly for the
NEM season, the south-eastern, central, and extreme southern parts experienced significant upward
trend. The western part of the basin exhibited significantly upward trend with a slope value of
2.03 mm/year, while the central part showed non-significant downward trend with a slope value
of −1.89 mm/year for the NEM series. This study used the advantage of ITA method, allowing for
exploration of monotonic/non-monotonic trends, as well as subtrends of low, medium, and high
rainfall segments within the series. The key findings of this study serve as a scientific report from a
policy perspective, aiding in the preparation and management of extreme climate effects on land and
water resources in the Vaipaar basin.

Keywords: gridded rainfall; Mann–Kendell; innovative trend analysis; regression; magnitude;
spatial interpolation; subtrend

1. Introduction

Whether it is rainfed agriculture or irrigated agriculture, rainfall remains the primary
source of water for crop production. In countries like India, which heavily rely on agricul-
ture, achieving grain self-sufficiency has been a significant accomplishment. However, the
production is resource intensive, focused mainly on cereals, and biased towards specific
regions, all while facing increasing stress on water resources [1]. The state Tamil Nadu, one
of the major contributors to food production in India, includes 17 major river basins, with
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approximately 2.4 million hectares irrigated by surface water through major, medium, and
minor schemes [2]. According to a recent study, the rainfed cropland area in Tamil Nadu
was estimated to be 2.57 million hectares, accounting for 19.66% of the total geographi-
cal area of the state. The Virudhunagar (0.14 million hectares) and Thoothukudi district
(0.17 million hectares), located within the Vaippar basin, contributed to higher rainfed
cropland areas [3], and have been considered in this research work.

In the context of rainfall variability, uncertain distribution of rainfall poses a serious
obstacle to agriculture [4]. The availability of rainwater for both rainfed and irrigated
agriculture is becoming scarce due to uncertain rainfall patterns. Moreover, extreme
climate-induced hazards such as droughts and floods are becoming more common due
to hydro-climatological variability [5]. The trends of these events have been linked to
changes in rainfall patterns [6]. Therefore, understanding the historical pattern of rainfall
variation and referring to scientific reports on rainfall trends are crucial for planning water
conservation efforts and formulating mitigation measures for extreme climate events [7].
Additionally, these details are essential for minimizing underestimation or overestimation
of design parameters for water infrastructure [8].

In the recent years, trends in hydro-meteorological variables have gained considerable
attention in different parts of the world [4]. Different statistical methods are presently avail-
able for detecting trends of hydro-meteorological variables and used by many researchers.
Each method has its own merits and demerits. Generally, the trend detection methods are
divided into parametric and non-parametric methods. Many scientists use non-parametric
methods for trend analysis because these methods are not sensitive to outliers [9]. They
can be particularly useful for analyzing non-normally distributed series with missing val-
ues [10], and they do not rely on any assumptions about the nature of the data [11]. The
non-parametric methods such as the Mann–Kendall (MK) test, modified MK test, Spearman
rank order correlation (SRC), Kendall rank correlation (KRC), and innovative trend analysis
(ITA) are commonly followed by many researchers for trend detection at different time
scales and significance levels [12–15]. Equally, parametric methods such as simple linear
regression (SLR) method are extensively used for detecting the monotonic long-term trend
in the rainfall time series [16,17]. The main advantage of SLR method is that it measures
the statistical significance for testing hypothesis on the estimated slope and also provides
the magnitudes of the parameters considered for analysis [18]. Most of the researchers
used non-parametric tests for trend assessment [19] and some of the studies explored the
comparison of non-parametric and parametric tests for trends [20]. The magnitude of
rainfall trend (mm/year) can be determined using Sen’s Slope estimator (SSE) and Simple
Linear Regression (SLR) tests [15].

Numerous studies have been conducted on spatio-temporal trends of hydro-meteorological
variables, such as stream flow [21,22]; rainfall [23]; temperature and potential evapotran-
spiration [10,24]; reference evapotranspiration [25] and other climate variables. Gridded
satellite data and gauged climate data have been used for trend analysis [26,27]. Trend
detection studies are available in regional and basin scale in India such as Kerala [28];
Ganga-Brahmputra-Meghna river basins of India [29]; Parambikulam Aliyar sub basin
in Tamil Nadu [30]; Betwa Basin in Central India [31]; Godavari River basin in Southern
Peninsular India [32,33]; Sindh river basin in India [34]; upper Cauvery Basin [35]; Lower
Bhavani basin in Tamil Nadu [36]; Thamirabharani River Basin in Tamil Nadu [27]; Indian
river basins [37]; Indravati river basin [26]; states such as Jharkhand [38,39]; Chhattisgarh
State [40,41]; Maharashtra and Karnataka [42]; Gujarat [13,43] Central India—Madhya
Pradesh and Chhattisgarh [44]; Parts of Rajasthan [12,45–47]; parts of Odisha [48]; Uttarak-
hand [15]; parts of Andhra Pradesh [49]; Kashmir Valley [50].

Some global studies on trend analysis of hydro-metrological variables include coun-
tries such as Ethiopia [51]; Turkey [52]; Ghana [53]; Netherlands [54]; Iran [55,56]; Mediter-
ranean regions [57,58]; Tanzania coast [59]; China [60–64]; Egypt [65]; United States [66].
The spatial variation of trends could be identified under ArcGIS environment through the
inverse distance weighting (IDW) [34,67,68] and Kriging method [40]. Some studies used
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Thiessen polygon method to identify the area of influence of point rain gauges [15,31]. A
standard methodology in a GIS environment using different trend methods was developed
for analyzing the spatial pattern [13].

Recently, the innovative trend analysis (ITA) method developed by Sen (2012) [8] has gained
more attention around the world and it was test verified by many researchers [14,17,44,47,52,63].
The main advantage of ITA method is analyzing trends by providing graphical forms of
presentation and without any limitations, such as non-normality, serial correlation, and
size of data in the time series. In addition, ITA method provides a robust and powerful
result with minimum error. It is also possible to detect the monotonic and non-monotonic
trends in a way that time series are divided into different subcategories of the time series
such as high, medium, and low zones [69,70].

This study aims to explore the rainfall variations, spatial patterns of trends, and their
magnitudes of annual and seasonal rainfall series of the Vaippar basin at micro-level using
classical rainfall statistical methods. The uniqueness in this research work is the use of
spatially interpolated gauge rainfall data applied at micro-level for trend detection and
identification of subtrends within the rainfall series over space and time.

2. Materials and Methods
2.1. Study Area

The Vaippar River Basin, located in the southern part of Tamil Nadu, India is a sig-
nificant river basin in the region. Situated between latitudes 8◦97′ N and 9◦78′ N and
longitudes 77◦24′ E and 78◦37′ E, it encompasses a total catchment area of 5320 km2. The
basin is bounded on the north by the Vaigai and Gundar basins, on the south by the Tama-
raparanibasin, on the west by the Western Ghats, and on the east by the Gulf of Mannar
(Bay of Bengal). The basin area spans across four districts, with Virudhunagar accounting
for 68%, Thoothukudi for 20%, Madurai for 7%, and Tirunelveli for 5% of the total area. The
Vaippar River originates from the Echamalai mottai, Neduntheri mottai, and Kiladiparai
hill ranges of the Western Ghats, situated near Sivagiri in Tirunelveli district. It begins at
an elevation of 165 m above mean sea level and flows predominantly in an easterly and
southeasterly direction for a distance of 146 km before joining the Gulf of Mannar. The
catchment area of the Vaippar basin encompasses hilly regions such as Kodaliparai mottai,
Vasudevanallur reserve forest, Periyasudangi malai, and others. These mountain ranges lie
in the rain shadow regions of the Western Ghats, resulting in relatively low rainfall. The
entire catchment area of the Vaippar basin is within the boundaries of Tamil Nadu state. The
basin has been further divided into 13 sub-basins, namely: (1) Nichabanadhi, (2) Kalingalar,
(3) Deviar, (4) Nagariyar, (5) Sevalperiyar, (6) Kayalkudiar, (7) VallampattiOdai/Uppodai,
(8) SindapalliUppodai, (9) Arjunanadhi, (10) Kousiganadhi, (11) Uppathurar, (12) Senkot-
taiyar, and (13) Vaippar. The location of the Vaippar basin is depicted in Figure 1.

The basin experienced frequent drought with a range from four to eight years per
drought [71]. Agricultural land covers approximately 74% of the total geographical area,
while forested areas account for 10% of the area. Wasteland occupies 8% of the total
geographical area, while settlements and water bodies together cover less than 8% of the
basin’s total geographical area. Out of the total agriculture area in the basin, cultivable land
represents 43%. This cultivable land is primarily utilized for cultivating water-intensive
crops such as paddy, sugar cane, and banana [72]. Additionally, cotton, non-paddy, and
dry crops are also grown in the basin. The basin’s total irrigated area accounts for 24% of
the cultivable land. The remaining 76% of the cultivable land relies mainly on rainwater for
irrigation [71].
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2.2. Data Used

Daily rainfall data from 13 rain gauge stations distributed across the Vaippar basin
were collected for this study. The data were obtained from the State Ground and Surface
Water Resources Data Center, Public Works Department, and Water Resources Organization
in Chennai. The location details of each rain gauge station and the period of data utilized
in this study are presented in Table 1. Standard quality control measures were undertaken
to identify outliers and errors in rainfall data for all 13 rain gauges. Any potential outliers,
including missing data and instrument errors, were checked and corrected. To facilitate
the analysis, the daily rainfall data for each station was processed to derive monthly data.
Subsequently, the monthly rainfall series was further organized into seasonal rainfall series.
The seasons considered for this analysis were as follows: Southwest Monsoon (SWM) from
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June to September, Northeast Monsoon (NEM) from October to December, winter season
in January and February, summer season from March to May, and an annual rainfall series.
The space–time correlation analysis of the mean monthly rainfall data with the rain gauge
stations was conducted and is presented in Table A1. A strong correlation exists within the
mean monthly rainfall series among the rain gauge stations.

Table 1. Details of rain gauge station geographical location and data used.

Sl. No Rain Gauge Station Latitude Longitude Elevation, m Data Availability

1 Aruppukottai 09◦30′09′′ 78◦05′44′′ 123 1971–2019
2 Virudhunagar IB 09◦35′00′′ 77◦57′50′′ 120 1971–2019
3 Sattur 09◦21′08′′ 77◦55′13′′ 91 1971–2019
4 Sivakasi 09◦27′44′′ 77◦47′14′′ 127 1973–2019
5 Srivilliputhur 09◦30′14′′ 77◦38′08′′ 146 1971–2019
6 Watrap 09◦38′11′′ 77◦38′01′′ 73 1974–2019
7 Pilavakkal 09◦38′25′′ 77◦31′45′′ 141 1982–2019
8 Koilpatti (Rev) 09◦10′27′′ 77◦52′28′′ 130 1971–2019
9 Vilathikulam 09◦07′48′′ 78◦10′05′′ 47 1971–2019

10 Sankarankoil 09◦10′04′′ 77◦32′12′′ 143 1971–2019
11 Sivagiri 09◦20′47′′ 77◦26′01′′ 165 1971–2019
12 Vembakottai 09◦20′06′′ 77◦45′04′′ 111 2000–2019
13 Ettayapuram 09◦08′53′′ 77◦59′26′′ 60 1999–2019

2.3. Methodology

In this study, the monthly rainfall data collected from the 13 rain gauge stations were
spatially interpolated to generate gridded rainfall data. A grid with a spacing of 0.125◦

in both latitude and longitude was employed to create 26 individual grids that spanned
the entire basin area. The rainfall data available for each location in each year during the
period specified in Table 1 underwent spatial interpolation. Using spatially interpolated
monthly rainfall data, gridded rainfall data was prepared. Using the gridded rainfall
data, trends in the monthly, annual, and seasonal rainfall series were estimated. Three
different methods were employed for trend analysis: Mann–Kendall (MK) test, simple
linear regression (SLR), and Sen’s innovative trend analysis (ITA) method. The trends were
evaluated by estimating the slopes using Sen’s slope, SLR, and ITA methods to quantify
the magnitude and direction of the trends in the rainfall data, and the percentage change
of magnitude of trends from mean rainfall. The overall methodology used in this study is
depicted as a flowchart in Figure 2.
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2.4. Spatial Interpolation of Rainfall

Spatial interpolation techniques play a crucial role in estimating values at locations
where no observed data is available, using known data values. Several methods, such
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as inverse distance weighting (IDW), splines, and kriging, are commonly employed for
spatial analysis of various variables [73–75]. In the present study, the IDW approach was
specifically utilized for spatially interpolating rainfall data across the Vaippar basin. This
method considers the proximity of known data points to the location of interest and assigns
weights accordingly, resulting in an interpolated surface that provides valuable insights
into the spatial distribution of rainfall within the basin.

The IDW interpolation technique assigns weights to each control point based on the
inverse of their distances from the interpolated point. This means that closer control points
have a greater influence on the interpolated value compared to those farther away. The
technique assumes that each control point has a local influence that diminishes as distance
increases. In IDW interpolation, the output value at a given location is determined by
a specified number of nearest points or all points within a specified radius. The power
parameter of the IDW method controls the significance of the surrounding points in de-
termining the interpolated value. A higher power value reduces the influence of distant
points, resulting in a stronger emphasis on the values of nearby points in the interpolation
process [76].

The general form of IDW approach [77,78] is given in Equation (1):

zni =
∑m

j=1 zj × d−p
j

∑m
j=1 d−p

j

(1)

where zni is the new value for grid i; zj is the value of m nearest neighbours; dj is the
distance to m nearest neighbours; p is the exponent of distance. For this study, the exponent
of distance was taken as two for spatial interpolation of the rainfall.

This study employed the Inverse Distance Weighting (IDW) technique instead of the
Thiessen polygon method to estimate the gridded rainfall across the basin. The Thiessen
polygon method often results in a crude approximation of rainfall spatial variation due to
attribute variations associated with each rain gauge station, ranging from 14 to 30% [79,80].
To overcome this limitation, the Vaippar basin was divided into smaller square grids.
Given the constraints of rainfall data availability and the uneven distribution of rain gauge
stations within the basin, spatial interpolation of data at smaller grids was necessary to
address these challenges and obtain a more accurate representation of rainfall patterns.

The total area of the Vaippar basin was divided into 26 grids, each with dimensions
of 0.125◦ (205 km2). These grids accounted for approximately 3.85% of the total area,
equivalent to 5320 km2. Monthly rainfall data recorded at 13 stations were spatially
interpolated using the IDW method in QGIS 3.30.2 resulting in gridded rainfall data for the
period from 1971 to 2019. The gridded rainfall data was then utilized to analyze the spatial
patterns of significant trends in rainfall over the study period.

2.5. Rainfall Variability

In this study, the variability of rainfall has been assessed using the coefficient of
variation (CV). The CV is a statistical measure that represents the ratio of the standard
deviation to the mean of a rainfall data series. It is often used to quantify the relative
variability or dispersion of rainfall. A higher CV indicates greater variability, while a
lower CV suggests more stability or consistency in the data [27,81]. The CV for the rainfall
events is expressed as a percentage (%). As mentioned by Hare (2003) [82], the CV can be
used to classify the degree of variability of rainfall events into three categories: (i) when
the CV is less than 20, rainfall events are considered to have less variability or consistent
pattern of rainfall; (ii) when the CV is between 20 and 30, rainfall events are classified as
having moderate variability or fluctuation; (iii) when the CV exceeds 30, rainfall events are
categorized as having high variability indicating a less stable or more unpredictable rainfall.
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2.6. Simple Linear Regression

Simple linear regression (SLR) analysis is a widely used parametric model for identify-
ing monotonic long-term trends in monthly, seasonal, and annual rainfall time series [83].
SLR analysis establishes a relationship between two variables, often employed to determine
the slope of hydro-meteorological variables over time. A positive slope indicates an upward
trend, while a negative slope suggests a downward trend. The primary advantage of SLR
analysis is its ability to provide a measure of significance through hypothesis testing on the
slope, along with quantifying the rate of change. To obtain the percentage change during
the specified period, the slope values are multiplied by the duration of the study period in
years [16].

In this study, the simple linear regression models for the annual and seasonal time series
were developed between the gridded rainfall data and time for trend detection [40,84,85]. The
test statistic “t”, which follows a Student’s t-distribution with (n − 2) degrees of freedom
(where “n” represents the length of the data points in the time series), was calculated to
examine the significance of trend. The null hypothesis (Ho) of a zero slope is rejected
when the calculated test statistic “t” value surpasses the critical value “tα/2” at a given
significance level.

2.7. Mann–Kendall (MK) Trend Analysis

The non-parametric Mann–Kendall (MK) test is a commonly used method for explor-
ing trends in hydro-meteorological data. The trends identified by this test in the time series
are monotonic, meaning they can be increasing or decreasing without assuming linearity.
The test was originally proposed by Mann (1945) [86] and the test-statistic distribution was
subsequently derived by Kendall (1975) [87]. The null hypothesis for this test assumes
that the data is independent and randomly ordered. One advantage of this test is that it
does not require any assumption of normality. However, it only indicates the direction of
significant trends, without providing information about their magnitude [86,87]. The MK
test statistic S indicates the number of positive differences minus the number of negative
differences for all the considered differences. Using S value, its mean, and variance, the
standardized test statistic Z was calculated for annul and seasonal rainfall series. A positive
or negative Z value indicates an upward/downward trend [88]. The Z statistic follows a
normal distribution. To test for statistical significance, compare the calculated Z value with
critical values obtained from the standard normal distribution tables at two significance
levels (α = 5% and α = 10%). The null hypothesis (Ho) of no trend is rejected if the calculated
value of Z is greater than the table value of Z1−α/2 [13,30,89].

2.8. Modified Mann–Kendall Test

In the Modified Mann–Kendall (MMK) test proposed by Hamed and Rao (1998) [90],
the autocorrelation coefficient (ACC) of the rainfall series is computed and then subjected
to testing at various levels of significance. If the ACC value is determined to be significant,
the MMK test is subsequently [13,23,89].

Initially, the modified variance was computed by integrating the Auto-Covariance
Correction (ACC) at lag-i. Subsequently, this modified variance was utilized in the original
Mann–Kendall (MK) test, leading to the calculation of the modified Mann–Kendall Zc
statistic. To assess the significance of the trend, the modified Mann–Kendall Zc statistic was
subjected to testing against threshold levels. For instance, significance levels of 10% and 5%
were represented by threshold values of 1.645 and 1.96, respectively.

2.9. Autocorrelation Analysis of Time Series

The autocorrelation (serial correlation coefficient, r) analysis is a useful tool for eval-
uating the presence of randomness and periodicity within a time series at different lag
periods [91]. To calculate autocorrelation coefficients (ACC), the normalized anomaly of
the rainfall series, obtained from gridded rainfall data, along with the long-term average
and standard deviation of annual and seasonal rainfall, can be utilized. Positive or negative
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ACC values are generally influenced by the trends identified in the time series [90,92,93].
If the ACC is close to zero for different time lags, it suggests that the data points in the
time series are randomly distributed, indicating no dependence. On the other hand, the
presence of serial correlation, as examined through autocorrelation analysis, is an important
preliminary test before performing the Mann–Kendall (MK) trend analysis. This is because
the MK analysis requires the input data to be serially independent. Otherwise, the presence
of positive serial correlation in the data can lead to an overestimation of trend significance.
The lag-1 ACC specifically detects the serial correlation in the data series. The statistical
significance of serial correlation can be tested by employing a normally distributed statistic
at a significance level of “α”, taking into account the lag period and the length of the
series [94].

The ACC (rk) of the rainfall time series at lag-k can be computed using the rainfall
data of the time series and the total length of the time series, where “k” represents the time
lag. The value of rk ranges between +1 and −1. A value of zero for rk signifies that the
series is random for all lag-k values [15]. To evaluate the statistical significance of the ACC
in the time series data, testing should be conducted at both upper and lower confidence
limits. If the ACC turns out to be statistically insignificant, the Mann–Kendall (MK) test
can then be applied to the original time series [95,96]. The null hypothesis (Ho) suggests
the absence of serial correlation within the time series, while the alternative hypothesis
(Ha) suggests the presence of some serial correlation rather than pure randomness. In this
study, the hypothesis was examined using the lag-1 autocorrelation coefficient. The upper
and lower confidence limits can be calculated [45,97] at a significance level denoted as α
(e.g., for α = 10%, Z = ±1.645, and for α = 5%, Z = ±1.96) [45]. When the rk value falls within
the range of the critical values {(rk) upper < rk < (rk) lower}, the null hypothesis Ho: rk = 0 is
rejected, while Ha: rk ̸= 0 is accepted. This indicates that the time series is not random and
exhibits some level of persistence or serial correlation [11].

2.10. Sen’s Slope

The magnitude of trends in monthly, seasonal, and annual time series was determined
using Sen’s slope, a non-parametric method introduced by Sen (1968) [98]. Sen’s slope
requires equally spaced data in a time series [11]. One of the main advantages of Sen’s slope
over simple linear regression (SLR) is its resilience to data errors, outliers, and extreme
observations [15]. This method is particularly useful when assuming a linear trend line.

The slope estimate Q for each pair of data values is calculated using Qi = median
xj−xk

j−k
where xj and xk are the data values at time j and k, respectively (j > k). If there are n data
values xj in the time series, there will be a total of N = n(n − 1)/2 slope estimates Qi. The N
values of Qi are then ranked from the smallest to the largest. The Sen’s slope is determined
based on whether N is odd or even: if N is odd, the Sen’s slope is = Q

[ (N+1)
2 ]

; if N is even,

the Sen’s slope is Q = 1
2

(
Q[ N

2 ] + Q
[ (N+2)

2 ]

)
. A positive value of Q indicates an upward

trend, while a negative value represents a downward trend. A Q value of zero indicates no
trend in the time series [15,30].

2.11. Innovative Trend Analysis

The Innovative Trend Analysis (ITA) method has been successfully utilized for trend
detection in hydro-meteorological variables [8,52]. This method is simple, allowing for easy
identification and visualization of trends in high, medium, and low data set on the trend
line [70]. Unlike non-parametric trend identification tests, the ITA method does not require
restrictive assumptions such as data series independence, normality, or data length [8,47,99].
It involves plotting all data points of the time series in a Cartesian coordinate system and
comparing them with a diagonal straight 1:1 line [44,100]. The construction procedure for
ITA is provided below:

(a) Divide the monthly, annual, or seasonal rainfall time series into two equal halves.
Arrange each half series in ascending order.
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(b) Place the first half of the time series on the X-axis and the second half on the Y-axis.
Plot the rainfall series as a scatter diagram.

(c) Draw a straight 45◦ line diagonally in the scatter graph representing a 1:1 relationship.
Divide the plot into upper and lower half triangles.

(d) If the scattered points align perfectly on the 45◦ line, the series does not exhibit a trend.
(e) When the scattered points lie within the upper half triangle, the rainfall series is said

to have an increasing trend.
(f) When the scattered points lie within the lower half triangle, the rainfall series is said

to have a decreasing trend.
(g) A time series is considered to have a monotonic trend if all scattered points lie above

or below the upper or lower half triangles. Non-monotonic trends occur when some
scattered points are located in the upper half triangle and others in the lower half
triangles [8].

(h) The trend of low, medium, and high values can be observed in the scatter graph.
(i) To test the significance of the trend, a null hypothesis (Ho) is considered: there is no

significant trend if the calculated slope value (S) is below the critical value (Scri). The
alternative hypothesis (Ha) states that there is a significant trend when S > Scri.

(j) The slope (S) of the trend is computed using the formula [101]:

S =
2(y2 − y1)

n
(2)

where, y1 and y2 represent the mean of the first and second halves of the rainfall time
series, and n is the number of data points in the rainfall time series.

(k) The standard deviation (σs) of the trend slope is calculated using the formula [101]:

σS =
2
√

2
n
√

n
σ
√

1 − ρy1y2
(3)

where σ represents the standard deviation and ρy1y2
is the cross-correlation coefficient

between the means of the two-half series.
(l) By utilizing the confidence limits (Scri) for a standard normal probability density

function, the confidence limits of the trend slope are calculated at a significance level
of α using the formula [101]:

CL(1−α) = 0 ± ScriσS (4)

If the slope value (S) falls beyond the lower or upper confidence limits, the null
hypothesis of no significant trend is rejected at the α significance level.

2.12. Percentage Change in Magnitude of Trend from Mean Rainfall

The percentage change in magnitude of trend from mean rainfall of seasonal and
annual time series can be calculated using the following expression [31,102,103]:

PC =
n × S

x
× 100 (5)

where PC represents the percentage change of rainfall (%), n is the length of time series in
years, S is the magnitude of the trend slope calculated using methods such as Simple Linear
Regression (SLR) coefficient, Sen’s slope, or Innovative Trend Analysis (ITA) slope, and
x is the mean value of the time series. This equation allows for quantifying the percentage
of change in rainfall over the specified time period, relative to the mean value of the
time series.

3. Results and Discussion
3.1. Rainfall Variability

The mean rainfall and coefficients of variation (CV) for the monthly, seasonal, and
annual rainfall of 26 grid points in Vaippar during the period 1971–2019 is presented in
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Tables A2 and A3. During the study period, the Vaippar basin experienced an annual
average rainfall of 762.57 mm. The highest rainfall of 891.93 mm was observed in the
G08 grid point, while the lowest rainfall of 570.2 mm occurred in the G18 grid point.
Out of 26 grid points, 12 grid points located mostly on the western side of the basin
experienced annual rainfall that exceeded the average annual rainfall. The NEM is the
major rainy season in the study area, contributing approximately 54.7% of the annual
rainfall. Within the NEM season, the majority of the rainfall, around 85%, occurred in two
months: October and November. The month of December contributed to approximately
15% of the summer rainfall. Among the grid points, the highest NEM rainfall of 503.54 mm
was recorded in the G01 grid point, while the lowest NEM rainfall of 361.39 mm was
recorded in the G18 grid point. Apart from the NEM season, the remaining seasons, namely
SWM, winter, and summer, contributed 19.5%, 5.4%, and 20.4% of the annual rainfall,
respectively. The maximum monthly rainfall was observed in October, accounting for 24.1%
of the annual rainfall. The month of November followed closely with 22.3% contribution,
while September contributed 9.9%, and December contributed 8.3% of the annual rainfall.

In the Nagariyar sub basin (G01 grid point), the maximum rainfall was recorded
during the months of February, March, April, November, December, and the winter season.
The G08 grid point (part of Arjunanadhi) experienced high rainfall in January, September,
and October, annually, and during the summer season. On the other hand, the G20 grid
point (part of Kousiganadhi) recorded higher rainfall in June, July, August, and during
the Southwest Monsoon (SWM) season. The grid points located in the lower part of the
Sinkottaiyar sub basin (G25) and Sindapalli Uppodai sub basin (G14 and G18) registered
the minimum rainfall. The G25 grid point recorded the minimum monthly rainfall from
January to September, November, SWM, winter, and summer seasons. The G18 grid point
experienced the minimum rainfall during October, while the G14 grid point recorded the
minimum rainfall in December.

The coefficient of variation (CV) of monthly, seasonal, and annual rainfall calculated
for each grid point is shown in Table A3. Rainfall variability as classified by Hare (2003) [82],
shows the CV for annual mean rainfall ranges from 22.9% to 31.5%, indicating moderate
to high variability in rainfall distribution across all grids. The G09 grid point recorded
the highest CV, while the G06 grid point recorded the lowest CV for annual rainfall. Most
of the grid points exhibited moderate variability in annual rainfall, except for G08, G09,
and G14, which are located at the centre of the basin. Rainfall variability was found to be
greater in seasonal rainfall compared to annual rainfall. However, it is worth noting that
the NEM season experienced relatively lower variability compared to the other seasons.
Among the months, October (51.47%) and November (61.33%) exhibited lower coefficients
of variation (CV) compared to the other months.

3.2. Trends of Annual and Seasonal Rainfall Series

The temporal trends were identified using the SLR, MK/MMK, and ITA methods at
different grid points of Vaippar basin for annual and seasonal rainfall series. The calculated
values of the SLR t test, MK/MMK test statistic (Z test), and ITA (slope values) were spatially
mapped for each grid point by IDW interpolation method using QGIS 3.30.2 software. The
magnitude of the trends was identified and percentage changes in mean rainfall were also
calculated. The comparison of number of grid points expressing the significant trends
and correlation among the different trend methods were also attempted. The results are
discussed in the subsequent sections.

3.3. Trends of Annual and Seasonal Rainfall Series by Simple Linear Regression

The spatial distributions of trends in annual and seasonal rainfall, detected by the
SLR method at the 5% and 10% significance levels, are shown in Figure 3. The analysis of
temporal trends using the simple linear regression for annual and seasonal rainfall series
showed that approximately 73% of grid points exhibited non-significant upward trends in
the annual rainfall series. Although the NEM rainfall is a major contributor to the annual
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rainfall, the trend pattern was not similar, with 50% of grid points showing a non-significant
downward trend. The winter and summer rainfall series demonstrated that 57.7% and
76.9% of grid points, respectively, displayed non-significant upward trends.
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Figure 3. Test results of Simple Linear Regression (SLR) at 5 and 10% significance level for (a) annual
(ANL), (b) southwest monsoon (SWM) (c) northeast monsoon (NEM), (d) winter (WIN), (e) summer
(SUM) gridded rainfall series of Vaippar basin.
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Among the five-rainfall series (annual and seasonal), only two series (SWM and
summer) exhibited 7.69% of significant trends at the extreme ends of the basin. In the SWM
series, an upward trend was observed at the G03 grid point and a downward trend at the
G23 grid point, both at a 10% significance level. The summer rainfall series showed an
upward trend at the G01, G02, G14, and G26 grid points at a 10% significance level, and
at the G04, G07, and G25 grid points at a 5% significance level. A significant downward
trend was noticed at the G23 grid point for the summer series. Consequently, the expected
decrease in rainfall will not have a significant impact on water availability, as these seasons
contribute very little to the annual rainfall.

3.4. Trends of Annual and Seasonal Rainfall Series by MK/MMK Test

The Mann–Kendall (MK) method was applied to the annual and seasonal rainfall
series at different grid points of the Vaippar basin to identify significant trends at the 5%
and 10% significance levels using the Z-test. The MK test was conducted for the annual and
seasonal series, taking into account the auto-correlated non-significant series at lag-1. The
modified MK (Zc) test was performed only for statistically significant auto-correlated series.

Autocorrelation analysis was conducted to select the appropriate trend analysis
method and evaluate the performance of both the original and normalized rainfall se-
ries. The autocorrelation coefficient for 26 grid points at lag-1 period for annual and
seasonal rainfall series were worked out and the correlogram is presented in Figure 4. The
upper and lower bound were decided by the 95% confidence interval to test the limits of
the autocorrelation coefficient. The autocorrelation was considered as significant if it is
greater than or lower than ±0.28. Since autocorrelation was found to be significant for five
rainfall series viz ANL-G10, ANL-G12, SWM-G25, WIN-G23 and WIN-G25, the modified
MK test was performed for these five series.
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Figure 4. Autocorrelation coefficient at lag-1 period for annual and seasonal rainfall series of Vaippar basin.
(ANL—annual, SWM—southwest monsoon, NEM—northeast monsoon, WIN—winter, SUM—summer).

The spatial pattern of trends in annual and seasonal rainfall, identified using the MK
methods, is presented in Figure 5. Compared to the SLR test and ITA method, very few
statistically significant trends were observed in the annual and seasonal rainfall series for
both the MK and MMK tests. The temporal patterns of trend detected by MK test indicated
that approximately 73% of the grid points for the annual series and 58% of the grid points
for the NEM series showed non-significant upward trends. Furthermore, 54% of the grid
points for the SWM series displayed a non-significant downward trend.

The MK test detected a downward trend at the 5% significance level in the G23 grid
point for the summer series. A total of five rainfall series were tested using the modified MK
method, which detected a significant downward trend at the G23 grid point for the SWM
series, while the same grid point exhibited a significant upward trend for the winter season.
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Figure 5. Mann–Kendall and Modified Mann–Kendall Z values at 5 and 10% significance level for
(a) annual (ANL), (b) southwest monsoon (SWM) (c) northeast monsoon (NEM), (d) winter (WIN),
(e) summer (SUM) gridded rainfall series of Vaippar basin.
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3.5. Trends of Annual and Seasonal Rainfall Series by ITA Method

The grid-wise trend parameters for the annual and seasonal rainfall series of the
Vaippar basin, as detected by the ITA method, are presented in Tables 2–4. These tables
provide valuable insights into the trends observed in the rainfall patterns across different
grids within the basin. As observed from the tables, the slope values of annual and seasonal
rainfall series during the period 1971–2019 fall outside the lower and upper confidence
limits (CL) for the particular grid point, suggesting existence of a significant trend in the
rainfall pattern.

The slope values of the annual rainfall series are presented in Table 2. Among the
26 grid points analyzed, it is noteworthy that 15 grid points (57.69%) exhibited significant
trends at both the 5% and 10% significance levels. Out of these significant trends, 11 grid
points (42.3%) displayed a significant upward trend, while four grid points showed a
significant downward trend.

Table 2. Grid-wise trend parameters detected by the ITA method for the annual and SWM rainfall
series of the Vaippar basin.

Grid
Annual Series SWM Series

S σ ρ σs LCL UCL Decision S σ ρ σs LCL UCL Decision
G01 3.85 239.07 0.94 0.47 ±0.77 ±0.92 Ha ** 0.13 59.89 0.98 0.06 ±0.11 ±0.13 Ha **
G02 4.47 241.49 0.95 0.47 ±0.77 ±0.91 Ha ** 0.26 58.2 0.98 0.06 ±0.10 ±0.12 Ha **
G03 4.42 201.58 0.91 0.5 ±0.82 ±0.97 Ha ** 0.64 48.23 0.96 0.08 ±0.13 ±0.16 Ha **
G04 −0.44 258.21 0.89 0.7 ±1.16 ±1.38 −Ha ** −1.39 85.92 0.97 0.13 ±0.21 ±0.25 Ho
G05 −1.11 206.69 0.96 0.36 ±0.59 ±0.71 Ho −0.53 72.59 0.97 0.10 ±0.16 ±0.19 Ho
G06 1.41 193.6 0.92 0.44 ±0.72 ±0.86 Ha ** −0.01 60.38 0.95 0.11 ±0.18 ±0.21 −Ha **
G07 4.03 201.73 0.93 0.43 ±0.72 ±0.85 Ha ** 0.5 50.63 0.97 0.07 ±0.11 ±0.13 Ha **
G08 −2.48 274.13 0.97 0.36 ±0.59 ±0.70 Ho −0.5 104.81 0.97 0.16 ±0.26 ±0.31 Ho
G09 −4.24 264.56 0.92 0.6 ±0.98 ±1.17 Ho −0.42 105.93 0.98 0.12 ±0.20 ±0.24 Ho
G10 −1.21 203.12 −0.27 1.89 ±3.10 ±3.70 −Ha ** −0.22 72.52 −0.19 0.65 ±1.07 ±1.28 −Ha **
G11 1.62 180.2 0.91 0.45 ±0.74 ±0.88 Ha ** 0.23 53.13 0.94 0.11 ±0.18 ±0.21 Ha **
G12 −0.86 203.68 0.97 0.27 ±0.44 ±0.52 Ho −0.41 69.96 0.97 0.1 ±0.16 ±0.19 Ho
G13 1.43 215.23 0.99 0.21 ±0.35 ±0.42 Ha ** 0.19 71.67 0.97 0.11 ±0.18 ±0.21 Ha *
G14 2.05 221.59 0.98 0.23 ±0.38 ±0.46 Ha ** 0.2 71.07 0.97 0.1 ±0.17 ±0.20 Ha **
G15 0.1 193.97 0.97 0.28 ±0.46 ±0.55 Ho −0.37 61.36 0.96 0.11 ±0.17 ±0.21 Ho
G16 −0.77 200.28 0.99 0.2 ±0.33 ±0.39 Ho −0.67 75.26 0.96 0.12 ±0.19 ±0.23 Ho
G17 −0.24 195.79 0.98 0.21 ±0.34 ±0.41 −Ha ** −0.51 71.02 0.96 0.12 ±0.20 ±0.24 Ho
G18 −0.72 188.77 0.98 0.23 ±0.38 ±0.45 Ho −0.51 67.84 0.93 0.15 ±0.25 ±0.29 Ho
G19 −1.15 179.03 0.96 0.28 ±0.47 ±0.56 Ho −0.72 62.15 0.95 0.11 ±0.19 ±0.22 Ho
G20 −0.47 211.24 0.96 0.37 ±0.60 ±0.72 −Ha ** −0.45 74.42 0.97 0.11 ±0.19 ±0.22 Ho
G21 −0.55 189.85 0.98 0.21 ±0.34 ±0.4 Ho −0.47 61.99 0.96 0.1 ±0.16 ±0.19 Ho
G22 −0.94 172.76 0.97 0.25 ±0.41 ±0.48 Ho −0.7 55.57 0.96 0.09 ±0.15 ±0.18 Ho
G23 −1.54 192.63 0.96 0.32 ±0.52 ±0.63 Ho −0.76 54.19 0.96 0.09 ±0.15 ±0.18 Ho
G24 0.44 161.5 0.97 0.23 ±0.37 ±0.44 Ha * −0.37 46.9 0.99 0.04 ±0.07 ±0.09 Ho
G25 2.35 160.77 0.97 0.23 ±0.38 ±0.46 Ha ** −0.13 42.57 0.98 0.05 ±0.09 ±0.11 Ho
G26 1.63 153.19 0.97 0.21 ±0.35 ±0.41 Ha ** −0.15 40.69 0.97 0.06 ±0.10 ±0.12 Ho

S—ITA slope; σ—standard deviation; ρ—correlation coefficient between the means of two half series; σs—standard
deviation of trend slope; LCL/UCL—lower/upper confidence limits; Ho: no significant trend; Ha: there is a
significant trend; **—significance level at 5 and 10%; *—significance level at 5%.

The ITA analysis of the seasonal rainfall series displayed in Tables 2–4 revealed that
significant trends were observed in the NEM and summer rainfall series in 20 and 21 grids
i.e., 76.92 and 80.77%, respectively. In contrast, the SWM and winter rainfall series detected
significant trends in nine and eight grids i.e., 34.62 and 30.77%, respectively. For the NEM
season, 53.85% of the grids showed a significant upward trend, while 23% of the grid points
showed a significant downward trend. In the case of summer rainfall, a significant upward
trend was observed in 73.1% of the grid points. SWM exhibited a significant upward trend
in 26.9% of the grid points. Winter, on the other hand, experienced a significant downward
trend in 19.2% of the grid points. These findings suggest that the NEM and summer seasons
experienced more widespread and pronounced changes in rainfall patterns compared to
the SWM and winter seasons.
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Table 3. Grid-wise trend parameters detected by the ITA method for the NEM and winter rainfall
series of the Vaippar basin.

Grid
NEM Series Winter Series

S σ ρ σs LCL UCL Decision S σ ρ σs LCL UCL Decision
G01 1.8 165.65 0.97 0.25 ±0.41 ±0.49 Ha ** 0.42 74.07 0.95 0.14 ±0.23 ±0.27 Ha **
G02 2.03 170.53 0.97 0.23 ±0.38 ±0.45 Ha ** 0.46 72.93 0.95 0.13 ±0.22 ±0.26 Ha **
G03 1.79 168.28 0.93 0.36 ±0.60 ±0.71 Ha ** 0.21 52.93 0.9 0.14 ±0.22 ±0.27 Ho
G04 1.85 182.03 0.99 0.18 ±0.30 ±0.35 Ha ** −0.04 72.31 0.98 0.08 ±0.13 ±0.15 −Ha **
G05 0.01 146.05 0.97 0.21 ±0.34 ±0.40 Ho −0.21 60.18 0.98 0.07 ±0.11 ±0.13 Ho
G06 0.71 140.19 0.98 0.16 ±0.27 ±0.32 Ha ** 0.01 61.02 0.97 0.09 ±0.15 ±0.18 Ho
G07 1.69 161.06 0.95 0.28 ±0.47 ±0.55 Ha ** 0.22 57.28 0.94 0.11 ±0.19 ±0.22 Ha *
G08 −1.61 200.77 0.97 0.29 ±0.48 ±0.57 Ho 0.09 65.16 0.93 0.14 ±0.24 ±0.28 Ho
G09 −1.89 153.9 0.96 0.25 ±0.42 ±0.50 Ho −0.62 60.99 0.97 0.08 ±0.13 ±0.16 Ho
G10 −0.43 139.8 −0.15 1.24 ±2.04 ±2.43 −Ha ** −0.48 54.8 −0.12 0.48 ±0.79 ±0.94 −Ha **
G11 0.73 143.7 0.97 0.22 ±0.35 ±0.42 Ha ** −0.28 49.13 0.93 0.11 ±0.18 ±0.21 Ho
G12 −0.42 153.33 0.96 0.25 ±0.41 ±0.49 Ha # −0.26 55.33 0.98 0.06 ±0.11 ±0.13 Ho
G13 0.61 158.35 0.98 0.2 ±0.33 ±0.40 Ha ** −0.54 53.49 0.90 0.14 ±0.23 ±0.27 Ho
G14 1.05 159.23 0.96 0.25 ±0.41 ±0.49 Ha ** −0.64 52.20 0.87 0.15 ±0.25 ±0.30 Ho
G15 0.31 146.56 0.97 0.19 ±0.32 ±0.38 Ho −0.55 48.30 0.85 0.15 ±0.25 ±0.30 Ho
G16 −0.58 156.15 0.96 0.26 ±0.43 ±0.51 Ho −0.24 57.62 0.78 0.22 ±0.36 ±0.43 −Ha **
G17 −0.32 153.28 0.97 0.23 ±0.37 ±0.45 −Ha ** −0.34 55.80 0.82 0.2 ±0.32 ±0.38 −Ha #
G18 −0.45 150.33 0.95 0.27 ±0.44 ±0.53 −Ha # −0.6 46.23 0.92 0.11 ±0.18 ±0.22 Ho
G19 −0.36 146.27 0.96 0.24 ±0.40 ±0.47 −Ha ** −0.57 45.41 0.90 0.12 ±0.20 ±0.24 Ho
G20 −0.47 160.83 0.97 0.22 ±0.36 ±0.43 Ho −0.3 57.04 0.93 0.12 ±0.20 ±0.24 Ho
G21 −0.25 149.28 0.97 0.2 ±0.33 ±0.40 −Ha ** −0.47 48.74 0.93 0.11 ±0.18 ±0.21 Ho
G22 −0.02 141.42 0.97 0.19 ±0.32 ±0.38 −Ha ** −0.5 45.57 0.91 0.11 ±0.18 ±0.22 Ho
G23 0.49 156.75 0.97 0.23 ±0.37 ±0.45 Ha ** −0.52 48.58 0.95 0.09 ±0.15 ±0.18 Ho
G24 0.54 130.83 0.98 0.16 ±0.26 ±0.32 Ha ** −0.37 44.09 0.91 0.11 ±0.18 ±0.21 Ho
G25 1.53 124.41 0.98 0.13 ±0.22 ±0.26 Ha ** −0.23 43.35 0.77 0.17 ±0.28 ±0.33 −Ha **
G26 1.11 122.91 0.96 0.19 ±0.32 ±0.38 Ha ** −0.28 42.42 0.88 0.12 ±0.20 ±0.23 Ho

S—ITA slope; σ—standard deviation; ρ—correlation coefficient between the means of two half series; σs—standard
deviation of trend slope; LCL/UCL—lower/upper confidence limits; Ho: no significant trend; Ha: there is a
significant trend; **—significance level at 5 and 10%; *—significance level at 5%; #—significance level at 10%.

Table 4. Grid-wise trend parameters detected by the ITA method for the summer rainfall series of the
Vaippar basin.

Grid S σ ρ σs LCL UCL Decision

G01 1.5 100.39 0.97 0.15 ±0.25 ±0.29 Ha **
G02 1.72 99.15 0.97 0.15 ±0.24 ±0.29 Ha **
G03 1.78 75.67 0.97 0.11 ±0.19 ±0.22 Ha **
G04 −0.85 109.55 0.88 0.31 ±0.51 ±0.61 Ho
G05 −0.38 88.4 0.85 0.29 ±0.47 ±0.56 −Ha **
G06 0.71 84.68 0.92 0.2 ±0.33 ±0.40 Ha **
G07 1.63 80.12 0.96 0.14 ±0.23 ±0.27 Ha **
G08 −0.46 104.04 0.94 0.21 ±0.34 ±0.40 Ho
G09 −1.32 109.89 0.80 0.41 ±0.67 ±0.80 Ho
G10 −0.08 80.80 0.85 0.26 ±0.43 ±0.51 −Ha **
G11 0.93 68.78 0.96 0.12 ±0.20 ±0.23 Ha **
G12 0.23 77.96 0.93 0.17 ±0.28 ±0.33 Ho
G13 1.16 75.63 0.99 0.07 ±0.12 ±0.15 Ha **
G14 1.43 75.76 0.99 0.04 ±0.07 ±0.09 Ha **
G15 0.7 69.62 0.97 0.1 ±0.17 ±0.20 Ha **
G16 0.73 74.36 0.98 0.09 ±0.15 ±0.18 Ha **
G17 0.93 71.56 0.97 0.1 ±0.16 ±0.20 Ha **
G18 0.84 65.38 0.96 0.11 ±0.18 ±0.22 Ha **
G19 0.5 62.65 0.98 0.07 ±0.11 ±0.14 Ha **
G20 0.75 67.65 0.97 0.09 ±0.15 ±0.18 Ha **
G21 0.65 60.68 0.97 0.08 ±0.13 ±0.16 Ha **
G22 0.27 57.60 0.98 0.06 ±0.10 ±0.12 Ha **
G23 −0.74 59.86 0.97 0.09 ±0.14 ±0.17 Ho
G24 0.64 53.79 0.96 0.09 ±0.15 ±0.18 Ha **
G25 1.19 59.00 0.94 0.12 ±0.19 ±0.23 Ha **
G26 0.96 53.79 0.96 0.09 ±0.14 ±0.17 Ha **

S—ITA slope; σ—standard deviation; ρ—correlation coefficient between the means of two half series; σs—standard
deviation of trend slope; LCL/UCL—lower/upper confidence limits; Ho: no significant trend; Ha: there is a
significant trend; **—significance level at 5 and 10%.
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The spatial distribution of slope values obtained through the ITA method, along with
their significance for seasonal and annual rainfall series, is illustrated in Figure 6. Grid
points located in the southwestern and central parts (G01, G02, G03, G09, G10) of the
basin exhibited a higher number of significant trends in annual rainfall. In terms of the
NEM season, significant trends were observed across almost all parts of the basin. The
southeastern, central, and extreme southern parts experienced a significant upward trend,
while the eastern parts displayed a significant downward trend. Significant upward trends
were identified in the southwestern parts for the SWM season. For the summer season,
significant upward trends were observed in the western, southern, and eastern parts of
the basin. Notably, the western parts exhibited a significant upward trend during the
winter season. Among the grid points, G10 stood out with a notably higher number of
significant downward trends in monthly, annual, and seasonal rainfall series. This indicates
a consistent and significant decrease in rainfall at that specific location.
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Figure 6. The ITA slope values at 5 and 10% significance level for (a) annual (ANL), (b) southwest
monsoon (SWM) (c) northeast monsoon (NEM), (d) winter (WIN), (e) summer (SUM) gridded rainfall
series of Vaippar basin.

From the spatial analysis of the Vaippar basin, it is evident that the southeastern,
central, and extreme southern parts have exhibited a positive increase in annual rainfall.
Moreover, when considering the different seasons, it is notable that the NEM season has
displayed widespread positive trends across various parts of the basin. It is important
to highlight that these positive trends in rainfall can have significant implications for
water availability, agricultural productivity, and overall ecological balance within the
Vaippar basin.

3.6. Identification and Nature of Subtrends by ITA Method

One of the most important features of the ITA method is its ability to identify the
subtrend of a rainfall series [8]. Additionally, the scattered plot allows for the detection of
both monotonic and non-monotonic upward or downward trends in a series. To conduct a
comprehensive analysis for identifying subtrends within a rainfall series, scatter diagrams
can be used, with data points plotted on 1:1 line graphs. These scatter diagrams are then
divided into three segments based on rainfall depth: low, medium, and high rainfall
segments. In the scenario where the annual series exhibits a combination of different trend
patterns within the series, it is referred to as a non-monotonic trend. Conversely, if the
series demonstrates a consistent upward or downward pattern, it is considered a monotonic
trend. Additionally, it is also possible for the series to exhibit no trend if the scatter points
align closely with the 1:1 line or if the slope values are zero.

The grid-wise subtrends and nature of trends observed in the annual and seasonal
rainfall series for the Vaippar basin are displayed in Table 5. In the table, the subtrends
of rainfall series, categorized as low, medium, and high rainfall segments, are indicated
by upward or downward arrows. The nature of the trend is represented by whether it
is monotonic or non-monotonic (upward/downward). Analyzing the annual and NEM
series, it can be observed that five grid points (G01, G02, G03, G07 and G25) located at
the southwestern parts of the basin exhibited monotonically upward trends. On the other
hand, for the SWM, 10 grid points showed monotonically downward trends. In the case of
the summer rainfall series, a monotonically upward trend was identified at 13 grid points.

For the annual rainfall series, upward trends were observed in the low rainfall segment
for 21 grid points, in the medium rainfall segment for 14 grid points, and in the high rainfall
segment for five grid points. As for the NEM rainfall, 24 grid points showed upward trends
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in the low rainfall segment, 15 grid points in the medium rainfall segment, and five grid
points in the high rainfall segment. The high rainfall segments, as classified for annual and
NEM rainfall, were found in the G01, G02, G03, G07, and G25 grid points, which are located
in the southwestern parts of the basin. On the other hand, the SWM season exhibited
the minimum number of grid points registering upward trends in the low, medium, and
high rainfall segments. A higher number of grid points experienced upward trends in the
low and medium rainfall segments for the winter series. Conversely, the summer rainfall
series exhibited upward trends in the low, medium, and high rainfall segments for a larger
number of grid points.

Table 5. Subtrends of annual and seasonal rainfall series for Vaippar basin.

Grid RF ANL SWM NEM WIN SUM Grid ANL SWM NEM WIN SUM

G01 Low ↑ ↓ ↑ ↑ ↑ G02 ↑ ↓ ↑ ↑ ↑
Medium ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑

High ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑
Nature MU ↑ NMD ↓ MU ↑ NMU↑ MU↑ MU ↑ NMU ↑ MU ↑ NMU ↑ MU ↑

G03 Low ↑ ↓ ↑ ↑ ↑ G04 ↓ ↓ ↑ ↑ ↓
Medium ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓

High ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↓
Nature MU ↑ NMU ↑ MU ↑ NMD ↓ MU ↑ NMD ↓ MD ↓ MU ↑ NMD ↓ MD ↓

G05 Low ↑ ↓ ↑ ↑ ↓ G06 ↑ ↓ ↑ ↑ ↑
Medium ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↑

High ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓
Nature NMD ↓ MD ↓ NMD ↓ NMD ↓ MD ↓ NMU ↑ NMD ↓ NMU ↑ NMD ↓ NMU ↑

G07 Low ↑ ↓ ↑ ↑ ↑ G08 ↓ ↓ ↓ ↑ ↓
Medium ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓

High ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓
Nature MU ↑ NMU ↑ MU ↑ NMD ↓ MU ↑ MD ↓ MD ↓ MD ↓ NMD ↓ MD ↓

G09 Low ↓ ↓ ↓ ↑ ↓ G10 ↑ ↑ ↑ ↑ ↓
Medium ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓

High ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Nature MD ↓ MD ↓ MD ↓ NMD ↓ MD ↓ NMD ↓ NMD ↓ NMD ↓ NMD ↓ MD ↓

G11 Low ↑ ↓ ↑ ↑ ↑ G12 ↑ ↑ ↑ ↑ ↓
Medium ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑

High ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓
Nature NMU ↑ NMU ↑ NMU ↑ NMD ↓ MU ↑ NMD ↓ NMD ↓ NMD ↓ NMD ↓ NMD ↓

G13 Low ↑ ↑ ↑ ↑ ↑ G14 ↑ ↑ ↑ ↑ ↑
Medium ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

High ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑
Nature NMU ↑ NMD ↓ NMU ↑ NMD ↓ MU ↑ NMU ↑ NMD ↓ NMU ↑ NMD ↓ MU ↑

G15 Low ↓ ↓ ↑ ↑ ↓ G16 ↑ ↑ ↑ ↑ ↑
Medium ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑

High ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑
Nature MD ↓ MD ↓ NMD ↓ NMD ↓ NMU ↑ NMD ↓ NMD ↓ NMD ↓ NMD ↓ MU ↑

G17 Low ↑ ↑ ↑ ↑ ↑ G18 ↑ ↓ ↑ ↑ ↑
Medium ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓

High ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑
Nature NMD ↓ NMD ↓ NMD ↓ NMD ↓ MU ↑ NMD ↓ MD ↓ NMD ↓ NMD ↓ NMU ↑

G19 Low ↑ ↓ ↑ ↑ ↑ G20 ↑ ↑ ↑ ↑ ↑
Medium ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑

High ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑
Nature NMD ↓ MD ↓ NMD ↓ NMD ↓ NMU ↑ NMD ↓ NMD ↓ NMD ↓ NMD ↓ MU ↑

G21 Low ↑ ↓ ↑ ↑ ↑ G22 ↑ ↓ ↑ ↑ ↓
Medium ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓

High ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↑
Nature NMD ↓ MD ↓ NMD ↓ NMD ↓ MU ↑ NMD ↓ NMD ↓ NMD ↓ NMD ↓ NMD ↓

G23 Low ↓ ↓ ↑ ↑ ↓ G24 ↑ ↓ ↑ ↑ ↑
Medium ↓ ↓ ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↑

High ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑
Nature MD ↓ MD ↓ NMD ↓ NMD ↓ MD ↓ NMD ↓ MD ↓ NMU ↑ NMD ↓ MU ↑

G25 Low ↑ ↓ ↑ ↑ ↑ G26 ↑ ↓ ↑ ↑ ↑
Medium ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑

High ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↑
Nature MU ↑ NMD ↓ NMU ↑ NMD ↓ MU ↑ NMU ↑ NMD ↓ NMU ↑ NMD ↓ MU ↑

ANL—annual, SWM—southwest monsoon, NEM—northeast monsoon, WIN—winter, SUM—summer gridded
rainfall series; MU ↑—Monotonic upward; NMU ↑—Non-monotonic upward; MD ↓—Monotonic downward;
NMD ↓—Non-monotonic downward.



Sustainability 2024, 16, 1957 19 of 29

3.7. Magnitude of Trend in Rainfall Series

The magnitude of the trend (β), computed using the SLR method, and the Sen’s slope (Q)
are presented in Table 6. Considerable variability was observed in both the physical value
and sign of the magnitude for different grid points. The SLR slopes indicate that the highest
positive magnitude of 2.25 mm/year was recorded at the G02 grid point, while the lowest
negative magnitude of −2.62 mm/year was observed at the G08 grid point for annual
rainfall series. Furthermore, it is worth noting that these magnitudes indicate the absence of
a statistically significant trend in the annual rainfall series. The upward trend was found to
be more pronounced in the northern and southern parts of the basin. However, in the case
of NEM rainfall, which contributes significantly to the annual rainfall, the trend magnitude
did not follow a similar pattern as the annual rainfall. Grid point G25 (1.45 mm/year)
and G08 (−1.52 mm/year) registered higher positive and negative magnitudes for the
NEM series, respectively. Additionally, for the NEM series, the northern parts of the basin
exhibited a negative magnitude, while the southern parts showed a positive magnitude.

Table 6. Magnitude of SLR slope (β) and Sen’s Slope (Q) for Vaippar basin.

Grid
SLR Slope (β) Sen’s Slope (Q)

ANL SWM NEM WIN SUM ANL SWM NEM WIN SUM

G01 1.94 0.43 −0.32 0.34 1.50 1.56 0.21 −0.14 0.47 1.17
G02 2.25 0.50 −0.30 0.37 1.67 2.22 0.28 −0.32 0.51 1.39
G03 1.96 0.71 −0.46 0.22 1.50 3.27 0.41 −0.19 0.34 1.19
G04 −1.37 −1.09 0.52 −0.05 −0.75 −0.35 −0.96 0.63 0.32 −0.73
G05 −0.83 0.01 −0.45 −0.09 −0.29 0.04 −0.53 −0.35 0.37 −0.43
G06 0.66 0.41 −0.52 0.07 0.71 1.78 −0.03 −0.25 0.40 0.42
G07 1.82 0.65 −0.47 0.21 1.43 2.81 0.48 −0.26 0.36 1.16
G08 −2.62 −0.51 −1.52 0.14 −0.73 −1.59 −0.72 −1.66 0.21 −0.63
G09 −1.68 0.68 −1.12 −0.31 −0.93 −1.49 −0.63 −1.32 0.16 −0.96
G10 −0.45 0.40 −0.55 −0.25 −0.07 0.80 −0.27 −0.25 0.31 −0.10
G11 0.58 0.46 −0.43 −0.12 0.67 1.95 0.18 −0.04 0.24 0.46
G12 −0.40 0 −0.35 −0.08 0.04 1.12 −0.22 0.01 0.34 0.13
G13 1.98 0.78 0.59 −0.27 0.88 3.76 0.78 1.69 0.24 1.10
G14 2.20 0.70 0.81 −0.35 1.04 3.89 0.83 1.74 0.22 1.09
G15 0.04 −0.08 0 −0.28 0.41 0.55 −0.06 0.38 0.13 0.06
G16 0.2 0.06 −0.17 −0.02 0.33 −0.09 0.30 −0.12 0.30 0.24
G17 0.74 0.21 0.1 −0.09 0.52 0.90 0.43 0.14 0.27 0.49
G18 0.81 0.04 0.51 −0.35 0.6 0.55 0.02 0.36 0 0.20
G19 0.28 −0.3 0.5 −0.28 0.35 0.44 −0.35 0.77 0.01 −0.03
G20 0.65 0.11 0.18 −0.06 0.43 −0.23 0.37 0.04 0.10 0.26
G21 0.68 −0.07 0.52 −0.23 0.45 −0.06 0.07 0.43 0.02 0.12
G22 0.19 −0.37 0.69 −0.26 0.13 0.19 −0.34 1.02 0.04 −0.18
G23 −0.87 −0.75 1.06 −0.36 −0.82 −1.60 −0.58 0.60 −0.01 −1.22
G24 0.98 −0.21 0.89 −0.18 0.48 0.60 −0.14 1.00 0.11 0.18
G25 2.12 −0.24 1.45 −0.11 1.02 1.42 −0.31 1.43 0.06 0.59
G26 1.66 −0.15 1.14 −0.13 0.8 1.52 −0.26 1.23 0.14 0.41

ANL—annual, SWM—southwest monsoon, NEM—northeast monsoon, WIN—winter, SUM—summer gridded
rainfall series.

The magnitudes of Sen’s slope (Q) calculated for annual and seasonal rainfall as
presented in Table 6 showed higher positive magnitudes of the non-significant trends. For
the annual rainfall series, the highest magnitude of 3.89 mm/year was observed at the G14
grid point, while the lowest magnitude of −1.6 mm/year was recorded at the G23 grid
point for a non-significant trend. Positive magnitudes were noticed for more than 69.2%
of the grids in the annual rainfall series. Higher positive magnitudes were observed in
the southwestern and central parts of the basin for the annual series. In the case of NEM,
the highest non-significant magnitude of 1.74 mm/year was observed at the G14 grid
point, while the lowest magnitude of −1.66 mm/year was recorded at the G08 grid point.
Positive magnitudes were noticed for more than 57.7% of the grids in the NEM rainfall
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series. Negative magnitudes were noticed in the western and central parts of the basin for
the NEM series, while the remaining part of the basin recorded positive magnitudes.

The slope values estimated using the ITA method for the annual and seasonal series are
presented in Tables 2–4. The slope values of the annual series indicate that 42.3% of the grids
exhibited positive magnitudes. Grid point G02 displayed a significantly upward trend with
a slope of 4.47 mm/year, while G09 showed a non-significant downward trend with a slope
value of −4.24 mm/year for the annual series. Regarding the seasonal rainfall, the NEM
and summer series exhibited predominantly positive magnitudes, while the SWM and
winter series showed negative magnitudes. Grid point G02 exhibited a significantly upward
trend with a slope of 2.03 mm/year, whereas G09 showed a non-significant downward
trend with a slope value of −1.89 mm/year for the NEM series. A similar pattern of positive
and negative magnitudes, similar to the annual rainfall, was observed for the NEM series.
Positive magnitudes were observed in the western, central, and eastern parts of the basin
for both the annual and NEM series. Among the three methods considered, the ITA method
consistently estimated a higher magnitude of trend for all the rainfall series compared to
the other methods.

3.8. Percentage Change in Magnitude of Trend

The percentage change in magnitude of trend from the mean values over the study
period calculated for the seasonal and annual rainfall series using the SLR slope (β), Sen’s
slope (Q), and ITA slope (S) are presented in Table 7.

Table 7. Percentage change in magnitude of trend from mean for SLR, Sen’ Slope, and ITA slopes for
Vaippar basin.

Grid
SLR Slope (β) Sen’s Slope (Q) ITA Slope (S)

ANL SWM NEM WIN SUM ANL SWM NEM WIN SUM ANL SWM NEM WIN SUM

G01 12.47 14.18 −3.76 40.41 47.20 10.02 6.93 −1.64 55.86 36.82 24.74 4.29 21.15 49.92 47.2
G02 14.46 16.49 −3.52 43.97 52.55 14.26 9.24 −3.76 60.61 43.74 28.72 8.58 23.85 54.67 54.13
G03 12.59 23.42 −5.40 26.15 47.20 21.01 13.52 −2.23 40.41 37.45 28.4 21.11 21.03 24.96 56.01
G04 −8.80 −35.96 6.11 −5.94 −23.60 −2.25 −31.67 7.40 38.03 −22.97 −2.83 −45.85 21.73 −4.75 −26.75
G05 −5.33 0.33 −5.29 −10.70 −9.13 0.26 −17.48 −4.11 43.97 −13.53 −7.13 −17.48 0.12 −24.96 −11.96
G06 4.24 13.52 −6.11 8.32 22.34 11.44 −0.99 −2.94 47.54 13.22 9.06 −0.33 8.34 1.19 22.34
G07 11.69 21.44 −5.52 24.96 45.00 18.06 15.83 −3.05 42.78 36.5 25.9 16.49 19.85 26.15 51.29
G08 −16.84 −16.82 −17.86 16.64 −22.97 −10.22 −23.75 −19.5 24.96 −19.83 −15.94 −16.49 −18.91 10.7 −14.48
G09 −10.80 22.43 −13.16 −36.84 −29.27 −9.57 −20.78 −15.51 19.02 −30.21 −27.24 −13.85 −22.2 −73.68 −41.54
G10 −2.89 13.20 −6.46 −29.71 −2.20 5.14 −8.91 −2.94 36.84 −3.15 −7.78 −7.26 −5.05 −57.05 −2.52
G11 3.73 15.17 −5.05 −14.26 21.08 12.53 5.94 −0.47 28.52 14.48 10.41 7.59 8.58 −33.28 29.27
G12 −2.57 0.00 −4.11 −9.51 1.26 7.20 −7.26 0.12 40.41 4.09 −5.53 −13.52 −4.93 −30.9 7.24
G13 12.72 25.73 6.93 −32.09 27.69 24.16 25.73 19.85 28.52 34.62 9.19 6.27 7.17 −64.18 36.5
G14 14.14 23.09 9.52 −41.60 32.73 25.00 27.38 20.44 26.15 34.3 13.17 6.6 12.34 −76.06 45
G15 0.26 −2.64 0.00 −33.28 12.90 3.53 −1.98 4.46 15.45 1.89 0.64 −12.21 3.64 −65.37 22.03
G16 1.29 1.98 −2.00 −2.38 10.38 −0.58 9.90 −1.41 35.65 7.55 −4.95 −22.1 −6.81 −28.52 22.97
G17 4.75 6.93 1.17 −10.70 16.36 5.78 14.18 1.64 32.09 15.42 −1.54 −16.82 −3.76 −40.41 29.27
G18 5.20 1.32 5.99 −41.60 18.88 3.53 0.66 4.23 0 6.29 −4.63 −16.82 −5.29 −71.31 26.43
G19 1.80 −9.90 5.87 −33.28 11.01 2.83 −11.55 9.05 1.19 −0.94 −7.39 −23.75 −4.23 −67.74 15.73
G20 4.18 3.63 2.11 −7.13 13.53 −1.48 12.21 0.47 11.88 8.18 −3.02 −14.84 −5.52 −35.65 23.6
G21 4.37 −2.31 6.11 −27.33 14.16 −0.39 2.31 5.05 2.38 3.78 −3.53 −15.5 −2.94 −55.86 20.45
G22 1.22 −12.21 8.11 −30.90 4.09 1.22 −11.22 11.98 4.75 −5.66 −6.04 −23.09 −0.23 −59.42 8.5
G23 −5.59 −24.74 12.45 −42.78 −25.80 −10.28 −19.13 7.05 −1.19 −38.39 −9.9 −25.07 5.76 −61.8 −23.29
G24 6.30 −6.93 10.46 −21.39 15.11 3.86 −4.62 11.75 13.07 5.66 2.83 −12.21 6.34 −43.97 20.14
G25 13.62 −7.92 17.03 −13.07 32.10 9.12 −10.23 16.8 7.13 18.57 15.1 −4.29 17.97 −27.33 37.45
G26 10.67 −4.95 13.39 −15.45 25.18 9.77 −8.58 14.45 16.64 12.9 10.47 −4.95 13.04 −33.28 30.21

ANL—annual, SWM—southwest monsoon, NEM—northeast monsoon, WIN—winter, SUM—summer gridded
rainfall series.

Among three methods, the ITA slope exhibited a higher percentage change in the
magnitude of the trend compared to SLR and Sen’s slope. Additionally, it was observed
that the percentage changes in magnitude from mean rainfall were lower in the annual
and NEM rainfall series compared to the SWM, winter, and summer series. Positive values
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of percentage change in rainfall were more prominent in the annual, NEM, and summer
series across all three methods.

Specifically, in the annual series, the extreme western, central, and eastern parts of the
basin showed positive magnitudes, while the northern side exhibited negative magnitudes
for all three methods. Regarding the NEM series, the western parts displayed negative
magnitudes, and the eastern parts showed positive magnitudes for SLR and Sen’s slope
methods. However, for the ITA slope method, this pattern was reversed, with positive
magnitudes following a similar pattern to the annual series.

3.9. Comparison of Trend Methods

The number of grid points that exhibited a significant upward or downward trend in
seasonal and annual rainfall series is displayed in Figure 7. A total of 130 rainfall series,
including annual and four seasonal series, were analyzed for trends in 26 grid points
using the SLR, MK/MMK, and ITA methods. The test results were compared based on the
number of significant upward or downward trends identified.
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Figure 7. Grid points exhibited significant trend in Monthly, Seasonal and Annual rainfall series.

Among the three methods used, namely SLR, MK/MMK, and ITA, significant trends
were observed in 2.3%, 7.7%, and 44.6% of the grid points, respectively. Notably, the SLR
and MK/MMK methods detected significant trends only in the SWM, winter, and summer
series, while no trends were identified in the annual and NEM series. It is noteworthy that
SLR and MK/MMK methods only identified significant trends in the SWM, winter, and
summer series, while they did not detect trends in the annual and NEM series. It is worth
mentioning that all ten significant trends detected by the SLR test were also identified by
the ITA method. However, the significant trend detected by the MK test did not align with
the ITA method. One significant trend identified by the MMK method was also detected by
the ITA method.

Table 8 presents the correlation between the test statistics of the MK and SLR methods
with the slope values of the ITA method, regardless of the level of significance. It was
observed that the MK test showed good correlation with the ITA method in the annual and
summer series. Similarly, the correlation between the SLR test and the ITA method was
found to be good for the annual, SWM, winter, and summer series.

Table 8. Correlation between the test statistics of MK and SLR with the slope values.

ANL SWM NEM WIN SUM

MKT SLR MKT SLR MKT SLR MKT SLR MKT SLR

ITA 0.896 0.828 0.692 0.851 0.359 0.335 0.461 0.969 0.937 0.958
MKT 1.00 0.841 1.00 0.803 1.00 0.887 1.00 0.592 1.00 0.948

The study findings suggest that the ITA method outperforms traditional trend de-
tection methods. The ITA method proved beneficial in detecting many significant trends
that could not be identified by the traditional methods in the annual and seasonal rain-
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fall series. It effectively revealed hidden trends in rainfall series across the grid points.
Many researchers have validated the Sen’s (2012) [8] ITA methodology for different hydro-
meteorological variables in various parts of the world [4,14,17,50,89,104–110]. Unlike
classical methods, the ITA method does not require prewhitening prior to its application [8].
Trends of low, medium, and high data can be easily observed using this method [99,111].
One disadvantage of this test is that it must be applied to each recorded series individu-
ally [112]. The possibility of presenting results graphically in this method enables the easy
observation of hidden subtrends and helps in identifying trends in extreme values [63,113].

The findings of the present study indicate that a majority of the grid points in the
western and eastern parts of the Vaippar basin show a significant increasing trend in rainfall.
This increasing trend is significant as it can contribute to an increase in runoff, which can
be utilized for water management purposes, particularly for tapping and harnessing the
runoff water in addition to the existing water conservation structures.

Conversely, it was also observed that some grid points exhibit a significant downward
trend in rainfall. This decline in rainfall presents various challenges and implications for
surface and groundwater management. One of the key challenges is the increased reliance
on groundwater extraction for crop irrigation, leading to the depletion of groundwater
reserves, drought-related issues, and diminished soil moisture [44].

Given these observations, it is crucial to carefully consider the changes in rainfall pat-
terns and trends in long-term catchment-scale water management strategies. Adapting and
planning for these changes can help mitigate the potential risks associated with declining
precipitation, such as implementing measures to enhance water conservation, exploring
alternative water sources, and promoting sustainable agricultural practices that optimize
water usage. Long-term water management strategies should take into account the evolv-
ing rainfall patterns to ensure efficient and sustainable utilization of water resources in the
Vaippar basin.

4. Conclusions

This study aimed to analyze the variation and trends of seasonal and annual rain-
fall series in the Vaippar basin using gridded rainfall data from 1971 to 2019. The SLR,
MK/MMK, and ITA methods were employed to examine the trends, magnitudes, sub-
trends, and nature of the trend. In order to account for spatial variability, monthly rainfall
data from 13 rain gauge stations within the basin were spatially interpolated using the
inverse distance weighing (IDW) method under GIS environment. To further refine the
spatial representation, the basin was divided into 26 grids, each covering approximately
205 km2, and gridded rainfall data was generated from the interpolated gauge data. The
key findings and conclusions of this study are summarized below.

The basin experienced moderate variability in annual rainfall, lower variability during
the NEM season, and higher variability in other seasons. Among the three methods (SLR,
MK/MMK, and ITA), significant trends were detected in 2.3%, 7.7%, and 44.6% of the grid
points, respectively. The SLR and MK/MMK methods detected significant trends only in
the SWM, winter, and summer series. The significant trend detected by the MK test did
not align with the ITA method, but the significant trends detected by the SLR test were
consistent with the ITA method. The ITA method indicated that 57.69%, 76.92%, and 80.77%
of the grid points exhibited significant trends at 5% and 10% significance levels in annual,
NEM, and summer rainfall, respectively. However, the SWM and winter series showed less
than 35% significant trends. For the NEM season, 53.85% of the grids displayed a significant
upward trend, which is a positive sign for improving water management. Grid points
located in the southwestern and central parts of the basin showed a higher number of
significant trends in annual rainfall. In terms of the NEM season, the southeastern, central,
and extreme southern parts experienced a significant upward trend.

In the annual and NEM series, grid points located in the southwestern parts of the
basin exhibited monotonically upward trends. Approximately 19.3% of the grid points
in the southwestern parts of the basin showed upward trends in high rainfall segments,
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as classified for annual and NEM rainfall. Grid points in the western part of the basin
exhibited a significantly upward trend with a slope of 2.03 mm/year, while the central part
showed a non-significant downward trend with a slope value of −1.89 mm/year for the
NEM series. Among the three methods considered, the ITA method consistently estimated
a higher magnitude of trend for all the rainfall series compared to the other methods.
Compared with traditional methods, the ITA method, which represents rainfall series
graphically without making any assumptions, detected trends that were not identified
by traditional methods. It facilitated the identification of monotonic or non-monotonic
upward/downward trends and trends in low, medium, and high rainfall segments.

From the spatial analysis of the Vaippar basin, it is evident that the southeastern,
central, and extreme southern parts have exhibited a positive increase in annual rainfall.
Moreover, when considering different seasons, it is notable that the NEM season has
displayed widespread positive trends across various parts of the basin. These positive
rainfall trends have significant implications for water availability, agricultural productivity,
and overall ecological balance within the Vaippar basin. The significant findings of this
study will serve as a crucial scientific reference for policymakers, assisting in the preparation
and management of extreme climate effects on land and water resources within and around
the Vaipaar basin.
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Appendix A

Table A1. Space-time correlation analysis of the mean monthly rainfall data for Vaippar basin.

Aruppukottai Virudhunagar IB Sattur Sivakasi Srivilliputhur Watrap Pilavakkal Koilpatti (Rev) Vilathikulam Sankarankoil Sivagiri Vembakottai Ettayapuram

Aruppukottai 1.00 0.99 0.98 0.98 0.97 0.95 0.95 0.98 0.95 0.88 0.88 0.95 0.95
Virudhunagar IB 0.99 1.00 0.97 0.97 0.95 0.93 0.93 0.96 0.93 0.84 0.84 0.95 0.94
Sattur 0.98 0.97 1.00 1.00 0.99 0.98 0.97 0.99 0.96 0.93 0.93 0.97 0.96
Sivakasi 0.98 0.97 1.00 1.00 0.99 0.99 0.98 0.99 0.96 0.93 0.93 0.97 0.97
Srivilliputhur 0.97 0.95 0.99 0.99 1.00 0.98 0.99 0.99 0.97 0.94 0.95 0.97 0.96
Watrap 0.95 0.93 0.98 0.99 0.98 1.00 0.99 0.99 0.97 0.96 0.97 0.97 0.96
Pilavakkal 0.95 0.93 0.97 0.98 0.99 0.99 1.00 0.98 0.98 0.97 0.97 0.96 0.97
Koilpatti (Rev) 0.98 0.96 0.99 0.99 0.99 0.99 0.98 1.00 0.99 0.94 0.94 0.97 0.98
Vilathikulam 0.95 0.93 0.96 0.96 0.97 0.97 0.98 0.99 1.00 0.95 0.95 0.97 0.99
Sankarankoil 0.88 0.84 0.93 0.93 0.94 0.96 0.97 0.94 0.95 1.00 1.00 0.92 0.92
Sivagiri 0.88 0.84 0.93 0.93 0.95 0.97 0.97 0.94 0.95 1.00 1.00 0.92 0.93
Vembakottai 0.95 0.95 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.92 0.92 1.00 0.98
Ettayapuram 0.95 0.94 0.96 0.97 0.96 0.96 0.97 0.98 0.99 0.92 0.93 0.98 1.00

Table A2. Mean rainfall of 26 grid points of Vaippar during the period 1971–2019.

Grid JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANL SWM NEM WIN SUM
G01 22.18 43.25 50.90 81.96 55.67 14.96 19.69 27.93 66.92 199.76 224.74 79.04 886.99 129.49 503.54 65.43 188.53
G02 22.00 42.61 49.84 81.78 54.04 14.56 18.99 26.28 63.51 197.34 224.12 78.81 873.89 123.34 500.27 64.61 185.67
G03 18.89 29.84 40.00 70.40 51.94 12.36 16.95 24.75 55.81 181.46 197.44 70.52 770.37 109.87 449.42 48.73 162.34
G04 19.80 31.98 48.08 67.83 64.85 13.91 26.28 41.50 88.98 199.81 200.66 72.82 876.48 170.67 473.28 51.78 180.75
G05 19.05 29.51 45.49 68.58 67.14 14.65 22.12 38.34 83.47 196.20 191.58 70.00 846.13 158.58 457.78 48.56 181.21
G06 19.68 34.63 46.03 73.70 60.67 14.55 20.15 32.15 72.51 194.99 202.26 72.57 843.87 139.35 469.81 54.31 180.40
G07 19.55 33.11 42.82 73.35 53.58 13.07 17.72 26.07 59.56 186.79 203.54 72.29 801.44 116.41 462.62 52.66 169.74
G08 25.51 25.65 45.31 79.12 67.80 15.35 20.23 40.25 92.87 208.40 205.55 65.88 891.93 168.71 479.82 51.16 192.24
G09 15.81 27.84 47.92 66.23 76.73 15.46 19.72 38.90 86.84 196.78 178.65 69.87 840.75 160.92 445.30 43.65 190.88
G10 16.63 25.80 40.64 65.32 67.02 14.22 20.78 37.09 79.75 189.99 175.04 64.40 796.69 151.85 429.43 42.43 172.98
G11 17.06 24.46 36.05 64.55 57.29 12.57 19.64 32.02 67.87 185.25 177.31 63.62 757.69 132.10 426.19 41.51 157.89
G12 19.15 23.62 38.16 66.06 66.58 15.60 24.27 42.64 85.95 190.10 174.33 62.67 809.13 168.46 427.10 42.77 170.80
G13 15.57 22.31 34.67 61.23 64.34 14.63 21.28 40.27 82.27 177.51 158.50 56.86 749.44 158.45 392.87 37.88 160.24
G14 14.76 20.81 31.94 59.79 61.21 13.41 20.52 38.90 78.84 174.98 151.93 53.26 720.35 151.67 380.17 35.57 152.94
G15 16.19 19.62 31.28 59.98 58.42 12.26 22.37 36.56 75.28 186.68 159.39 56.34 734.37 146.48 402.41 35.80 149.68
G16 17.99 18.73 30.02 59.67 69.42 18.60 33.59 53.97 88.20 180.10 149.19 59.52 778.99 194.36 388.81 36.72 159.11
G17 16.95 18.40 29.32 58.66 68.04 17.71 31.64 51.50 86.27 176.19 146.39 57.78 758.84 187.12 380.36 35.35 156.01
G18 14.38 17.26 29.01 57.64 63.38 12.47 24.38 39.20 77.10 163.33 142.84 55.22 696.21 153.15 361.39 31.64 150.03
G19 14.92 17.78 27.69 56.21 59.90 12.04 23.45 36.04 76.75 171.44 147.70 57.47 701.40 148.29 376.61 32.70 143.80
G20 16.52 16.79 26.12 52.61 70.60 21.63 37.44 55.51 87.49 173.36 141.51 57.78 757.36 202.07 372.64 33.31 149.33
G21 15.00 17.38 27.32 53.11 64.39 16.61 29.28 43.77 79.75 169.04 144.58 57.07 717.31 169.42 370.69 32.38 144.82
G22 14.61 17.85 25.99 52.24 56.03 12.49 23.86 36.39 74.35 172.80 147.23 58.18 692.02 147.09 378.21 32.46 134.27
G23 13.17 18.41 21.10 43.85 41.90 9.65 20.30 31.26 69.60 181.73 149.37 59.88 660.22 130.82 390.98 31.57 106.85
G24 14.25 17.40 23.90 47.20 49.98 12.29 22.99 34.23 68.88 173.48 146.12 59.21 669.93 138.40 378.81 31.65 121.08
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Table A2. Cont.

Grid JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANL SWM NEM WIN SUM
G25 12.32 14.87 16.83 36.82 29.83 6.03 14.82 21.26 49.77 169.76 137.85 60.04 570.20 91.88 367.65 27.19 83.49
G26 13.51 16.78 21.11 42.77 39.40 8.80 18.23 27.03 59.17 173.16 144.70 60.26 624.92 113.22 378.12 30.29 103.28

Mean 17.13 24.10 34.91 61.56 59.24 13.84 22.72 36.68 75.30 183.48 170.10 63.51 762.57 148.54 417.09 41.23 155.71
Max 25.51 43.25 50.90 81.96 76.73 21.63 37.44 55.51 92.87 208.40 224.74 79.04 891.93 202.07 503.54 65.43 192.24
Min 12.32 14.87 16.83 36.82 29.83 6.03 14.82 21.26 49.77 163.33 137.85 53.26 570.20 91.88 361.39 27.19 83.49

Table A3. Coefficientof variation (CV) of gridded rainfall of Vaippar during the period 1971–2019.

Grid JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANL SWM NEM WIN SUM
G01 154.18 140.78 140.79 69.21 91.50 102.63 80.10 91.22 71.29 53.74 49.67 101.42 26.95 46.25 32.90 113.22 53.25
G02 154.74 139.89 138.83 69.96 94.30 105.85 82.42 94.61 72.52 54.00 50.78 100.41 27.63 47.19 34.09 112.88 53.40
G03 160.41 137.16 140.52 63.02 75.10 112.95 100.21 89.63 67.49 46.10 55.65 95.75 26.17 43.89 37.44 108.60 46.61
G04 209.10 182.91 206.47 80.43 69.20 113.19 114.17 106.91 78.25 49.97 66.26 114.12 29.46 50.34 38.46 139.66 60.61
G05 191.89 157.09 178.35 62.38 56.22 95.67 95.11 80.86 72.20 47.33 54.61 98.78 24.43 45.78 31.90 123.93 48.79
G06 160.84 141.70 151.16 60.03 67.25 93.40 75.63 80.00 68.33 46.81 48.89 96.89 22.94 43.33 29.84 112.37 46.94
G07 155.48 137.10 140.31 62.92 76.39 106.01 86.15 87.91 67.81 46.82 52.82 95.45 25.17 43.49 34.81 108.77 47.20
G08 200.29 166.11 173.00 92.12 68.03 145.89 124.84 107.60 86.24 61.20 66.99 124.10 30.73 62.13 41.84 127.38 54.12
G09 243.12 168.77 192.18 67.97 67.11 119.19 114.92 101.25 99.80 57.18 62.06 102.65 31.47 65.83 34.56 139.72 57.57
G10 206.11 157.07 172.22 62.59 57.03 99.49 95.52 82.48 74.52 49.04 57.88 95.36 25.49 47.76 32.55 129.16 46.71
G11 177.12 145.75 151.89 62.93 57.59 97.41 90.44 82.70 62.11 44.84 55.16 91.14 23.78 40.22 33.72 118.37 43.56
G12 202.91 159.49 170.31 73.56 53.73 93.63 92.76 74.55 64.21 50.10 60.93 102.03 25.17 41.53 35.90 129.36 45.64
G13 219.95 173.14 171.89 78.27 63.15 105.55 111.57 90.21 63.59 52.38 71.66 101.21 28.72 45.23 40.31 141.20 47.20
G14 221.81 180.04 170.45 84.47 66.34 116.36 121.05 96.20 63.59 53.58 76.03 101.18 30.76 46.86 41.89 146.75 49.54
G15 207.47 159.99 162.01 73.34 52.34 104.70 103.38 87.00 60.13 49.81 61.49 92.45 26.41 41.89 36.42 134.90 46.51
G16 240.21 176.93 164.07 79.87 59.33 91.70 99.24 72.57 60.10 52.27 70.09 98.48 25.71 38.72 40.16 156.94 46.74
G17 243.80 178.31 163.36 78.11 59.17 91.64 100.12 73.89 57.23 51.61 71.25 97.91 25.80 37.95 40.30 157.86 45.87
G18 240.03 168.06 161.48 75.01 61.88 117.59 115.62 84.21 60.44 49.76 70.27 101.75 27.11 44.30 41.60 146.09 43.58
G19 232.13 155.85 159.91 72.59 61.30 114.08 109.24 83.74 58.03 46.93 65.70 94.24 25.52 41.91 38.84 138.89 43.57
G20 263.69 185.11 162.49 77.40 60.18 98.01 91.04 70.86 58.72 59.35 70.12 102.95 27.89 36.83 43.16 171.22 45.30
G21 244.70 164.01 160.37 71.41 57.94 101.21 90.37 70.06 55.71 52.92 65.67 100.62 26.47 36.59 40.27 150.53 41.90
G22 230.41 155.91 162.05 70.61 59.99 101.53 96.35 77.20 53.96 48.78 61.95 94.59 24.96 37.78 37.39 140.41 42.90
G23 239.88 175.30 180.07 81.78 77.29 113.59 111.86 98.10 54.59 59.61 60.99 96.21 29.18 41.43 40.09 153.86 56.02
G24 215.48 155.79 165.05 71.72 63.30 92.52 92.20 75.02 49.83 49.43 56.85 95.00 24.11 33.88 34.54 139.31 44.42
G25 199.82 191.86 189.23 114.12 117.77 155.16 143.20 111.09 65.75 54.41 56.78 105.52 28.19 46.33 33.84 159.45 70.67
G26 197.54 161.72 172.00 83.18 80.17 100.07 108.34 86.91 51.53 50.12 54.14 97.53 24.51 35.94 32.51 140.05 52.09
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