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Abstract: Evapotranspiration (ET) represents a significant component of the global water flux cycle,
yet nocturnal evapotranspiration (ETn) is often neglected, leading to underestimation of global evap-
otranspiration. As for cropland, accurate modeling of ETn is essential for rational water management
and is important for sustainable agriculture development. We used random forest (RF) to simulate
ETn at 16 globally distributed cropland eddy covariance flux sites along with remote sensing and
meteorological factors. The recursive feature elimination method was used to remove unimportant
variables. We also simulated the ETn of C3 and C4 crops separately. The trained RF resulted in a
determination coefficient (R2) (root mean square error (RMSE)) of 0.82 (7.30 W m−2) on the testing
dataset. C3 and C4 crops on the testing dataset resulted in an R2 (RMSE) of 0.86 (5.59 W m−2) and
0.55 (4.86 W m−2) for the two types of crops. We also showed that net radiation is the dominant
factor in regulating ETn, followed by 2 m horizontal wind speed and vapor pressure deficit (VPD),
and these three meteorological factors showed a significant positive correlation with ETn. This
research demonstrates that RF can simulate ETn from crops economically and accurately, providing a
methodological basis for improving global ETn simulations.

Keywords: nocturnal evapotranspiration; ecological remote sensing; machine learning; random
forest; characteristics analysis

1. Introduction

Evapotranspiration (ET) is an indispensable part of the global hydrological cycle,
which has an impact on regional soil and climate [1,2]. Agroecosystems play an essential
part in terrestrial ecosystems, and it is estimated that about 90% of the water resources
consumed by agroecosystems are in the form of ET. High-accuracy modeling of ET is essen-
tial for determining irrigation demand, formulating irrigation strategies, and developing
agricultural water management.

However, in current estimates and simulations of terrestrial water loss, daytime evap-
otranspiration is considered to be dominant, while nocturnal evapotranspiration (ETn)
is generally not addressed [3]. Particularly at the leaf level, the traditional consideration
that leaf stomata close at night, combined with the low evaporative demand of plants at
night, leads to the widespread belief that plant water vapor fluxes at night are negligi-
ble [4]. Nevertheless, the incomplete closing of the stomata combined with the subsequent
prevalence of nocturnal transpiration at the leaf and crop scales is also increasingly evi-
denced [5,6]. Existing studies indicate that 6.3% to 9.1% of ET typically occurs at night
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in terrestrial ecosystems [2,7], and the proportion can be as high as 25% to 30% in dry
ecosystems [8,9]. In cropland ecosystems, nighttime evapotranspiration of different crops
also accounts for a portion of the evapotranspiration, e.g., tomatoes, beans, and cotton
can evaporate between 3% and 23% at night [3,5,10]. In summary, ETn contributes to the
quantification of evapotranspiration, and ignoring ETn will lead to an underestimation of
total ecosystem evapotranspiration. For cropland, accurate simulation of ETn can help with
developing more effective irrigation schemes for irrigated fields and provide a scientific
basis for irrigation.

Currently, studies on the factors influencing ETn and its mechanisms are not suffi-
ciently advanced. The key drivers of nocturnal evapotranspiration may be somewhat
different from daytime evapotranspiration [11], and there are differences in the ranking
of the importance of environmental factors of evapotranspiration revealed by studies
conducted in different study areas, making it difficult for existing methods to accurately
model ETn. Zeppel et al. [12] overviewed the roles of various factors on nighttime plant
water loss, which provided a theoretical reference for the later studies on the influencing
factors of ETn. Meanwhile, the study proposed that the nocturnal water loss varies greatly
between different plant types and functional groups. Tolk et al. [3] suggested that envi-
ronmental variables such as wind speed (WS), temperature, humidity, and crop ETn have
some correlation. Padrón et al. [2] performed a characterization of global nocturnal water
loss and found that higher air temperature, VPD, WS, and soil moisture were more likely
to lead to higher nocturnal water loss. Groh et al. [13] obtained a similar conclusion in
the estimation of ETn from two different grassland ecosystems in Germany. Qiwen Liao
et al. [14] found, in a study of ETn on the Tibetan Plateau, that ETn is mainly driven by
temperature differences and WS at low-altitude regions. These studies have shown the
complex influence of environmental factors on ETn from agricultural fields as well as other
ecosystems, which are difficult to describe using a single physical definition.

For the last few years, the rapid development of machine learning algorithms and
neural network technologies and the trend of cross-fertilization of disciplines have also
facilitated the introduction of these methodological models into other fields. Nowadays,
machine learning models have been applied to the simulation of evapotranspiration in
crops, plains, and watersheds [15–19], and the established models for estimating ET have
achieved a more satisfactory accuracy. In 2019 Zhao et al. presented a machine learning
model based on physical constraints to simulate ET on a global scale, and the model can also
be applied to extreme weather conditions [20]. In 2021, Yan Liu et al. [21,22] improved the
accuracy of the Penman–Monteith equation using artificial neural networks (ANNs) as well
as remote sensing vegetation indexes, and also achieved high accuracy in simulating ET
from cropland using six machine learning algorithms. Meanwhile, Jang et al. [19] pointed
out that ANNs can perform local optimization of potential evapotranspiration in the Korean
Peninsula more accurately than the MODIS data model. Yue Jia et al. [23] concluded that
the optimized extreme learning machine (ELM) model has higher simulation accuracy than
traditional empirical models (e.g., the Priestley–Taylor model) in the estimation of ET of
spring maize in China. In 2021, Zhang et al. [24] discovered that using RF algorithms in
combination with MODIS and flux station data can generate relatively reliable ground-
based ET datasets. Meanwhile, additional studies [25,26] also demonstrated that RF can
simulate ET more efficiently than other machine learning models. In conclusion, artificial
intelligence models have the advantages of high efficiency, accuracy, and generalization.
Therefore, in the context that the driving mechanism of ETn is still unclear, machine
learning methods are available for simulating the complicated non-linear relationship
between influencing factors and ETn, and modeling ETn at the cropland scale.

This study is dedicated to the development of a methodology that could accurately
simulate ETn in cropland, contributing to agricultural water management and sustainable
development, and could provide a theoretical basis for future ETn simulation studies on
a global scale using machine models. Consequently, this study used machine learning
algorithms to simulate ETn at 16 globally distributed cropland eddy covariance flux sites
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and analyzed the factors affecting ETn. The objectives of this study consist of the following
two main points: (a) to establish a random forest (RF)-based model to simulate the ETn
of cropland at the global scale hoping to provide a feasible solution for ETn simulation of
cropland; (b) to analyze the degree of effect of different environmental drivers on ETn by
using several feature assessment methods.

2. Materials and Methods
2.1. Materials
2.1.1. Eddy Covariance Flux Site Data

The meteorological data used in this study were mainly derived from 16 cropland
vortex-related sites (CRO, Croplands) in FLUXNET2015, with an interannual span of
2001–2014. In this study, latent heat flux data (LE_F_MDS) at hourly scales (both hourly
and half-hourly scales) and atmospheric temperature (TA), wind speed (WS), precipitation
(P), vapor pressure deficit (VPD), carbon dioxide (CO2), net radiation (Ra), relative humidity
(RH), soil heat flux (G) data at the same time scales were used.

For data preprocessing, data with incident shortwave radiation (SW_IN) values be-
low 5.0 W·m−2 were selected because the study was on nighttime evaporation. In the
second step, FLUXNET2015 latent heat flux missing values were null-filled by the edge
distribution sampling method (MDS), so the observed or high-quality null-filled data with
an LE_F_MDS_QC field of 0 or 1 could be used as valid verification data for this experi-
ment [27], and further outlier identification and rejection was conducted on the basis of the
original data. In the third step, the response of plant evapotranspiration to precipitation
had a lag, so the sum of precipitation for the first 8 days was taken for precipitation (P) [28].
In the fourth step, the energy closure factor (Ra) was calculated as (LE + H)/(Rn − G),
where LE is the latent heat flux, H is the sensible heat flux, and G is the soil heat flux. Since
several studies have shown the prevalence of energy non-closure at flux sites using the eddy
correlation technique [29–31], for samples with Ra values outside the range of 0.85 to 1.15,
we used the sum of LE, H, and G instead of Rn to retain more valid data. In the fifth step,
in order to eliminate potential differences in tower height on wind speed measurements,
we calculated the 2 m horizontal wind speed (WS2m) with the follow equation [32]:

WS2m =
WS ∗ 4.87

ln(67.8 ∗ zw− 5.42)
(1)

where WS is wind speed, zw is the tower height. In the sixth step, it has been mentioned
that the opening and closing of plant stomata varies with the sun [33], so in this study, we
calculate the hour angle at sunset (ωset) of the day from the local latitude and date, which
is calculated as follows [34]:

ωset = arccos(−tanϕ tanδ) (2)

δ = 23.5 sin
(

DoY + 284
365

2π
)
× π

180
(3)

where ϕ is local latitude, DoY is the Julian day. In the seventh step, to eliminate the effect
of extreme values on the experiment, we used data with LE fall within the 5th and 95th
percentile of all LE samples. Ultimately, the data from the 16 flux sites employed in this
study, which are distributed globally, are shown in Figure 1. For detailed information on
these 16 cropland sites, refer to Table 1.



Sustainability 2024, 16, 1987 4 of 24Sustainability 2024, 16, x FOR PEER REVIEW 4 of 25 
 

 

Figure 1. Global distribution of the 16 cropland sites. 

Table 1. Detailed information of the 16 cropland sites. 

Code Name Latitude Longitude 
Tower 

Height 

Crop Rotation Period 
Citation 

C3 C4 

BE-Lon Lonzee 50.5516 4.7461 2.7 2004–2014 2012 [35] 

DE-Geb Gebesee 51.1001 10.9143 6 2001–2014 —— [36] 

DE-Kli Klingenberg 50.8929 13.5225 7.5 2004–2014 
2006–2007, 

2012 
[37] 

FI-Jok Jokioinen 60.8986 23.5135 3 2001, 2002 —— [38] 

FR-Gri Grignon 48.8442 1.9519 2.8 2004–2014 
2005–2008, 

2011 
[39] 

IT-BCi Borgo Cioffi 40.5238 14.9574 3.8 2004–2014 2004–2011 [40] 

IT-CA2 Castel d’Asso 2 42.3772 12.026 5 2011–2014 ——  

US-ARM 
ARM Southern Great Plains site–

Lamont 
36.6058 −97.4888 60 2003–2012 2005, 2008 [41] 

US-CRT Curtice Walter–Berger cropland 41.6285 −83.3471 2 2011–2013 —— [42] 

US-Lin Lindcove Orange Orchard 36.3566 −119.8423 9.18 2009–2010 ——  

US-Ne1 
Mead–irrigated continuous 

maize site  
41.1651 −96.4766 6.2 —— 2001–2013 [43] 

US-Ne2 
Mead–irrigated maize–soybean 

rotation site  
41.1649 −96.4701 6.2 

2002, 2004, 

2006, 2008 

2001, 2003, 

2005, 2007, 

2009–2013 

[44] 

Figure 1. Global distribution of the 16 cropland sites.

Table 1. Detailed information of the 16 cropland sites.

Code Name Latitude Longitude
Tower
Height

Crop Rotation Period
CitationC3 C4

BE-Lon Lonzee 50.5516 4.7461 2.7 2004–2014 2012 [35]
DE-Geb Gebesee 51.1001 10.9143 6 2001–2014 — — [36]

DE-Kli Klingenberg 50.8929 13.5225 7.5 2004–2014 2006–2007,
2012 [37]

FI-Jok Jokioinen 60.8986 23.5135 3 2001, 2002 — — [38]

FR-Gri Grignon 48.8442 1.9519 2.8 2004–2014 2005–2008,
2011 [39]

IT-BCi Borgo Cioffi 40.5238 14.9574 3.8 2004–2014 2004–2011 [40]
IT-CA2 Castel d’Asso 2 42.3772 12.026 5 2011–2014 — —

US-ARM ARM Southern Great Plains
site–Lamont 36.6058 −97.4888 60 2003–2012 2005, 2008 [41]

US-CRT Curtice Walter–Berger cropland 41.6285 −83.3471 2 2011–2013 — — [42]
US-Lin Lindcove Orange Orchard 36.3566 −119.8423 9.18 2009–2010 — —

US-Ne1 Mead–irrigated continuous
maize site 41.1651 −96.4766 6.2 — — 2001–2013 [43]

US-Ne2 Mead–irrigated maize–soybean
rotation site 41.1649 −96.4701 6.2 2002, 2004,

2006, 2008

2001, 2003,
2005, 2007,
2009–2013

[44]
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Table 1. Cont.

Code Name Latitude Longitude
Tower
Height

Crop Rotation Period
CitationC3 C4

US-Ne3 Mead–rainfed maize–soybean
rotation site 41.1797 −96.4397 6.2

2002, 2004,
2006, 2008,
2010, 2012

2001, 2003,
2005, 2007,
2009, 2011,

2013

[44]

US-Tw2 Twitchell Corn 38.1047 −121.6433 5.15 — — 2012–2013 [45]
US-Tw3 Twitchell Alfalfa 38.1159 −121.6467 2.8 2012–2014 — — [46]
US-Twt Twitchell Island 38.1087 −121.653 3.15 2009–2014 — — [47]

2.1.2. Remote Sensing Data

Four MODIS data products were used in this study, including MOD13Q1, MYD13Q1,
MOD21A1N, and MOD21A1D. MOD13Q1 and MYD13Q1 are the 250 m vegetation index
products synthesized by Terra and Aqua satellites 16 d, respectively. We extract the
normalized vegetation index (NDVI) and the enhanced vegetation index (EVI) from these
two products to reflect surface vegetation information. MOD21A1N and MOD21A1D
are 1 km and daily synthetic products, providing the nighttime and daytime surface
temperature (LST), respectively. All MODIS data were retrieved from the Application for
Extracting and Exploring Analysis Ready Samples tool on the NASA website (AρρEEARS
(nasa.gov, accessed on 16 May 2022)).

We took the 16-day scale data, spliced them into an 8-day scale, and then used linear
interpolation to populate the daily scale data into hourly scales, i.e., if the data at the two
endpoints (t1, a), (t2, b), are known, the value (c) located at t in the interval [t1, t2] can be
computed as:

c = a + (t− t1)
b− a

t2− t1
(4)

Finally, the experimental dataset was obtained by extracting the available data from the
processed MODIS data through the time series of the flux dataset. Meanwhile, considering
the physical properties of evapotranspiration, we also added the temperature difference
between the atmosphere and the surface (∆TAS), which was obtained by subtracting LST
from TA. The variables derived from these products are shown in Table 2.

Table 2. The table of variables used in this study.

Variable Abbreviation Data Products Temporal Resolution

Surface Latent Heat LE FLUXNET2015 Hourly
Air Temperature TA FLUXNET2015 Hourly

Vapor Pressure Deficit VPD FLUXNET2015 Hourly
Precipitation P FLUXNET2015 Hourly
Wind Speed WS FLUXNET2015 Hourly

2 m Horizontal Wind Speed WS2m FLUXNET2015 Hourly
Carbon Dioxide CO2 FLUXNET2015 Hourly

Relative Humidity RH FLUXNET2015 Hourly
Net Radiation Rn FLUXNET2015 Hourly
Soil Heat Flux G FLUXNET2015 Hourly

Hour Angle at Sunset ωset FLUXNET2015 Hourly
Normalized Difference Vegetation Index NDVI MOD13Q1, MYD13Q1 16-day, interpolated to hourly

Enhanced Vegetation Index EVI MOD13Q1, MYD13Q1 16-day, interpolated to hourly
Land Surface Temperature LST MOD21A1N Daily, interpolated to hourly

Diurnal Temperature Difference at the
Land Surface LST_Differ MOD21A1D, MOD21A1N Daily, interpolated to hourly

Temperature Difference between
Atmosphere and Surface ∆TAS FLUXNET2015, MOD21A1N Daily, interpolated to hourly

nasa.gov
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2.2. Methods

Figure 2 shows the technical flowchart of this study. First, after obtaining the original
data of 16 cropland sites around the world, we performed data preprocessing operations
to obtain the data required for the experiment. In the second step, we used RF combined
with the recursive feature elimination method (RFE) to construct the best machine learning
model to simulate ETn, and then simulated ETn of C3, C4 crops. In the third step, we used
the random forest method, and the Shapley additive explanation method to analyze the
importance of factors affecting ETn.
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Figure 2. Flow chart of this study. TA is air temperature, VPD is vapor pressure deficit, P is
precipitation, WS is wind speed, WS2m is 2 m horizontal wind speed, CO2 is carbon dioxide, RH is
relative humidity, Rn is net radiation, G is soil heat flux, NDVI is normalized difference vegetation
index, EVI is enhanced vegetation index, LST is land surface temperature, LST_Differ is diurnal
temperature difference at the land surface, and ∆TAS is the temperature difference between the
atmosphere and the surface. RF is random forest, RFE is recursive feature elimination, SHAP is the
Shapley additive explanation method and ETn is the nocturnal evapotranspiration. Rectangles are
data, rounded rectangles are processes, and ellipses are models or methods.

2.2.1. Random Forest

Random forest (RF), proposed by Breiman [48] in 2001, is an integrated decision
tree based algorithm. When RF is used as a regression, the basic theory is to generate
multiple decision trees by randomly selecting samples with put-back, and then average the
decision results of multiple trees as the final output to make the decision tree generalization
error converge to obtain better prediction results. One of the important features of RF is
the random extraction of feature variables to avoid a strong correlation between feature
variables and results. Therefore, RF has the advantage of being able to evaluate the
importance of features and handle high-dimensional feature data.

The dataset used in this study was randomly divided into 60% training sets, 20%
validation sets, and 20% test sets based on years. For example, if a site had 10 years of data,
then six years of data were randomly selected as the training set, two years as the validation
set, and the remaining two years as the test set. And if a site had only one year of valid
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data, the data from that site were used as the training set. This division method avoids
both the poor model generalization performance due to completely random division and
the time dependence arising from sequential division. Finally, 131,670 datasets and 62,743
datasets were used for the training set and validation set, respectively and 46,923 datasets
were used for testing. The division of the training and test sets is shown in Table 3.

Table 3. Segmentation results for the training dataset and the test dataset *.

Year
SITE

BE-
Lon

DE-
Geb

DE-
Kli

FI-
Jok

FR-
Gri

IT-
BCi

IT-
CA2

US-
ARM

US-
CRT

US-
Lin

US-
Ne1

US-
Ne2

US-
Ne3

US-
Tw2

US-
Tw3

US-
Twt

2001 — — • — — N — — — — — — — — — — — — • N � — — — — — —
2002 — — • — — � — — — — — — — — — — — — N � � — — — — — —
2003 — — N — — • — — — — — — • — — — — � � � — — — — — —
2004 • � � — — • — — — — • — — — — • N • — — — — — —
2005 N • — — — — • — — — — � — — — — N N • — — — — — —
2006 • • — — — — � — — — — • — — — — • • N — — — — — —
2007 N • N — — � — — — — • — — — — • • • — — — — — —
2008 � • • — — • — — — — • — — — — N • • — — — — — —
2009 • N • — — • — — — — N — — � • • • — — — — �

2010 • � • — — • • — — • — — • � • N — — — — •
2011 • — — • — — N — — � � • — — � • N — — — — •
2012 � — — • — — N — — • N N — — • � • • — — N
2013 — — — — N — — � — — — — — — � — — • • • � • �

2014 • — — � — — • — — — — — — — — — — — — — — — — — — � •
* • indicates that the data in the year are used as the training set; � indicates that the data in the year are used as
the validation set; N indicates that the data in the year are used as the test set; — indicates that there are no valid
data for that year.

RF has two important parameters: the maximum depth of the trees (max_depth) and
the number of decision trees (n_estimators). We set the max_depth parameter in the range
of 1 to 25 and n_estimators in the interval of [100, 800] and tuned the parameters using
the random search combined with the grid search method. After tuning, we found that
n_estimators = 356 and max_depth = 10 was the RF model structure. To mitigate the risk of
potential overfitting, we visualized the variation in model accuracy with parameters, as
depicted in Figure 3. Figure 3a delineates the variation in R2 concerning the max_depth
parameter for both the training and validation sets, with n_estimators fixed at 356. As
max_depth increases, the R2 of both sets experiences a moderate increment; however,
the R2 of the validation set ceases to ascend when max_depth reaches 11. Notably, the
discrepancy between the training and validation set R2 is minimized when max_depth
equals 9, thus identifying 9 as the optimal max_depth parameter. Figure 3b illustrates the
R2 graph of the training and validation sets concerning n_estimators with max_depth set
to 9. While the overall trend appears relatively stable, the R2 of the validation set peaks
when n_estimators = 350, with the smallest difference observed between the R2 values of
the training and validation sets. Consequently, following parameter tuning, we designate
the configuration with n_estimators = 356 and max_depth = 9 as the optimal structure for
the random forest model.
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2.2.2. Recursive Feature Elimination

In machine learning, when dealing with high-dimensional datasets, the problem of
dimensionality catastrophe may be encountered, which reduces the generalization ability
of the model and leads to overfitting problems [49]. Recursive feature elimination (RFE) is
a commonly used method and tool in feature engineering, and has important applications
in remote sensing, bioinformatics, power analysis, etc. [50–53]. The principle of the RFE
algorithm is to repeatedly construct the model and train it, select the feature with the
smallest or largest weight after each round of training, eliminate this feature, and then
repeat the process until all the features are traversed, and ultimately arrive at the best
feature subset [49]. Using the RFE method may result in reduced model accuracy, in order
to avoid overfitting, yet the cost is relatively small and the performance degradation is
insignificant.

We used three different combinations of variables to explore the impact of different
input variables on model accuracy: the first with hour angle at sunset and meteorological
data; the second with hour angle at sunset, meteorological data, and vegetation index data;
the third with a combination of input variables obtained by recursive feature elimination.
Table 4 shows the different combinations of inputs.

Table 4. The different input combinations of the RF algorithm *.

Number Input Variables

a ωset, TA, VPD, P, WS, WS2m, CO2, RH, LST, LST_Differ, ∆TAS, Rn, G
b ωset, TA, VPD, P, WS, WS2m, CO2, RH, LST, LST_Differ, ∆TAS, Rn, G, EVI, NDVI
c (obtained by RFE)

*ωset is hour angle at sunset, TA is air temperature, VPD is vapor pressure deficit, P is precipitation, WS is wind
speed, CO2 is carbon dioxide, RH is relative humidity, LST is land surface temperature, LST_Differ is diurnal
temperature difference at the land surface, ∆TAS is the temperature difference between the atmosphere and the
surface, Rn is net radiation, G is soil heat flux, EVI is the enhanced vegetation index, and NDVI is the normalized
difference vegetation index.

2.2.3. Correlation Coefficient Method

The Pearson correlation coefficient method uses the Pearson correlation coefficient (R)
as the evaluation criterion, which can be used to show the degree of correlation between
the dependent variable and the independent variable. The value is between [−1, 1], with
the absolute value closer to 1 indicating a higher correlation, and the absolute value closer
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to 0 indicating a lower correlation [54]. In this study, we analyzed multiple environmental
drivers of ETn using the Pearson correlation coefficient method.

2.2.4. Shapley Additive Explanation Method

The Shapley additive explanations (SHAP) method, which measures the contribution
of features to the final output by the Shapley value of each feature, is an additive attribution
algorithm based on game theory that can be used to interpret machine learning models [55].
Its positive and negative direction, as well as the magnitude of its absolute value, represent
the positive and negative effect of the feature on the simulated values as well as the
magnitude of its contribution. In other words, when the SHAP plot shows a higher
|SHAP| mean, it indicates that the feature has the greatest impact on the target simulated
values. The contribution of each feature can be quantified and visualized intuitively using
the SHAP method.

2.3. Model Evaluation

Three model performance assessment metrics were employed in this study: coefficient
of determination (R2), root mean square error (RMSE), and mean absolute error (MAE).
The three evaluation indicators are calculated as:

R2 =
∑n

i = 1[(yi − yi)(xi − xi)]
2

∑n
i−1(yi − yi)

2∑n
i−1(xi − xi)

2 (5)

RMSE =

√
1
n

n

∑
i = 1

(
yi − xi

)2 (6)

MAE =
1
n

n

∑
i = 1
|yi − xi| (7)

where n is the sample size, xi is the observed value, xi is the mean of the observations, yi is
the simulated value, and yi is the mean of the simulated values.

R2 assesses the degree of conformity between simulated and actual values in the
regression model. An R2 value that is closer to 1 represents higher simulation accuracy.
RMSE and MAE are used to capture the error between the model prediction data and the
raw data. The smaller these two metrics are, the more accurate the model simulation is [56].

3. Results
3.1. Comparison of RF Model with Different Input Variables

ETn was modeled and simulated for 16 stations of cropland type using the random
forest algorithm, with input variables consisting of three combinations of meteorological
data and vegetation index data. As shown in Figure 4, using various combinations of input
variables resulted in different accuracies of the model. Using only meteorological factors
as model input variables yielded relatively low simulation accuracies. The R2 value was
0.8 for both the training and validation sets, while the RMSE (MAE) for the two datasets
were 6.73 W m−2 (4.32 W m−2) and 8.98 W m−2 (5.29 W m−2), respectively. For the test set,
the R2 was 0.78, the RMSE was 7.79 W m−2, and the MAE was 4.66 W m−2. In contrast,
by adding the vegetation index as a combination of model input variables, the model
simulation was significantly improved, with the R2 of the training set raised to 0.82, and
the R2 of the validation set also raised to 0.83. The R2 of the test set was raised from 0.78
to 0.82, the RMSE was 7.36 W m−2, and the MAE was 4.39 W m−2. All three evaluation
metrics exhibited a certain enhancement.

It is evident that RF can capture the complicated non-linear relationship from environ-
mental factors to ETn very well and can achieve high simulation accuracy. In conclusion,
RF can be selected as an effective model for further analysis of ETn in cropland.
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We further used the RFE method to filter the variables to obtain the input combination
c to model the ETn, the variables selected wereωset, TA, VPD, P, WS, WS2m, RH, LST, Rn, G,
EVI, and NDVI. Figure 5 shows the simulation effect of this combination of variable inputs.
The overall impact of the model exhibits minor variations when compared to combination
b. Although R2 remains unchanged, there is a noticeable reduction in errors: the RMSE
for the validation set decreases from 8.34 W m−2 to 8.29 W m−2, and the MAE decreases
from 4.99 W m−2 to 4.96 W m−2. Furthermore, there is a reduction of 0.06 W m−2 in RMSE
and 0.03 W m−2 in MAE for the test set. It is evident that this feature selection method
proves effective, and the chosen feature combination contributes to enhancing the accuracy
of the model simulation. Detailed information on the simulation results for these three
combinations of input variables can be found in Appendix A (Table A1).
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3.2. Simulation of C3 and C4 Crops by the RF Model

C3 and C4 crops in the water–carbon coupling process have different physiological
characteristics [57]. To further deepen the study of ETn from cropland, we modeled C3
and C4 crops individually and also validated them on a daily scale. The model input
variables were obtained by recursive feature elimination and included ωset, TA, VPD, P,
WS, WS2m, RH, LST, Rn, G, EVI, and NDVI. Parameter optimization was carried out on the
RF model to obtain the optimum model parameters for the C3 crop (n_estimators = 369 and
max_depth = 7) and for the C4 crop (n_estimators = 285 and max_depth = 7). The model
simulation results are shown in Figure 6. The maximum simulated ETn value for C3 crops
has a maximum value of 120 W m−2, while the maximum value for C4 crops is 40 W m−2.
It was clear that the ETn values of C3 plants were generally greater than those of C4 crops,
which was related to the species type of C3 crops. In addition to typical crops such as
soybean and wheat, C3 crops also include crops such as rice. Some C3 sites contained rice
paddies within them, and the ETn of the paddies was greater than that of the drylands.
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The ETn simulation for the C3 crop had a value of 0.86 for R2 on the test set, and
values of 5.59 and 3.59 for RMSE and MAE, respectively. The simulation results for C4 crop
showed R2, RMSE, and MAE metrics of 0.55, 4.86 W m−2, and 3.2 W m−2, respectively. It
can be seen that although RF can effectively simulate the ETn of C3 and C4, there were some
differences in their simulation effects. We discuss possible reasons for this in Section 4.1.

3.3. Characteristics Analysis
3.3.1. Random Forest Characterization

To further analyze the factors affecting ETn, we analyzed the degree of influence of
features using two methods. Features included ωset, TA, VPD, P, WS, WS2m, CO2, RH, LST,
LST_Differ, ∆T_AS, Rn, G, EVI, and NDVI.

The importance of the influence of each factor on ETn was analyzed using the random
forest algorithm instead of the traditional mathematical and statistical methods. The results
are shown in Figure 7 and Table 5, where the relative importance is the algorithm’s self-
generated importance score for the corresponding factor, while the ranking is the ranking
obtained from the associated importance score. The findings reveal that, in the simulation
of ETn across the 16 sites, Rn and WS2m emerge with notably high importance, securing
relative importance scores of 0.26 and 0.12, respectively, occupying the first and second
positions. VPD and WS claim the third and fourth positions, while NDVI holds the fifth
position. Notably, temperature difference between the surface and the atmosphere is ranked
in the last position. The importance scores of the other variables are very close to each other
and lie in the middle part.
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Figure 7. Characteristics analysis conducted using the random forest and SHAP methods. (a) Relative
importance of ETn with each environmental factor obtained by the random forest algorithm; (b) the
value of mean (|SHAP value|) of each environmental factor obtained by the SHAP algorithm.

Table 5. Feature correlations and composite rankings obtained by random forest and the SHAP
method.

Variables
Rank Ranking Average

RF SHAP

Rn 1 2 1.5
WS2m 2 1 1.5
VPD 3 4 3.5
WS 4 4 4

NDVI 5 3 4
TA 6 8 7
EVI 6 10 8
LST 6 6 6
RH 10 7 8.5
ωset 6 13 9.5

P 10 11 10.5
CO2 12 9 10.5

G 12 12 12
LST_Differ 12 14 13

∆TAS 15 15 15

3.3.2. The SHAP for Characterization

We also analyzed the influences using the SHAP method, reflecting the magnitude
of the contribution of each influence on the simulation results through the value of mean
(|SHAP value|), and visualized the results in the form of bar charts (Figure 7). Although
there are some differences with the results of the characterization of the random forest, the
overall results are somewhat similar. WS2m and Rn show higher values, with values of 1.92
and 1.8 for WS2m and Rn, respectively. NDVI, WS, and VPD have similar performances,
while at the same time ∆TAS is similarly in last place. Interestingly, WS2m, which is also
a correlate of wind speed, manifests a greater significance than WS. The reasons for this
disparity will be explored in Section 4.5.

Since different methods presented some differences in the analysis of ETn influencing
factors, we combined the three methods calculated the mean values, and ranked the ranking
of the obtained influencing factors (Table 5). Overall, Rn, WS2m, and VPD are the most
important influencing factors. However, the G, LST_Differ, and ∆TAS showed a low ranking
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in both experiments. Vegetation index data (EVI and NDVI) showed moderate but more
important rankings.

4. Discussion
4.1. Possible Reasons for Differences in RF Modeling of C3, C4 Crops

Although the RF simulations for both C3 crops and C4 crops presented the desired
accuracy, there were some differences in the simulation results between the two. This was
primarily due to differences in the volume of data and the number of sites. Of the 16 flux
sites, 14 flux sites belonged to the C3 crop with a total of 216,497 datasets, while 9 sites
belonged to the C4 crop with a total of 162,405 datasets. The difference in the amount of
data makes it difficult to ensure high simulation accuracy and generalization ability.

Due to the structural differences between C3 and C4 crops, their responses to different
environmental factors (CO2, radiation, temperature, precipitation, etc.) may differ to some
extent [58–60]. Therefore, from the perspective of model building, in the futuristic simula-
tion of ETn in cropland, corresponding parameterization schemes should be established
for different crop types to effectively reduce the uncertainty of simulation results.

4.2. Differences in Simulation Effectiveness of Random Forest Models between Sites

We validated 11 sites on the test set on the daily scale, and the results are shown
in Table 6. It can be seen that there are significant differences in the model simulation
performance between different eddy covariance sites, with DE-Geb, DE-Kil, and FI-Jok
having the relatively lowest R2 values of around 0.06, followed by BE-Lon and US-CRT
with an R2 of around 0.3. US-Twt has the largest R2 (R2 = 0.82) and the worst RMSE and
MAE performance (RMSE = 11.19 W m−2, MAE = 8.12 W m−2). The other four sites had
similar accuracies, with similar R2 (0.6 ± 0.04) and RMSE values (4.0 ± 0.3).

Table 6. Model simulation effects on the test set across different sites.

Site R2 RMSE MAE

BE-Lon 0.29 1.18 0.85
DE-Geb 0.06 1.57 1.18
DE-Kli 0.06 3.15 2.23
FI-Jok 0.08 1.64 1.22
FR-Gri 0.45 4.12 2.97

US-ARM 0.57 4.27 2.80
US-CRT 0.34 4.93 3.78
US-Ne1 0.64 4.27 3.15
US-Ne2 0.64 3.60 2.48
US-Ne3 0.61 3.72 2.62
US-Twt 0.82 11.19 8.12

We conducted an in-depth analysis of the input data to elucidate the factors contribut-
ing to the observed disparities, and the data distribution is shown in Figure 8. Notably,
with the exception of a few outliers, each site in the test set exhibits a substantial variation
in both data distribution and volume. The LE data of the sites with the lowest R2 are in a
very narrow interval, basically distributed around 0 W m−2, and thus have a low RMSE.
While the sites with higher R2 can reach a maximum value of around 40 W m−2 and have
a larger amount of data. Noteworthy is the observation that, among these sites, US-CRT
has the least amount of data, consequently presenting a lower R2. For the US-Twt site, the
data have a wider distribution ([−0.6, 116] in the 95% confidence interval) and overall large
values ([12, 56] in the quadratic range).



Sustainability 2024, 16, 1987 14 of 24

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 25 
 

US-ARM 0.57 4.27 2.80 

US-CRT 0.34 4.93 3.78 

US-Ne1 0.64 4.27 3.15 

US-Ne2 0.64 3.60 2.48 

US-Ne3 0.61 3.72 2.62 

US-Twt 0.82 11.19 8.12 

We conducted an in-depth analysis of the input data to elucidate the factors contrib-

uting to the observed disparities, and the data distribution is shown in Figure 8. Notably, 

with the exception of a few outliers, each site in the test set exhibits a substantial variation 

in both data distribution and volume. The LE data of the sites with the lowest R2 are in a 

very narrow interval, basically distributed around 0 W m−2, and thus have a low RMSE. 

While the sites with higher R2 can reach a maximum value of around 40 W m−2 and have 

a larger amount of data. Noteworthy is the observation that, among these sites, US-CRT 

has the least amount of data, consequently presenting a lower R2. For the US-Twt site, the 

data have a wider distribution ([−0.6, 116] in the 95% confidence interval) and overall large 

values ([12, 56] in the quadratic range). 

 

Figure 8. Violin plots of the data distribution for each site in the test set. The grey boxes represent 

the interquartile range, the black lines represent the range of values with 95% confidence intervals, 

and the white dots represent the median, with the wider portion indicating that there are relatively 

more data points for that value. 

4.3. Impact of Different Spatial Resolution Data on the Model 

To explore the impact of diverse spatial resolutions on the model’s performance, we 

utilized NDVI and EVI data at a 500 m spatial scale sourced from MODIS’s MOD13A1 

and MYD13A1 products, which provide vegetation index data at the five hundred meter 

scale. We used the same training, validation, and test sets, with input variables being com-

binations of variables obtained by recursive feature elimination and substituted the orig-

inal 250 m scale EVI and NDVI data with their counterparts at a 500 m scale. Modeling 
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data points for that value.

4.3. Impact of Different Spatial Resolution Data on the Model

To explore the impact of diverse spatial resolutions on the model’s performance, we
utilized NDVI and EVI data at a 500 m spatial scale sourced from MODIS’s MOD13A1
and MYD13A1 products, which provide vegetation index data at the five hundred meter
scale. We used the same training, validation, and test sets, with input variables being
combinations of variables obtained by recursive feature elimination and substituted the
original 250 m scale EVI and NDVI data with their counterparts at a 500 m scale. Modeling
simulations were conducted using the RF model, and the simulation result are shown in
Figure 9.
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The analysis reveals a reduction in the R2 value of the validation set, declining from
0.83 to 0.74, and an enhancement in the RMSE (MAE) metrics, changing from 8.29 W m−2
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(4.96 W m−2) to 9.67 W m−2 (5.47 W m−2). The test set also exhibits some degradation
in accuracy, with R2 decreasing from 0.82 to 0.77, while RMSE and MAE also improving
somewhat. These findings indicate a substantial decline in simulation accuracy when
employing the 500 m data product. Higher spatial resolution MODIS data products have
lower error with ground truth observations, as well as higher accuracy in reflecting localized
vegetation change [61,62], and are more conducive to matching with site-scale flux data.
Consequently, the model achieved a relatively optimal simulation accuracy using 250 m
resolution vegetation index data.

4.4. Differences in ETn Simulation by Different Machine Learning Algorithms

To explore whether there are significant differences in the simulation of ETn in farm-
land by different machine models, we used three different types of machine learning
algorithm models to conduct comparative experiments. XGBoost [63] is a type of algorithm
belonging to the gradient boosting algorithm, which improves the performance by inte-
grating multiple decision trees. KNN [64] is a basic supervised learning algorithm, which
is based on the neighborhood’s voting mechanism through the measure of the distance
between the instances for regression prediction. ANN [65] is a multilayer neural net-
work based on which modelling of nonlinear relationships, achieved through connections
between neurons.

To ensure the consistency of the experiments, we used the same training, validation,
and test sets as RF, and the input variables were derived from the combinations obtained
through the RF recursive feature elimination method (combination c.). Figure 10 presents
the simulation results of four distinct machine learning models. Notably, there are minor
variations in the accuracy of these models, with ANN and RF achieving more similar
simulation accuracies: ANN has an R2 of 0.82, an RMSE of 6.71, and an MAE of 4.15.
XGBoost attains an R2 of 0.8, and its RMSE and MAE closely align with those of RF, with
values of 7.01 and 4.35, respectively. In contrast, KNN exhibits lower model simulation
accuracy, with an R2 of 0.79. The RMSE (MAE) for KNN is 7.49 (4.39). It is apparent that
there are slight simulation accuracy differences among various machine learning models
for farmland ETn. Nevertheless, these differences fall within acceptable limits and do not
significantly impact the overall results. We applied the recursive feature selection method
to perform feature selection on three machine learning models separately, and the results
revealed no significant improvement in model accuracy (Table A2, Appendix B). Therefore,
the differences in model performance may arise from both structural disparities in the
machine learning models themselves, along with the fine-tuning of hyperparameters. The
performance of the three models on the training and validation datasets can be found in
Figure A1, Appendix B.
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4.5. Differences in Random Forest Feature Importance Assessment and SHAP Interpretation

Random forest feature importance assessment is achieved by calculating the impact
of features when the decision tree splits nodes. This approach provides a relative ranking
of features, showing which features are more important for overall model performance.
However, it may ignore the interactions between features and some bias may exist in the
case of highly correlated features [66]. In contrast, the SHAP method employs Shapley
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values based on game theory, calculates the specific contribution of each feature for each
sample, and takes into account the interactions between features [67]. However, its compu-
tational resource requirements are higher, especially when dealing with a high-dimensional
feature space. Taken together, the introduction of SHAP can enhance the interpretability of
the model. Combining the feature importance from random forest, we can obtain a more
comprehensive decision reference for feature analysis.

4.6. Response of ETn to Rn, WS2m, and VPD

Through characteristics analysis, we found that Rn, WS2m, and VPD were the most
important factors affecting ETn. Here, we analyzed the relationship between the three
meteorological factors and ETn on a daily scale by grouping the test set data in terms of
station and data. The results are shown in Figure 11.
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orange lines show the fitted linear regressions.

Rn is the main source of energy exchanged turbulently between crops and soil [68],
reflecting the energy difference between the absorption of solar radiation by the surface
and the emission of radiation to the atmosphere and space. As a central element of the
surface energy balance, Rn has a direct impact on the temperature distribution and energy
allocation at the surface. In both soil and plant evapotranspiration, the distribution of
water and heat in the system is affected by the energy provided by radiation, which in
turn affects ET changes [69]. Simultaneously, Guo et al. [70] found that on a seasonal scale,
nighttime water loss in maize is mainly influenced by site bulk surface conductance and
Rn. Nonetheless, Rn has often been neglected in established studies on the analysis of
ETn’s influencing factors. We visualized the correlation between ETn and Rn and found
that there was a sufficient positive correlation between ETn and Rn, and it increased with
the increase of Rn (R = 0.396, p-value < 0.01).

Both previous studies and the experimental results of this experiment showed that
there was a close correlation between wind speed and evapotranspiration [12], so a discus-
sion of the relationship between WS and ETn was necessary. Wind velocity is a means to
promote soil moisture evaporation and plant evapotranspiration through air movement.
Therefore, theoretically, the higher WS, the greater ET [71]. In general, surface wind speeds
tend to be slower and exhibit an ascending trend with increasing height [32]. In other
words, variations exist in the wind speeds recorded by flux stations at different elevations.
Therefore, the consideration of 2 m standard wind speeds, in contrast to the raw wind
speed (WS), accounts for the influence of tower height and underscores a significant level
of importance and relevance. Our analysis of ETn and WS in cropland revealed, in general
agreement with previous studies, that there was a certain degree of increase in ETn as
WS increased.

Previous studies have shown that VPD is the major factor driving nighttime water loss
in plants [72]. Damian Cirelli et al.’s study of nocturnal stomatal conductivity in poplar trees
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showed a significant negative correlation between nocturnal stomatal conductivity and
VPD [73], as did similar findings from other studies [8,74]. However, Siddiq and colleagues’
study of forests showed that if climate change causes an increase in nocturnal VPD, forests
will consume more water through ETn [75]. Our study found that VPD showed a week
positive correlation with ETn (R = 0.277) and passed the significance test (p-value < 0.01).
However, at VPD to about 10 hpa, ETn did not show a significant elevation with increasing
VPD, and similar VPD threshold effects were observed in other studies [76–78].

The sites in the test set are categorized into four climate types according to the Köppen–
Geiger climate classification. Specifically, BE-Lon, DE-Geb, DE-Kli, FR-Gri, and US-ARM
fall under the temperate oceanic climate (Cfb). US-Twt is characterized by a Mediterranean
hot-summer climate (Csa), while US-CRT, US-Ne1, US-Ne2, and US-Ne3 exhibit a hot-
summer humid continental climate (Dfa). FI-Jok is a warm-summer humid continental
climate (Dfb). We visualized the response of ETn to the three meteorological factors under
each of the four climate types (Figure 12).
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Figure 12. Scatter plot of the ETn modeled by RF with Rn, WS2m, and VPD under different climatic
conditions on the test dataset. (a1–a4) is the relationship of net radiation to ETn; (b1–b4) is the
relationship of WS2m to ETn; and (c1–c4) is the relationship of VPD to ETn. Cfb is a temperate oceanic
climate; Csa is a Mediterranean hot-summer climate; Dfa is a hot-summer humid continental climate;
Dfb is a warm-summer humid continental climate.

For net radiation, there is also a trend of positive correlation on individual climate
types, Csa and Dfb climates in particular show more significant positive correlations.
Conversely, the Dfa climate displays a weak negative correlation, albeit not a statistically
significant one. This may be due to the fact that temperate continental humid climate
receives less solar radiation at the surface in winter, and the Rn is usually negative, re-
sulting in lower surface temperatures, which reduces the amount of water available for
evapotranspiration by condensation of water in the soil, while Dfa tends to be drier [79],
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and the rate of ET of water is slower, so that it may show a certain inhibition. Notably,
Sullivan et al. [80] suggest that, compared to energy limitations (Rn), North American
evapotranspiration is more sensitive to temperature and VPD. The effect of WS on ETn
shows a significant positive correlation in the Cfb, Csa, and Dfa climate types. However, in
the Dfb climate type, the result shows a relatively weak correlation and the relationship
is not statistically significant due to other potential factors such as small sample size or
wind speed itself having a weak effect on ETn. VPD, on the other hand, showed an overall
positive correlation, and a more significant positive correlation under the Csa and Dfa
climates, while the Cfb climate, which is characterized by four wet and mild seasons, makes
VPD have less influence on evapotranspiration. In summary, despite the differences in
the main influencing factors under different climate types, which are mainly related to
the differences in each climate type, in general Rn, WS, and VPD show a close correlation
with ETn.

4.7. Impact of Data on Model Simulation Accuracy

The data employed for this research mainly include eddy covariance flux site data
and MODIS data, although the original data were screened and quality controlled during
the experimental process, the final experimental data still have some impact on the model
simulation effect.

First, significant results are currently available for estimating global evapotranspiration
using the vorticity covariance method; however, the effects of weak turbulence at night have
resulted in nighttime measurements at FLUXNET sites being generally unreliable, with up
to more than 50% of flux site data lacking [81]. However, nocturnal turbulent motions are
limited in computational simulations by buoyancy stratification, and to accurately simulate
such turbulence, models with high mesh resolution need to be used, which imposes a
demand for huge computational resources, an inherent limitation of the data [82]. And
accurate measurement of EC latent heat fluxes at flux sites may be more difficult due to
reduced ground–atmosphere coupling [2]. Although flux sites located in cropland are less
economical to maintain than flux sites in other vegetation types, the sensors themselves are
subject to a certain amount of error, which can lead to common problems such as extreme
noise in the data and have an impact on the accuracy of model simulations.

Secondly, the data we employed in this study were stitched from two types of data
(flux site data and remote sensing data). Differences in surface resolution may generate
some errors in the stitching. Moreover, the extent and direction of the data available from
the flux site for the area represented varies greatly over time from site to site [83,84]. This
could lead to errors in the measurement of climate conditions, vegetation indexes, etc.,
at the site when using FLUXNET data and MODIS data, which do not match each other
better. It has been noted that finer species mapping is needed to explore data matching
quantitatively [85], and this needs to be followed up with more in-depth studies.

4.8. Future Research Directions

How to develop a more generalized model to effectively simulate ETn is the main
direction of our future research. We consider here two main aspects to optimize the model.

On the one hand, we will augment the experimental sample by obtaining more valid
crop field observations. Given the inherent limitations of data products in terms of temporal
and spatial resolution, exploring data fusion methods and using multi-source remote
sensing data could contribute to improving the spatiotemporal coverage of ETn [86–89].

On the other hand, hybrid models based on a biophysical framework can be developed.
Although pure machine learning models can fully utilize the data, they lack certain physical
constraints and interpretability. It has been shown that the simulation accuracy can be
improved by constructing a hybrid model by combining a biophysical framework with a
machine learning model [20]. Especially in the case of limited samples, compared with the
traditional pure machine learning method, simulating the intermediate parameters in the
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biophysical process through the machine learning model can effectively reduce the model
complexity and thus improve the generalization and stability of the model [90].

5. Conclusions

Accurate simulation of nocturnal evapotranspiration from croplands is significant for
agricultural water-saving irrigation and food security. In this study, the ETn of 16 cropland
flux sites was simulated using random forest combined with a recursive feature elimination
algorithm, and the dominant drivers of ETn were analyzed using multiple feature anal-
ysis approaches. After analyzing and discussing the results, we can draw the following
conclusions:

1. RF proves to be an effective tool for simulating ETn in cropland using a combination
of hour angle at sunset, meteorological, and vegetation index data as inputs (R2 = 0.82,
RMSE = 7.36 W m−2, and MAE = 4.39 W m−2 for testing dataset);

2. The selected features (ωset, TA, VPD, P, WS, WS2m, RH, LST, Rn, G, EVI, and NDVI)
through recursive feature elimination (RFE) contribute to improve model simulations
(R2 = 0.82, RMSE = 7.30 W m−2, and MAE = 4.36 W m−2 for testing dataset);

3. Although the accuracy of RF simulation for C3 and C4 crops had some differences,
the overall simulation accuracy remained within an acceptable range;

4. Among the various drivers of ETn, Rn emerged as the primary influencing factor,
followed by WS2m, and VPD; the relationship between Rn, WS2m, VPD and ETn
showed a positive correlation and they all passed the significance test (p-value < 0.01).

Overall, the methodology proposed in this study performed well in accurately mod-
eling cropland ETn and provided for an in-depth analysis of the relevant impact factors.
In the future, we will strive to accurately simulate ETn on a global scale by using more
advanced data products and adopting more effective modeling methods.
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Appendix A

Table A1. Performance of the RF model when simulating ETn in different input variables. Refer to
the letter (a, b, and c) used for indicating input variables in Table 4.

Input
Variables

Training Dataset Validation Dataset Test Dataset
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

a 0.80 6.73 4.32 0.80 8.98 5.29 0.78 7.79 4.66
b 0.82 6.23 4.04 0.83 8.34 4.99 0.82 7.36 4.39
c 0.82 6.2 4.03 0.83 8.29 4.96 0.82 7.30 4.36

Appendix B
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Figure A1. Performance of three different models (XGBoost, KNN, and ANN) in simulating ETn on
training and validation datasets.

Table A2. Performance of models after using feature selection for XGBoost, KNN, and ANN *.

Machine Learning Input Variables Training Dataset Validation Dataset Test Dataset
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

XGBoost
combination c. 0.81 6.29 4.10 0.82 8.17 5.04 0.8 7.01 4.35

choice variables 1. 0.83 6.00 3.90 0.83 7.76 4.72 0.82 6.63 4.04

KNN
combination c. 0.77 6.96 4.14 0.75 9.48 5.30 0.79 7.49 4.39

choice variables 2. 0.78 6.84 4.07 0.77 9.06 5.12 0.79 7.22 4.21

ANN
combination c. 0.81 6.30 4.04 0.80 8.50 4.94 0.82 6.71 4.15

choice variables 3. 0.82 6.17 3.98 0.80 8.53 5.10 0.83 6.45 4.12

* Combination c. obtained through the random forest recursive feature elimination method included ωset, TA,
VPD, P, WS, WS2m, RH, LST, Rn, G, EVI, and NDVI. Choice variables 1, 2, and 3 are the best variable combinations
obtained from XGBoost, KNN, and ANN after recursive feature selection, respectively. The choice variables 1.
include ωset, TA, VPD, P, WS, WS2m, CO2, RH, Rn, NDVI, LST, and G; the choice variables 2. include ωset, TA,
WS, WS2m, RH, Rn, NDVI, and G; the choice variables 3. include ωset, TA, VPD, P, WS, WS2m, CO2, RH, LST,
LST_Differ, Rn, G, EVI, and NDVI.
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