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Abstract: Harmful algal blooms are a global phenomenon that degrade water quality and can result
in adverse health impacts to both humans and wildlife. Monitoring algal blooms at scale is extremely
difficult due to the lack of coincident data across space and time. Additionally, traditional field
collection methods tend to be labor- and cost-prohibitive, resulting in disparate data collection not
capable of capturing the physical and biological variations within waterbodies or regions. This
research attempts to help alleviate this issue by leveraging large, public, water quality databases
coupled with open-access Google Earth Engine-derived Sentinel-2 imagery to evaluate the practical
usability of four common chlorophyll a algorithms as a proxy for detecting and mapping algal blooms
nationwide. Chlorophyll a data were aggregated from spatially diverse sites across the continental
United States between 2019 and 2022. Data were aggregated via a field method and matched to
coincident Sentinel-2 imagery using k-folds cross-validation to evaluate the performance of the band
ratio algorithms at the nationwide scale. Additionally, the dataset was portioned to evaluate the
influence of temporal windows and annual consistency on algorithm performance. The 2BDA and
the NDCI algorithms were the most viable for broadscale mapping of chlorophyll a, which performed
moderately well (R2 > 0.5) across the entire continental united states, encompassing highly diverse
spatial, temporal, and physical conditions. Algorithms’ performances were consistent across different
field methods, temporal windows, and annually. The most compatible field data acquisition method
was the chlorophyll a, water, trichromatic method, uncorrected with R2 values of 0.63, 0.62, and 0.41 and
RMSE values of 15.89, 16.2, and 23.30 for 2BDA, NDCI, and MCI, respectively. These results indicate
the feasibility of utilizing band ratio algorithms for broadscale detection and mapping of chlorophyll
a as a proxy for HABs, which is especially valuable when coincident data are unavailable or limited.

Keywords: water quality; CyanoHABs; Sentinel-2; chlorophyll-a; phycocyanin; spatiotemporal
analysis; Google Earth Engine

1. Introduction

Eutrophication and subsequently harmful algal blooms (HABs) have increased glob-
ally, leading to heightened attention due to their adverse impacts on ecosystems, human
and wildlife health, and the economy [1–5]. Commonly, HABs are defined as any algal
biomass that results in the degradation of water quality leading to decreased oxygen levels
resulting in fish kills, foul odor and taste, and the closure of recreational and drinking water
areas [6]. Worse, some species of algae and cyanobacteria can produce toxins which can
harm both wildlife and humans [7,8]. Given the current global state of HABs and cyanobac-
teria HABs (CyanoHABs), regional to national monitoring has become more critical than
ever for managing these events. However, the vast majority of water quality monitoring is
conducted via point sampling using in situ or in vivo methods or collecting a sample for
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lab analysis. While highly accurate, these methods tends to be labor- and cost-intensive,
limiting the spatial and temporal coverage of sampled locations [9,10]. Additionally, there
is a lag between sample acquisition and processing which may delay decision-making from
hours to days [11]. Furthermore, this approach can lead to misrepresentation of an entire
waterbody based on the results of a handful or even a single measurement.

Satellite remote sensing offers a complementary, cost-effective, and scalable approach
to traditional field sampling by providing a more comprehensive depiction of surface
water quality of a waterbody or a region, encompassing numerous waterbodies [12–17].
Algal blooms often form in complex waterbodies, containing numerous optically active
constituents and pigments, making the detection of a single pigment difficult. However,
algorithms optically estimating chlorophyll a and phycocyanin (PC) pigments have been
used frequently as proxies for algal biomass at various spatial scales using remote sensing
platforms [18,19]. Currently, there are a few established satellite imagers with the sensor
configurations capable of detecting the critical spectral features required for monitoring
HABs in inland and near coastal waters, most notably using green reflectance (550 nanome-
ter [nm]), phycocyanin absorption (620 nm), chlorophyll a reflectance (665 nm–680 nm), and
cell backscattering (709 nm) [20–23]. Given the emphasis on resolvable inland waterbodies,
Sentinel-2 MSI is preferred because the transition to a finer spatial resolution (10–60 m)
improves nationwide coverage of inland waterbodies up to ~95% [24–26].

Even though Sentinel-2 MSI lacks the phycocyanin-specific spectral band centered
near 620 nm, the sensor is equipped with multiple well-placed spectral bands and has
been routinely used for the detection and monitoring of HABs and HAB proxies [24,27–30].
Sentinel-2 is a constellation of satellites, which improves revisit time to five days for most
locations, critical for the practical integration of remote sensing for water quality monitoring
and subsequently HABs. This is especially prudent because heavy cloud cover is common
during the peak bloom season (May–October).

Leveraging freely available datasets and cloud computing platforms, such as the
Google Earth Engine (GEE) JavaScript API v0.1.388, is integral for developing and produc-
ing large-scale spatiotemporal research. The GEE is an open-source software that integrates
numerous remote sensing platforms wrapped in a high-performance cloud computing
environment, opening the door for large-scale remote sensing research [31]. The GEE has
been successfully utilized in numerous studies for the detection of water quality param-
eters, including chlorophyll a [28], turbidity [32], colored dissolved organic matter [33],
and monitoring HABs [34,35]. Despite these successes, limitations of the GEE model still
remain, especially with the integration of Sentinel-2 imagery, including the following:
(1) the Sentinel-2 collection only includes Sen2Cor atmospherically corrected products,
known to underperform as compared with other atmospheric correction methods for
aquatic environments [36], and (2) Sentinel-2 atmospherically corrected imagery availabil-
ity is limited to collection dates after December 2018. However, the GEE offers a unique
opportunity, with sufficient imagery to examine nationwide, multi-year remote sensing
data that would be nearly impractical using a traditional computing system.

To fully integrate remote sensing approaches into water quality monitoring, beyond
just the localized level, imagery must be calibrated and validated to field data. How-
ever, potential biases and challenges arise when aggregating field data at the regional
and national levels, a rarely discussed issue in the application of remote sensing for HAB
monitoring and detection. For example, according to the USGS’s National Water Informa-
tion System (NWIS), there are 34 unique methods of extraction or collecting chlorophyll
a [37]. Furthermore, there is no single acquisition or extraction method preferred across
all federal, state, and local entities, so a direct comparison between studies can be chal-
lenging or even impossible. Additionally, there are numerous remote sensing algorithms
for the detection of HABs, most with slight band or coefficient variations. Johansen et al.
(2022) [38] demonstrated that most empirically based remote sensing algorithms fell into
only a few general algorithm formulas, including the following: Normalized Difference
Chlorophyll Index (NDCI), Two-Band Difference Algorithm (2BDA), Three-Band Difference
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Algorithm (3BDA), and the Chlorophyll Index/Maximum Chlorophyll Index (CI/MCI).
These empirical algorithms have been used for decades to detect water quality pigments
and HABs across numerous satellite imagers, but their robustness and efficacy across space
and time is understudied, limiting algorithm performance spatially and temporally (see
reviews [19,38,39]). Instead, this research evaluates the broadscale applicability of these
algorithms irrespective of localized conditions to accomplish the following:

(1) Aggregate field data across the entire continental united states for each chlorophyll
a method.

(2) Acquire coincident multi-year nationwide Sentinel-2 reflectance imagery using the
open-source software Google Earth Engine.

(3) Calibrate and validate four well-established empirical Sentinel-2 algorithms using
coincident field data.

(4) Explore the broadscale usability of these algorithms for the detection of HABs across
space, time, and the field method.

2. Materials and Methods
2.1. Study Extent and Field Data Aggregation

The initial extent of this study was the continental U.S., encompassing over
eight million square kilometers (km2) and hundreds of thousands of lakes and ponds,
with tens of thousands of waterbodies larger than 20 acres [40]. Field data were obtained
from a combination of United States Army Corp of Engineers internal databases and the
public Environmental Protection Agency’s (EPA) Water Quality Portal (WQP). The WQP
database is a comprehensive public database housing water quality data for physical,
chemical, biological, habitat, metrics, and indices from across the U.S. [41]. The WQP is a
collaborative service that combines data from hundreds of federal, state, and local agencies,
as well as numerous non-governmental entities, and contains hundreds of millions of
water quality records. Two notable contributions to the WQP are the EPA Water Quality
Exchange (WQX) and the USGS’s National Water Information System (NWIS). Field data
were aggregated using both public water quality databases and non-public water quality
data. For this study, field data represent samples collected between January 2019 and May
2022 within the continental U.S. To be included in the analysis, sites had to contain the
following information: (1) site ID and geospatial coordinates; (2) date of sample acquisition;
(3) at least one in vivo, ex vivo, or in situ chlorophyll a measurement; and (4) documented
method for pigment collection or extraction including unit of measurement. This initial
query produced 15,759 unique spatiotemporal observations across 1613 sites. Field sites
were then selected using a 20 m buffer to remove any potential mixed pixel scenarios (e.g.,
such as from proximity to land) once matched with Sentinel-2 imagery. The buffered selec-
tion resulted in 618 sites encompassing over 100 unique lakes, rivers, and water systems
across 32 states (Figure 1).

2.2. Remote Sensing and the GEE Environment

Given the spatial and temporal scope of this study, it was critical to utilize the pro-
cessing and storage power of a cloud-based service like the Google Earth Engine. The
GEE is an open-source JavaScript-based cloud computing environment that allows users to
develop scripts to systematically perform computationally and resource intensive tasks on
remote sensing data. For this study, the Sentinel-2 MSI constellation possessed the strongest
combination of spatial, temporal, and spectral resolutions coupled with readily available
atmospherically corrected products in the GEE catalogue. Specifically, the GEE-harmonized
Sentinel-2 MSI (MultiSpectral Instrument, Astrium GmbH, Taufkirchen, Germany) level-2A
collection (L2A) was used, which is available and atmospherically corrected from the
European Space Agency, using Sen2Cor (Table 1). Sen2Cor uses a scene-based classification
scheme coupled with radiative transfer model look-up tables to derive surface reflectance,
which is then divided by π to approximate remote sensing reflectance (Rrs) [42]. For
this study, the integration of Sen2Cor L2A products into the GEE provided the benefit of
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readily available data that did not require additional computation making it the preferred
over methods [28,34].
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Table 1. List of selected Sentinel-2A spectral bands from the Google Earth Engine-harmonized
Sentinel-2 MSI (MultiSpectral Instrument) level-2A collection.

Imager Name Center (nm) Bandwidth (nm) GSD (m)

B1 Aerosols 444 20 20
B2 Blue 497 65 20
B3 Green 560 35 20
B4 Red 665 30 20
B5 Red Edge 1 704 15 20
B6 Red Edge 2 740 15 20
B7 Red Edge 3 783 20 20
B8 NIR 835 115 20

B8a Red Edge 4 865 20 20
B9 Water vapor 945 20 60

B11 SWIR 1 1614 90 20
B12 SWIR 2 2202 180 20
SCL Scene Classification Layer NA NA 20

2.3. Sentinel-2 Acquisition and Algorithms

The spatial extent of the 20 m buffered field sites were used to extract relevant L2A
spectral information for each overpass collection of the entire study period. Given the
spatial distribution of field sites and the swath width of Sentinel-2 images, the GEE was
required to analyze over thousands of unique scenes to extract the totality of the spectral
values (i.e., all sites for all overpasses). When an overpass collection occurred, the extracted
spectral information (i.e., pixel value for each band) was saved in a matrix with field sites
as rows and overpass collection dates as columns (“NoData” values were represented
as −9999). This process was iterated for each relevant spectral band and the Scene Clas-
sification Layer (SCL) band, which was utilized for filtering out “NoData” pixels, with
all additional processing and analyses conducted using the open-source programming
language R [43].

After aggregating the spectral bands for each unique date/location observation, these
data were used to calculate the four well-established band ratio algorithms for the de-
tection of chlorophyll a using multispectral sensors [19,30,38,44]. Table 2 shows the se-
lected Sentinel-2-adapted algorithms included in this study: 2BDA, 3BDA, MCI, and
NDCI [12,16,45]. The relatively small list of well-established algorithms was not only
selected to test portability or consistency, but also to evaluate spatiotemporal and method-
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ological influences. Note that native Sentinel-2 imagery and the subsequent GEE products
have reflectance values multiplied by a factor of 10,000 and remain in the native form when
applied to the algorithms throughout this study.

Table 2. Common multispectral imager algorithms for the detection of HABs and related pigments.

Algorithm Formula

2BDA Rrs(704)
Rrs(665)

3BDA Rrs(665)−1 − Rrs(705)−1 ∗ Rrs(740)

MCI Rrs(704)− Rrs(665)− (Rrs(740)− Rrs(665)) ∗
(

704 − 665
740 + 665

)
NDCI Rrs(704) − Rrs(665)

Rrs(704) + Rrs(665)

2.4. Coincident Data

A database of coincident data was generated through the aggregation of field and L2A
imagery when both data were available at the same date/location. This was accomplished
using various tidyverse functions in R to convert matrices into long-form data frames,
remove the “NoData” values, and merge field data with imagery based on exact matches
between “Site_ID” and “Date” [46]. However, even with leveraging large datasets and the
GEE, obtaining coincident data remained a challenge. This is especially relevant for aquatic
phenomena such as HABs where complex environmental and bio-physical conditions
impact HAB development and dynamic changes can alter HAB characteristics from days
to even hours [47,48]. Furthermore, a typical HAB growing season (May through October)
coincides with months of heavy cloud cover, further reducing opportunities for coincident
observations with satellite overpasses. To collect the greatest number of observations,
cloud masking was applied during post-processing selection instead of during the imagery
acquisition phase. This is because the cloud-masking technique embedded in the GEE for
Sentinel-2 is a scene-based approach which might unnecessarily omit quality coincident
data. Instead, the SCL, which classifies each pixel into one of twelve classes (Table 3), was
applied to reduce the data so that only water pixels (class label 6) were selected. While
the SCL approach is not a perfect solution and may result in omission and commission
errors, from haze or emergent vegetation, which are not easily classified, it does offer a
scene-based solution to eliminate most non-water pixels.

Table 3. Sentinel-2’s Scene Classification Layer (SCL) descriptions.

Label Classification

0 NO_DATA
1 SATURATED_OR_DEFECTIVE
2 CAST_SHADOWS
3 CLOUD_SHADOWS
4 VEGETATION
5 NOT_VEGETATED
6 WATER
7 UNCLASSIFIED
8 CLOUD_MEDIUM_PROBABILITY
9 CLOUD_HIGH_PROBABILITY

10 THIN_CIRRUS
11 SNOW or ICE

2.5. Field Methods

It is critical to note that the in situ data extraction field methods analyzed in this study
varied by agency, geography, or time. The diversity of this dataset presented a unique
challenge as well as an opportunity to explore the potential impact that various in situ
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and in vivo data acquisition strategies might have on remote sensing derived algorithm
performance. Methods may contain inherit biases, which may under- or over-estimated
values depending on units of measure (fluorescence per biomass vs. per cell) or species’
compositions [49]. For example, fluorescence-derived chlorophyll a was more correlated
and had less absolute median error when fluorescence was based on biomass rather than per
cell [50]. Additionally, Pokrzywinski et al. (2022) [49] also discussed that the physiological
state of a bloom can impact pigment composition and overall algorithm performance,
further creating inherent bias with this approach. While these details are beyond the scope
of this paper, it is important to highlight how collection methods and bloom state may
impact field measurements and algorithm performance compared to remotely sensed data.

2.6. Temporal Windows and Annual Consistency

As stated earlier, the ability to detect HABs via remote sensing has been heavily reliant
on high-fidelity data acquisition strategies, which include the acquisition of both field
and remote sensing data within appropriate temporal windows, meteorologic conditions,
and water quality characteristics. For this study, a temporal window was defined as the
total number of days allowable between a field observation and the coincident remote
sensing overpass collection. Temporal windows are rarely evaluated in the literature, likely
due to data and statistical limitations; however, a recent study by Wang et al. (2020) [28]
found that data within a temporal window of ten days was still valid. This study aimed
to narrow this knowledge gap by examining the potential impact three temporal window
sizes had on algorithm performance: same-day, three-day (same day ± 1 day), and five-day
(same day ± 2 days) window.

Additionally, algorithm performance was evaluated for annual consistency by por-
tioning the dataset into years (2019, 2020, 2021) to compare algorithm performance.

2.7. Data Refinement

After the data were aggregated, they were further refined, omitting three erroneous
methods which were determined to be unrelated with aquatic algae. Additional filtering
was applied to remove any observations, where the field data were less than five micro-
grams per liter (µg·L−1) or relative fluorescence units (RFU), as these values are deemed to
be beyond the detection limit of remote sensing capability. Given the scope of the datasets
and impracticality of manually quality controlling each coincident data point for both field
and remote sensing imagery, an automated approach for outlier detection and removal was
applied for each method. For statistical analysis and comparison, methods were eliminated
if the total number of observations was less than 25, and if a method was not represented
in all temporal window subsets. The methodological workflow is presented in Figure 2.
The final refinement produced three usable methods across all three temporal windows,
1-day (n = 314), 3-day (n = 735), and 5-day (n = 1193) window, respectively (Table 4).

Table 4. Summary statistics for 1-day dataset, including field methods, short IDs, units, range of
values, mean values, and number of observations.

1-Day 3-Day 5-Day

Field Method Name ID Units Range Mean N Range Mean N Range Mean N

Chlorophyll a, phytoplankton,
chromatographic-

fluorometric method
Chl1 µg·L−1 5.10–164.0 35.70 215 5.00–155.0 34.33 535 5.00–14.0 32.90 899

Chlorophylls, water, in situ,
fluorometric method, excitation

at 470 ± 15 nm, emission
at 685 ± 20 nm

Chl2 µg·L−1 5.50–35.1 14.81 47 0.40–29.3 14.42 106 5.20–37.70 14.45 148

Chlorophyll a, water, trichromatic
method, uncorrected

Chl3 µg·L−1 5.04–83.0 28.03 52 0.27–83.0 16.43 94 5.04–55.25 17.70 146
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2.8. Algorithm Performance Evaluation

Numerous approaches have been applied to evaluate remote sensing algorithms for the
detection of HABs and HAB-associated pigments, ranging from linear regression models to
more complex machine learning approaches [51]. While the assumptions inherited in linear
regression models may not always be true (i.e., relationships are linear), their advantage
is in the ease of use and interpretation, which especially has merit during exploratory
investigations across multiple variables. Additionally, this study explored the variation
of algorithm performances within a single field method, which might aid in determining
which field methods are more compatible with remote sensing data. Therefore, simple but
robust linear regression models were used to evaluate algorithm performance across all
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variations (i.e., method, annually, or temporal window). Algorithm index values, derived
from Sentinel-2 L2A imagery, were compared to the coincident field data by applying a
k-folds cross-validated linear regression using extract_lm functions from the R package
waterquality that wraps functions from the carat package [52,53]. Cross-validation is a
model evaluation approach which randomizes and resamples a dataset into a defined
number of groups (i.e., folds). One of the groups is defined as the test data, while the
remaining groups are considered the training data. This process is iterated until each group
is evaluated as the test data against all other groups combined as the training data, thus
completing a single cross-validation. This entire process can be repeated, so that new
randomized groups are created and evaluated, defined by the number of repeats denoted
in the code as the argument nrepeats. Regardless of the number of observations, all of our
evaluations applied the same cross-validation approach using three folds and five nrepeats.
K-folds cross-validation is a popular technique due to its relative simplicity and ability
to reduce bias compared to traditional train/test split approaches [54,55]. The extract_lm
functions generated standardized statistical outputs for traditional linear regression models,
including slope, intercept, and coefficient of determination (R2), along with the cross-
validated metrics (cv): average R2, average mean absolute error (MAE), average root mean
square error (RMSE), and mean absolute percentage error (MAPE) (Table 5).

Table 5. Summary of statistical outputs for the traditional linear regression and k-folds cross-
validation regression models; obs = observed value, mod = predicted value, mea = mean observed
value, Ai = actual value, Fi = forecast value, and n = number of observations.

Formulas

R2 = 1 − ∑(Xobs−Xmod)
2

∑(Xobs−Xmea)
2

RMSE =

√
n
∑

i=1
(
(y i−ŷi)

2

n )

MAE = 1
N

i=N
∑

i=1
|Xmod − Xobs|

RCV
2 = R2

1+...+R2
k

k

RMSECV =

√
RMSE2

1+...RMSE2
k

k

MAECV = MAE1+...+MAEk
k

MAPECV = 1
n

i=n
∑

i=1

∣∣∣ Ai−Fi
Ai

∣∣∣
The specific purpose of these analyses is to demonstrate the value of how simple

band ratio algorithms can be utilized to detect algal bloom at the national scale, even with
extremely large variations in environmental conditions. Given the use of large, multi-
source, field data coupled with relatively unfiltered satellite imagery, higher levels of errors
are anticipated, as juxtaposed to more traditional single waterbody-scale use cases.

3. Results
3.1. Baseline Algorithm Performance

The same-day dataset was used as the baseline since it represents the highest quality
matchups between imagery and field data. Unsurprisingly, this dataset produced the
strongest overall relationships between the coincident imagery and the field data, with
the strongest overall method–algorithm pairing being the chlorophyll a, phytoplankton,
chromatographic-fluorometric method and the 2BDA algorithm (2BDAChl

3), which had a
cross-validated R2 of 0.63, RMSE of 15.89, and MAPE of 78.06%. The NDCIChl

3 pairing also
exhibited a strong correlation with only a slight decrease in R2 (0.62) and a minor increase in
RMSE (16.20) and MAPE (86.92%). Given the similarity between these algorithm equations,
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it is expected that these algorithms would have comparable performances. The NDCIChl
1

and 2BDAChl
1 method–algorithm pairs were the next two highest performing algorithms,

both with an R2 value of 0.51, RMSE of ~26, and MAPEs between 91 and 96%. While the
NDCIChl

2 and 2BDAChl
2 method–algorithm pairs’ performance had further reduced, they

still represented the best performing algorithms for this method. Overall, the NDCI and
2BDA algorithms were the top-performing algorithms across all methods, while the MCI
and 3BDA algorithms performed poorly across the dataset, with the exception of MCIChl

1,
which performed modestly with an R2 value of 0.41, RMSE of 28.38, and a MAPE of 104.52%
(Table 6). Given the complexity of these data, a variety of statistical metrics were applied
to demonstrate the combined impact that algorithm and method pairings may have on
overall performance. Additionally, these may help to tease out robust algorithms which
may be utilized across a variety of conditions, such as indicated by the performance of
NDCI and 2BDA (Figure 3).

Table 6. Algorithm performance and error statistics via data collection method for 1-day dataset.
Listed by algorithm and R2 values from highest to lowest.

Algorithm–Method R2 Slope Intercept p-Value CV-R2 RMSE MAE MAPE (%)

2BDAChl
3 0.60 104.11 −86.95 0.00 0.63 15.89 12.65 78.06

2BDAChl
1 0.50 59.40 −36.31 0.00 0.51 26.72 18.34 91.41

2BDAChl
2 0.27 21.27 −8.24 0.00 0.32 6.61 5.28 42.25

NDCIChl
3 0.59 229.47 18.17 0.00 0.62 16.20 13.06 86.92

NDCIChl
1 0.51 203.97 21.08 0.00 0.51 26.16 18.28 96.70
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3.2. Impact of Temporal Windows

Increasing the size of the acceptable temporal window led to a significant increase in
the number of coincident data points from 314 observations for the same-day matchups
to 735 and 1193 for the 3-day and 5-day matchups, respectively. For brevity, the analysis
will focus on 2BDA algorithm given the similarity between the NDCI algorithm and the
overall poor performance of the MCI and 3BDA algorithms. Overall, there was a moderate
reduction in the correlation between the field data and the 2BDA algorithm with the
expansion to the 3-day one (same day ± 1 day), resulting in a reduction of 39.1%, 34.5%,
38.5% for Ch1, Ch2, and Chl3, respectively (Table 7). The reduced correlation generally
coincided with a minor increase in all the error metrics for the Chl1 and Chl2 but had the
opposite effect with Chl3. For example, there was a 44% reduction in RMSE for Chl3, while
there was a modest increase of 4.5% and 5.87% in RMSE for Chl1 and Chl2, respectively.
Notable, the increase in the temporal window increased the number of Chl3 method
observations from 52 to 94, but also significantly reduced the mean of the field data from
28.03 µg·L−1 to 16.24 µg·L−1. There was no significant change in the means of the other
two chlorophyll methods. The additional observations provided by the 5-day dataset
further reduced the linear relationship, and subsequently the explanatory power of the
model, between the 2BDA algorithm and the field data but did not significantly impact the
error statistics.

Table 7. 2BDA algorithm performance and error statistics via data collection method for each of the
temporal window datasets.

Algorithm–Method R2 Slope Intercept p-Value CV-R2 RMSE MAE MAPE (%)

1-Day
2BDAChl

1 0.50 59.40 −36.31 0.00 0.52 26.64 18.34 91.41
2BDAChl

2 0.27 21.27 −8.24 0.00 0.34 6.91 5.53 42.25
2BDAChl

3 0.60 104.11 −86.95 0.00 0.62 15.90 13.02 78.06
3-Day

2BDAChl
1 0.34 36.59 −12.06 0.00 0.35 27.88 19.17 100.40

2BDAChl
2 0.23 21.11 −8.30 0.00 0.24 6.92 5.72 50.45

2BDAChl
3 0.40 57.36 −44.99 0.00 0.42 10.17 7.95 69.18

5-Day
2BDAChl

1 0.34 34.16 −10.11 0.00 0.35 25.85 18.33 99.75
2BDAChl

2 0.22 20.25 −7.98 0.00 0.22 7.26 5.94 50.37
2BDAChl

3 0.28 51.58 −37.48 0.00 0.30 11.07 8.85 72.22

3.3. Annual Consistency

Another aspect of HAB algorithm development which is rarely reported is the robust-
ness of algorithms to perform consistently across time. An advantage of the leveraging
large-scale open-source repositories is ability to composite multi-year studies to evaluate
algorithm performance across space and time. Albeit, even with these nation databases,
coincident data remain a limiting factor. Annual consistency was evaluated using the
same-day dataset (1-day temporal window) and the Chl1 method because it contained
the largest number of observations coupled with modest performance across the three
algorithms (2BDA, NDCI, MCI). The data were fairly evenly distributed across the three
years, evaluated with 56 (2019), 75 (2020), and 84 (2021) observations. Additionally, chloro-
phyll concentrations remained fairly consistent across time with relatively stable ranges
of 5.1–164.0, 5.1–143.0, and 5.4–159.0 and means of 32.39, 29.40, and 43.53 for 2019, 2020,
and 2021, respectively. The best performing algorithm for 2019 was MCIChl

1 with an R2
of 0.64, RMSE of 25.01, and a MAPE of 77.21%. 2BDAChl

1 was the strongest algorithm
for 2020 with an R2 of 0.51, RMSE of 21.12, and a MAPE of 72.22%. MCIChl

1 was the best
performing algorithm again for 2021, with an R2 of 0.53, RMSE of 29.97, and a MAPE of
115.09% (Table 8).
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Table 8. Algorithm performance by method and year.

Algorithm–Method R2 Slope Intercept p-Value CV-R2 RMSE MAE MAPE (%)

2019
MCIChl

1 0.59 0.13 29.14 0.00 0.64 25.01 16.16 77.22
2BDAChl

1 0.54 51.70 −30.13 0.00 0.64 30.43 18.00 83.52
NDCIChl

1 0.60 214.15 19.03 0.00 0.58 24.54 15.13 77.21
2020

2BDAChl
1 0.48 59.63 −41.27 0.00 0.51 21.12 14.22 72.22

NDCIChl
1 0.48 200.16 15.03 0.00 0.47 19.93 13.90 81.13

MCIChl
1 0.13 0.06 26.24 0.00 0.20 27.49 18.90 98.40

2021
MCIChl

1 0.52 0.15 36.46 0.00 0.53 29.97 22.80 115.09
2BDAChl

2 0.50 65.27 −37.32 0.00 0.50 30.14 23.31 108.87
NDCIChl

1 0.49 197.27 28.19 0.00 0.49 30.59 24.20 123.86

MCIChl
1 modestly outperformed NDCIChl

1 and 2BDAChl
1 for 2019 and 2021, but per-

formed relatively poorly for 2020, while NDCIChl
1 and 2BDAChl

1 remained more consistent
across all three years. Figures 3 and 4 demonstrate year over year variations in the data,
which may impact algorithm performance due to unique outliers or erroneous errors in
the data not detected in the filtering process. While determining the exact mechanism for
the inconsistency in MCIChl

1 is beyond the scope of this paper, a Theil–Sen regression was
conducted, which is more resistant to outliers, to help rule out this source. The evaluation
of the two determined that both approaches capture the general trend, with essentially the
same statistical errors but the least squares approach tends to provide higher concentrations
as compared to the Theil–Sen regression (Figures 4 and 5). Another aspect which might
have caused or at least influenced the disparity between the performance of MCI and
2BDA/NDCI is the addition of the 740 nm band, which might have responded to a specific
set of water quality parameters interfering with the accurate detection of chlorophyll a.
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4. Discussion

Overall, the results aligned well with other studies utilizing Sentinel-2-derived algo-
rithms for the detection of HABs via chlorophyll a as proxies [28–30,36,44,56]. For example,
Xu et al. (2019) [56] demonstrated a strong correlation and low error when comparing
Sentinel-2 imagery to in situ chlorophyll a at the regional scale with a Pearson’s correlation
coefficient (r) of 0.831 and a RMSE of 3.17 µg/L. However, these results were derived using
a very small sample size, with a training set of only 27 points and a validation set of 8 points.
Additionally, the range of chlorophyll values was limited to ~5–22 µg/L. Moreover, Wang
et al. [28] demonstrated the value of utilizing the GEE for a regional spatiotemporal study to
derive chlorophyll from Sentinel-2 imagery by deploying a support vector machine-based
approach. Results show strong correlations coupled with very low errors but used a multi-
sensor approach combined with limited sample sizes between 32 and 97 observations, and
large temporal windows (10 days). Many of the previous large spatiotemporal studies have
been limited due to small coincident datasets with large discrepancies between imagery
acquisition and field data collection. While the error statistics presented here are higher
than the ones in the studies by Xu et al. (2019) [56] and Wang et al. (2020) [28], the authors
believe they represent a more accurate view of dynamic nature of chlorophyll a at the
national scale. More research on improved statistical methods such as AI and ML are
needed to reduce errors in the models.
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The novelty of this research is the extensive spatial and temporal scope coupled with
the use of large complex field data, which confirmed the validity and robustness of band-
ratio algorithm use for broadscale HAB detection and mapping focusing on chlorophyll a as
the primary proxy. While the authors acknowledge that the both the field data and imagery
may contain uncertainty, as indicated by the relatively higher error statistics noted in this
study, the advantage of leveraging freely available large-scale databases’ open-access cloud
computing resources (e.g., Google Earth Engine) outweigh the disadvantages, especially
for this specific application as it focuses on high-level monitoring of algal blooms at a
scale. These relatively simple-to-deploy approaches can be directly used by researchers
and water managers to gain insight into the near-current surface conditions of a waterbody.
Furthermore, the addition of Sentinel-2C and Sentinel-2D will reduce the revisit time to
only 2–3 days, improving situational awareness and insight into the dynamic nature of
their waterbody.

By presenting a practical “real-world” scenario, this study demonstrates the value
of band-ratio algorithms for near real-time mapping of algal blooms across heterogenous
water bodies within the continental United States. In particular, this research demonstrated
the strength of utilizing the 2BDA and NDCI algorithms, which leverages both the red band
(665 nm) and the near-infrared band (704 nm), as appropriate algorithms for large-scale
mapping where in situ field data are limited or unavailable. In addition to broad-scale
mapping, the NDCI and 2BDA performed well among the variations evaluated in this
study, including data acquisition methods, temporal windows, and annual consistency.
Field data acquisition methods varied substantially across sites and time, but this re-
searched converged on only a few highly used methods: (1) Chlorophyll a, phytoplankton,
chromatographic-fluorometric method (Chl1). (2) Chlorophylls, water, in situ, fluorometric
method, excitation at 470 ± 15 nm, emission at 685 ± 20 nm (Chl2), and Chlorophyll a, water,
trichromatic method, uncorrected (Chl3). Generally, Chl1 and Chl3 show higher alignment
with the remote sensing algorithms, which is likely due to the emphasize on chlorophyll
a, specifically of those two methods over the more general chlorophyll approach of Chl2.
In addition to chlorophyll, phycocyanin is rapidly being adopted as a primary metric
for water quality and routinely compared to remote sensing-based algorithms for HAB
detection. Sentinel-2 imagery lacks the phycocyanin-specific spectral band centered near
620 nm, which is helpful to delineate between cyanobacteria and other algal species. While
other spectral imagers such as OLCI and MODIS contain higher spectral resolutions, their
coarser spatial resolutions make them less advantageous for inland waterbodies [10,14,44].
Fortunately, there is a strong correlation between phycocyanin and chlorophyll a when
cyanobacteria are the dominant contributor to algal biomass, and, subsequently, algorithm
performances are similar [57].

Furthermore, the impact of temporal windows on algorithm performance was as
expected, with the highest algorithm performances being those collected the same day as
the satellite overpass, which is especially important for Chl1 and Chl3 methods. However,
for visual or qualitative purposes, this study indicated that an up-to-five-day temporal
window (±48 from collection date) might still be appropriate, which aligned with the
findings of Wang et al., 2020 [28]. Rarely documented in multi-year remote sensing studies
is temporal robustness, or the annual consistency, of algorithm performances. This study
explored the annual performance of each of the four algorithms presented to evaluate the
temporal variations of algorithms. NDCI and 2BDA algorithms performed consistently
across the three years, and were analyzed with RMSE ranges of 19.93–30.59 µg/L and
21.12–30.43 µg/L, respectively. MCI performed well in two of the three years but witnessed
a dramatic decline in R2 and RMSE for 2020 compared to NDCI and 2BDA. Annual
consistency is important because it provides a baseline for long-term monitoring using
consistent methods. The MCI algorithm utilizes a third spectral band, which might explain
the relatively poor performance for the year 2020. It is possible that specific water conditions
(i.e., sediment, CDOM, etc.) represented in the 2020 subset data have more influence on the
740 nm band, and less on the 704 nm and 665 nm bands. Furthermore, this might explain
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the overall poor performance of the 3BDA algorithm across this entire study. However, an
additional investigation is required to determine the exact mechanisms or conditions that
influence these algorithms’ performance.

There is also a need for further research to determine the most appropriate atmo-
spheric correction method—which might also improve model accuracy—although this
is not explored here, given the focus on open-source imagery from the Google Earth
Engine (GEE).

5. Conclusions

The collective results of this study highlight the robustness of the NDCI and 2BDA
algorithms and indicate their capacity to be implemented in monitoring programs to
improve situational awareness (e.g., warning flags) as well as the broad-scale detection
of HABs across space, time, and varying conditions, without the need for fine-tuning
coefficients for localized variations. Albeit there is still room for continued algorithm
development and model advancement, especially in prediction. These algorithms use
near real-time imagery to produce estimated concentrations but could be built into models
to improve prediction directly as inputs to model conditions, and for long-term surveys
to determine the location and timing of blooms at the waterbody level. Additionally,
improvements are needed to further delineate between harmful and non-harmful blooms,
especially if this can be directly linked with the presence of toxins. However, even with
improved spectral resolution, there is still a need for lab-based analyses to determine the
presence of toxins since they are not detectable via optical sensors. Given the prevalence
of HABs in the US, and their ability to produce toxins harmful for humans and animals,
there is a need for more efficient means of monitoring them. The purpose is not to replace
traditional lab assessments, but instead to improve situational awareness by providing
a synoptic view of a waterbody via routine monitoring of surface conditions, which can
provide more efficient sampling as well as timely decision making. Specifically, researchers
and water managers are now able to capitalize on the robustness and simplicity of utilizing
remote sensing-based algorithms coupled with publicly available tools, software, and web
apps to leverage these resources and to help overcome the limitations with traditional
water quality monitoring and HAB detection [28,52,58,59].
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