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Abstract: Effective traffic signal control (TSC) plays an important role in reducing vehicle emissions
and improving the sustainability of the transportation system. Recently, the feasibility of using multi-
agent reinforcement learning technology for TSC has been widely verified. However, the process
of mapping road network states onto actions has encountered many challenges, due to the limited
communication between agents and the partial observability of the traffic environment. To address
this problem, this paper proposes a communication-enhancement value decomposition, multi-agent
reinforcement learning TSC method (CVDMARL). The model combines two communication methods:
implicit and explicit communication, decouples the complex relationships among the multi-signal
agents through the centralized-training and decentralized-execution paradigm, and uses a modified
deep network to realize the mining and selective transmission of traffic flow features. We compare
and analyze CVDMARL with six different baseline methods based on real datasets. The results
show that compared to the optimal method MN_Light, among the baseline methods, CVDMARL’s
queue length during peak hours was reduced by 9.12%, the waiting time was reduced by 7.67%, and
the convergence algebra was reduced by 7.97%. While enriching the information content, it also
reduces communication overhead and has better control effects, providing a new idea for solving the
collaborative control problem of multi-signalized intersections.

Keywords: traffic signal control; deep reinforcement learning; multi-agent reinforcement learning;
communication; traffic congestion

1. Introduction

With the rapid development of urban motorization, there has been a serious imbalance
between traffic demand and supply. Traffic congestion has become a major traffic problem
faced by most cities, and its environmental, social, and economic consequences are well
documented [1–3]. Traffic signal control (TSC) is one of the effective means by which to
solve traffic congestion. It balances the traffic flow in a road network by coordinating the
timing scheme of the traffic lights in the control area, so as to reduce the number of stops,
delay time, and energy consumption. Promoting the development of traffic control systems
is of great significance for giving full play to the traffic benefits of road systems, mitigating
environmental pollution, and assisting in the sustainable development of traffic systems.

In recent years, machine learning methods have been widely used in various fields as a
new artificial intelligence technology [4–7]. In the reinforcement learning (RL)-based control
framework, the traffic signal control system no longer relies on heuristic assumptions and
equations, but learns to optimize the signal control strategy through continuous trial and
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error through real-time interactions with a road network. Therefore, compared to traditional
traffic control methods, RL signal control methods can usually achieve better control
effects [8–10]. Early RL-based models solved traffic signal control problems by querying q-
tables that recorded the traffic state, actions, and rewards [11,12]. This is easy to implement
in environments with relatively simple traffic conditions, but the processing method will
occupy a large amount of storage space for relatively complex traffic environments. In
this regard, some scholars have chosen to use a q-network to fit a q-table, have applied
deep learning (DL) to enhance the ability of RL-based algorithms to cope with complex
environments, and have proposed a deep reinforcement learning (DRL) algorithm [13].
Since then, a large number of studies have used DRL algorithms to solve TSC problems,
and have achieved good results in practice [14–17].

However, for the signal control of multiple intersections within a certain area (the
collaborative control task under a multi-agent system), the partial observability of the traffic
environment makes the mapping from the road network state to actions challenging [18].
Communication collaboration between intersections has become an important link that
cannot be ignored in effective regional signal control, and the multi-agent reinforcement
learning (MARL) algorithm has gradually become one of the most promising methods
for large-scale TSC [19–21]. According to the collaborative method, MARL-based control
methods can be divided into two types: centralized control methods and distributed
control methods.

In the centralized control method, all the signal lights (agents) in the road network are
controlled by a unified central controller. Each agent passes the observed local traffic state
to the central controller, and the central controller uses a deep network (DNN) to fit the joint
action function value, performs action sampling from the corresponding policy network,
and then sends it to each agent for execution. The centralized method combines the
information from all the agents and implies a communication and coordination mechanism
between the agents, so it is easier to obtain the global optimal solution. However, action
decisions also need to be made after the traffic state statistics from all of the agents are
completed, and the strategy formulation speed is relatively slow. In addition, as the
number of agents increases, the action space and state space of the algorithm will grow
exponentially [11]. Therefore, in large-scale TSC, the centralized learning paradigm is
generally not used in order to avoid the “curse of dimensionality” problem. The distributed
control method assumes that the agent is in a stable environmental state and regards
the other agents as part of the environment. Each agent optimizes its own strategy in
the direction of maximizing the global reward based on its own observations, so the
scalability of the distributed control method is relatively good. However, the independent
learning method also makes the distributed control method more likely to fall into local
optimality [22].

In order to solve this problem, most scholars have incorporated a communication
mechanism into the TSC model framework to achieve better control effects. Specifically,
communication mechanisms can be mainly divided into two types: “explicit” communica-
tion and “implicit” communication [23,24]. The core of explicit communication is to explore
how intelligent agents communicate. Among them, the selection of communication objects
can be achieved through heuristic frameworks [25,26] and gating mechanisms [27]; the ad-
justment of the communication content and time is based on DL methods, such as attention
mechanisms [18,28], recurrent neural networks [29], and graph neural networks [30–32]. Im-
plicit communication mainly affects the behavioral strategy formulation of the signal agent
through value function decomposition and centralized value function [20,23,33–35]. Most
implicit communication MARL frameworks use the centralized-training decentralized-
execution (CTDE) learning paradigm, which allows the agents to use global (road network)
information for centralized learning during the training phase. After the training is com-
pleted, each agent can complete the selection of an executable action only through its own
observations and local information interactions, which greatly reduces communication
overhead while ensuring agent communication cooperation.
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In this study, we use the adjustment plan for signal timing as the optimization variables,
with the goal of minimizing the average vehicle delay in the road network, and design a
multi-agent deep reinforcement learning model considering the communication content
based on QMIX [33], namely, CVDMARL. This model combines two communication
mechanisms and belongs to the distributed control method under the CTDE paradigm.
The contributions of the present study lie in the following:

1. A model that considers the communication content is proposed to solve the regional
TSC problem. This model decouples the complex relationships among the multi-
signal agents through the CTDE paradigm, and uses a modified DNN network to
realize the mining and selective transmission of traffic flow features. It enriches
the information content while reducing the communication overhead caused by the
increase in information.

2. We design several comparison experiments using traffic data sets from the real world,
and examine the advantages of CVDMARL for regional traffic signal control tasks by
comparing it to six baseline methods, including the fixed signal control model and
five other advanced DRL control models.

The remainder of this study is organized as follows. Section 2 reviews the related
research on traffic signal control based on DRL. Section 3 introduces the definition of the
problem and the CVDMARL algorithm framework proposed in this paper. The experiments
and a performance evaluation are presented in Section 4. Finally, we conclude our work
and discuss future prospects in Section 5.

2. Literature Review
2.1. Single-Agent Deep Reinforcement Learning in Traffic Signal Control

The setting of single-agent reinforcement learning mainly consists of two parts: the
agent and the environment. The essence of the model is a Markov decision process, called
MDP, which is represented by a five-tuple containing the environmental state, action, state
transition function, reward, and reward discount coefficient, that is, G = ⟨S, A, P, r, γ⟩.
DRL algorithms based on single agents are mostly applied to traffic control problems at
isolated intersections. Researchers usually conduct specific research around two directions
of the intersection environment, the feature extraction and model structure improvement.
Ma et al. [29] used the historical traffic state as a time series image sequence, mining the
spatiotemporal feature information of the traffic flow data based on the combined structure
of convolutional neural layers and Long Short-Term Memory (LSTM), and achieved final
signal control through the actor–critic framework. Li et al. [36] constructed an adaptive
control method for isolated intersection signal control using the signal phase and duration
as the actions, and minimizing the average waiting time of vehicles as the goal. Yazdani
et al. [37] considered pedestrian travel needs and established a traffic signal adaptive
control method based on DRL to minimize delays for all the intersection users (vehicle
flow and pedestrian flow). Bouktif et al. [38] considered both discrete and continuous
decision making, and used the intersection phase and duration as the optimization variables
with which to propose a parameterized, deep q-network architecture. Similarly, Ducrocq
et al. [39] proposed a new Deep Q-Network (DQN) model for signal control in a traffic
environment where intelligent connected vehicles and ordinary vehicles mix, and adjusted
the model architecture and hyperparameters through a partial discrete traffic state coding
and delay-based reward functions.

2.2. Multi-Agent Deep Reinforcement Learning in Traffic Signal Control

There are at least two agents in a multi-agent system, and there is usually a certain
relationship between the agents, such as cooperation, competition, or both competition
and cooperation. The collaborative control problem of multi-signalized intersections is
generally a multi-agent control problem under a cooperative relationship, and the traffic
lights in the road network are regarded as the intelligent agents. Since the sensors contained
in each agent only cover a small part of the overall environment in actual situations, the
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signal control model based on multi-agents is usually described as a decentralized, partially
observable Markov decision process (DEC-POMDP). This process can be represented
by the seven-tuple of G = ⟨S, A, P, r, Z, O, γ⟩. Among them, o ∈ O represents the local
observation received by the agent, and Z is the observation function. During the training
process of the network, each agent learns the control strategy for the traffic signals through
a continuous interaction with the environment to achieve the goal of alleviating traffic
congestion. However, from the perspective of each agent, the environment is unstable,
which is not conducive to convergence. In order to increase the stability of the training,
the communication interactions between agents has gradually become a key issue that
researchers have paid attention to.

Wang et al. [12] extracted the state representation of the road network environment
through the k-nearest neighbor algorithm, and stabilized the model based on spatial
discount rewards. Zhu et al. [17] designed a dynamic interaction mechanism based on the
attention mechanism to promote information interaction between the agents. On this basis,
they used a generalized network to process the joint information and used a ridge regression
to update the network parameters. Li et al. [40] proposed a knowledge-sharing deep
deterministic policy gradient (DDPG) model, in which each agent has access to the state set
collected by all the agents. Yang et al. [41] constructed an RL framework that considers the
multi-agent mutual information. They measured the correlation between the input states
and output information through the mutual information, and optimized the overall model
based on the mutual information. Wu et al. [22] and Chen et al. [42] both used LSTM to
alleviate the instability of the local observable states in the environment. On this basis,
Wu used a DDPG framework of centralized training and distributed execution to share
the environmental parameters, and Chen realized the communication and collaboration
between agents based on a value decomposition-based QMIX network.

However, to apply these methods to actual engineering issues, communication limita-
tions such as bandwidth availability are still unavoidable and important issues [43]. The
communication network not only brings more useful feature information, but also increases
the overall communication overhead of the model to a certain extent. Therefore, how to
limit additional communication overhead while maintaining cooperation is still a major
challenge facing the road network TSC problem. In response to the above situation, this
paper proposes a multi-agent signal control method that combines “explicit-implicit” com-
munication, decouples the complex relationships between the multi-signal agents through
the CTDE paradigm, and uses a modified DNN network to realize the mining and selective
transmission of traffic flow features. This method enhances the information richness while
mitigating the communication overhead stemming from data volume escalation, providing
a new idea for solving the collaborative control problem of multi-signalized intersections.

3. Methodology
3.1. Problem Definition

In CVDMARL, a traffic light in a road network is regarded as independent agent
n(n ∈ N ≡ {1, . . . , N}), and each agent obtains the state that characterizes the current
environment based on the sensor observations within the respective intersection range.
The detailed definitions are as follows.

State: For each agent, the traffic state of the intersection consists of the number of
vehicles {vl}Ln

l=1 in each lane, the number of queuing vehicles {ql}Ln
l=1 in each lane, and the

current phase number ρ of the traffic light. Among them, Ln ∈ L represents the number of
entrance lanes at intersection n, and L is the set of lanes at all the intersections in the road
network. The global state is the set obtained by splicing the traffic states of each agent.

Action: The phase sequence of a signalized intersection is fixed. Action a is set to the
adjustment of the current green light phase, that is, whether to switch the current phase
to the next phase: a = 1 indicates a switch to the next phase, and a = 0 indicates that the
current phase is maintained. In addition, we set the maximum and minimum green light
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time and the constraint rules for the yellow phase that must be implemented to convert the
phase to ensure the reasonable passage of traffic flow.

Reward: Select the delay as the parameter to construct the reward function

rt =
N

∑
n=1

Ln

∑
l=1

dt
l,n, (1)

where rt represents the reward obtained by agent n taking an action at time t; dt
l,n is the

total delay for the l-th lane of intersection n at time t, which is equal to the product of the
total number of stopped vehicles and their parking time in the period aa, starting from
time t.

3.2. Model Structure

Figure 1 shows the network framework of the CVDMARL model. As shown in the
figure, the model consists of three modules: information processing, feature mining, and
action value function fitting. Among them, the information processing module simulates
the traffic flow in the actual road network through a simulation of urban mobility (SUMO)
and obtains the state parameters for subsequent network training. The feature mining
module is mainly composed of an improved DNN network. The input information of the
network is the initial state st

s ∈ RN×ini_dim of each agent at time t and the action at−1 ∈ RN

of the previous moment (the action of the initial state defaults to 0). The output is the
corresponding feature matrix st ∈ RN×s_dim and the communication matrix mt ∈ RN×N .
Based on the communication signals, each agent can selectively communicate with other

agents in the road network to obtain the final state characteristic matrix
→
s

t
∈ RN×f_dim.
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The action value function fitting network is consistent with the QMIX network. The
overall network is mainly composed of the local action value function network (red box
network) and the joint action value function network (green box network). The local action
value function network belongs to the recurrent neural network (RNN). The input and

output of the network are the final feature matrix
→
s

t
of each agent and the action value

function value Qt ∈ RN×2 of each action, respectively. Based on Qt
n, each agent uses a

greedy strategy to select the optimal action at ∈ RN , suitable for the current environment,
with which to act on the environment. The environment then moves to the next state and
returns the reward value rt under the group of joint actions at.

The joint action value function network also uses a neural network structure, consisting
of a yellow parameter generation network and a purple inference network. The difference
is that the weights and biases of the inference network are generated by the parameter
generation neural network. At a time t, the parameter generation network accepts the
global state St and generates the weights and biases. On this basis, the inference network
receives the action function values Qt from all the agents, and assigns the weights and
biases generated by the generation network to its own network, thereby inferring the joint
action function value Qt

tot. During the training process of the network, based on the joint
action value function and reward function of the extracted data, we can calculate the loss
function and update the parameters of the network (See Section 3.5 for details).

3.3. Feature Extraction Module

The main framework of the feature extraction module is a modified DNN. Specifically,
we use a gated recurrent unit (GRU) to replace a hidden layer in the DNN network to
better extract the features. As shown in Equations (2)–(5), the features containing traffic
flow information and historical actions are first mapped onto a higher-dimensional vector
space to obtain richer semantic information. Then, based on the GRU network, we mine
the temporal features in the historical data, and obtain the final feature matrix st and
communication matrix mt through two multi-layer perceptron structures with a single
hidden layer.

f t
1 = Wf1

[
st

s, at−1
]
+ bf1, (2)

ht = GRU
(

f t
1, ht−1

)
, (3)

f t
2 = ReLU

(
Wf22

(
Wf21ht + bf21

)
+ b22

)
, (4)

st = Wf32
(
Wf31 f t

2 + bf31
)
+ b32, (5)

mt = round
(
σ
(
Wf42

(
Wf41ht + bf41

)
+ b42

))
, (6)

where
[

f t
1, f t

2
]
∈ RN×ini_dim are the intermediate variables in the traffic flow data extraction

process; the parameters with W and b as the variables are the trainable weights and biases of
the network, respectively; ht and ht−1 are the hidden states at times t and t − 1, respectively,[
ht, ht−1] ∈ RN×h_dim; ReLU(·) and σ(·) are nonlinear activation functions, which can

enhance the representation ability and learning ability of the network; and round(·) is a
rounding function that can return the operation result rounded according to the specified
number of decimal places.

On this basis, each agent conducts their communication and interaction with each other
based on the communication matrix. Taking signal agent n as an example, the communication
information corresponding to agent n is located in the n row of the communication matrix mt,
that is, mt

n. This is an n-dimension bull vector, which is a binary vector composed of 0 and 1.
If mt

n,n′ = 1 (the n′ bit in mt
n), agent n will refer to the environmental information from the
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n′ agent in order to select an action; otherwise, the environmental information from agent
number n′ will be ignored. The above process can be expressed by Equations (7) and (8):

st
n,1 = mt

n,1st
1,

st
n,2 = mt

n,2st
2,

. . .
st

n,N = mt
n,Nst

N ,

(7)

↔
s

t
n = concatenate

(
st

n,1, st
n,2 . . . , st

n,N
)
, (8)

where
↔
s

t
n is the feature matrix that contains information about the other agents,

↔
s

t
n ∈ RN×s_dim.

To facilitate the subsequent calculations, we use a fully connected layer to change

the dimension of
↔
s

t
n and add it to the state vector st

n to generate the final state feature
→
s

t
n.

Equations (9)–(11) also take agent n as an example to illustrate the flow of information
during the generation of the final state features.

↔
s

t
n = flatten

(
↔
s

t
n

)
, (9)

s̃t
n = σ

(
→
w
↔
s

t
n +

→
b
)

, (10)

→
s

t
n = concatenate

(
st

n,
↔
s

t
n

)
, (11)

where st
n represents the characteristic state of the n-th agent at time t, corresponding to the

n-th row of st (calculated by Equation (5)).

3.4. Action Value Function Fitting Module

The composition of the action value function fitting network was introduced in Sec-
tion 3.1, so this section mainly shows the specific equations corresponding to the module,
as well as the detailed meaning of the parameters in it. Equations (12)–(14) show the RNN
network, that is, the local value function fitting network. The input for the network is the

feature matrix
↔
s

t
of all the signal agents, and the output is the action function value Qt

corresponding to each action in the action set of the signal light agent.

qt
1 = ReLU

(
wq12

(
wq11

→
s

t
+ bq11

)
+ bq12

)
, (12)

Ht = GRU
(

qt
1, Ht−1

)
, (13)

Qt = wq22
(
wq21Ht + bq21

)
+ bq22, (14)

where the parameters with w and b as variables are the trainable weights and biases of
the network; the definition of Ht, Ht−1, and ReLU(·) are also consistent with the above,[
Ht, Ht−1] ∈ RN×H_dim.

The calculation of the joint action function value requires the optimal local action
function value as the input. In order to implement distributed control under global optimal
conditions, the joint action value function and the local value function need to have the
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same monotonicity, which means that the action that can maximize the joint action value
function should be equivalent to the local optimal action set:

argmaxaQtot(χ,a) =

 argmaxa1 Qtot(χ1, a1)
...

argmaxaN Qtot(χN , aN)

, (15)

where the argmaxa(·) is used to take the parameters (set) of the function and return the
action label corresponding to the maximum value of the action value function; Qtot(χ,a),
Qtot(χ1, a1), . . ., Qtot(χN , aN) are the action value functions of the road network and signal
intersection, respectively; and χ, χ1, . . ., χN are the historical actions of the road network
and signal intersection, respectively.

The QMIX network converts the above equation into the constraint condition shown
in Equation (16), and satisfies the constraint by restricting the weights wt

M1 and wt
M2 in the

joint action value function network (making their values positive).

∂Qtot(χ,a)
∂Qn(χn, an)

> 0, ∀n, (16)

wt
M1 =

∣∣wm12
(
ReLU

(
wm11st + bm11

))
+ bm12

∣∣, (17)

bt
M1 = wm2st + bm2, (18)

wt
M2 =

∣∣wm32
(
ReLU

(
wm31st + bm31

))
+ bm32

∣∣, (19)

bt
M2 = wm42

(
ReLU

(
wm41st + bm41

))
+ bm42. (20)

In summary, the joint action function value Qt
tot of the road network can be calculated

by the following equation:

Qt
tot = wt

M2ReLU
(
wt

M1Qt + bt
M1

)
+ bt

M2, (21)

where Qt
selected is the action function value under a greedy strategy selection.

3.5. Model Update

The update method of CVDMARL is similar to that of traditional DQN. Both use the
TD error to calculate the loss function, and use the backpropagation algorithm to update
the network parameters. This process involves two networks: the evaluation network and
the target network. The two network structures are identical, as shown in Figure 1, but the
input and output information of the two networks are different. The evaluation network
takes the features and historical actions in state s as the input, and outputs the actual joint
action function value Q̆evalutate

tot . The target network takes the features and historical actions
of the road network in state s′ as the input, and calculates the target (expected) action
function value Q̃target

tot . The difference between the output content of the two networks
constitutes the TD error in state s:

TDerror =
(

R + γQ̃target
tot

)
− Q̆evalutate

tot , (22)

Q̃target
tot = maxa′

(
Qtarget

tot

)
, (23)

where R is the reward value in state s, and Qtarget
tot is the action function value corresponding

to all the actions of the target network, Qtarget
tot ∈ RN×2.

It can be seen from the above that the calculation of the TD error requires knowing
the road network state s at the current moment, the actual joint action taken a, the road
network state after taking the action, the reward R returned by reaching state s′, and the
actual joint actions ã taken in the history. Therefore, the calculation of the TD error is not
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performed in real time, but is performed after a certain amount of experience has been
accumulated. On this basis, the loss function is expressed as follows:

loss =
B

∑
b=1

(TDerror(eb))
2, (24)

where eb represents the b-th experience in a batch of extracted experiences, and B represents
the number of extracted experiences.

In summary, the update process for the CVDMARL framework has the following steps:

1. Initialize the evaluation network, copy its network parameters to the target network, and
initialize the experience pool.

2. Parameters: The capacity of the experience pool M, the total number of episodes K, the step
size of each episode T, and the evaluation-target network update frequency p.

3. For k = 1 to K do:
4. Initialize the environment, obtain the global state Si of the initial road network, the local

observation state si of each agent, and set the historical action ah
i of each agent to 0.

5. For t = 1 to T do:
6. St, st, at−1
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4. Experiments
4.1. Experimental Setup
4.1.1. Simulation Settings

Based on the real data sets collected from the actual road network in Fushun City,
China, we used SUMO to build a simulation platform and implement model optimization
and information interaction through the application program interfaces. The road network
simulation environment is shown in Figure 2. The range of the detectors we arranged
at each entrance road was 100 m, and the range of the detectors at each exit road was
80 m. For four-way intersections, we used a four-phase signal control scheme of east–
west straight, east–west left, south–north straight, and south–north left. For three-way
intersections, such as intersections 1, 2, and 7, the signal phase sequence was east–west
straight, east/west left, and south/north straight. The duration of the yellow light phase
was set to 2 s. We collected the traffic data for the above-mentioned road network during
peak hours (6:30–8:30) and off-peak hours (14:00–16:00) for a full week, and summarized



Sustainability 2024, 16, 2160 10 of 17

and processed the data into the required input information. The traffic flow distribution for
the road network is shown in Table 1 and Figure 3. At the beginning of each simulation,
we generated a random number with a value of 0 or 1. If the random number was 0, the
simulation platform would load the input information from the peak period, and then
generate vehicles second by second based on the built-in code; otherwise, the platform
would load the input information from the off-peak periods and generate vehicles second
by second based on the built-in code.
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Figure 2. Schematic diagram of road network simulation environment.

Table 1. Traffic volume statistics from the real-world dataset.

Stage
Arrival Rate (veh/300 s)

Mean SD Max Min

Off-peak hours 103.55 15.15 139 89
Peak hours 177.20 48.92 255 132
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Figure 3. Traffic flow distribution during the test phase. (a) Traffic flow distribution during off-peak
hours; (b) traffic flow distribution during peak hours.

4.1.2. Training Parameters Settings

The duration of each round of training of the CVDMARL model was 3600 s. The
parameter settings during the training process are shown in Table 2. The values of these
parameters were the results of multiple experiments.
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Table 2. Model parameter values.

Parameter Value Parameter Value

B 32 greedy probability ε 0.95–0.01
γ 0.95 initial learning rate lr 0.001
M 1000 s_dim 16
K 200 h_dim 32
T 300 f_dim 32
P 10 H_dim 64

4.1.3. Baseline

(1) FixedTime: A traditional signal control method in which the signal lights run on a
fixed timing scheme.

(2) DQN: A centralized control method in which all the intersections are controlled by
the same agent. The agent directly fits the joint action value function based on the global
environmental state, and then selects the optimal joint action.

(3) IQL: A distributed control method, where each intersection is equipped with inde-
pendent intelligent agents, and there is no additional information interaction between the
intelligent agents. Each agent optimizes its control strategy in the direction of maximizing
the global returns based on the global environmental state.

(4) DDQNPER: A communication-free distributed control method that defines the
state and reward functions simply and directly, and fits the action value function through
Double DQN, with an experience playback function.

(5) QPLEX: Each intersection is controlled by an independent agent, and the action
value function of each agent is decomposed into a state value function and an advantage
value function. The agent realizes the calculation of the joint action values based on a
multi-head attention mechanism, and ensures the consistency of global and local optimality
by constraining the value range of the advantage value function. It is a distributed control
method with implicit communication.

(6) MN_Light: This method uses a bidirectional LSTM to mine the temporal character-
istics of the historical traffic flow status and action information. It is a distributed control
method for explicit communication.

4.2. Experimental Results
4.2.1. Comparative Experiment

This section shows the control effects of each baseline method and the CVDMARL
model, and further analyzes and discusses the reasons for the above results. As shown
in Table 3, we selected three indicators—queue length, waiting time, and travel time—
to evaluate the model’s effects. Among them, the queue length and waiting time are,
respectively, equal to the average queue length and queue time of each intersection entrance
lane during the simulation period, and the travel time is the average time required for all
the vehicles in the road network to complete their scheduled trip.

Table 3. Comparison of control performance of baseline methods.

Model
Peak Off Peak

Queue Length
(m)

Waiting
Time (s)

Travel
Time (s)

Queue Length
(m)

Waiting
Time (s)

Travel
Time (s)

FixedTime 23.59 (±3.26) 86.35 (±15.56) 218.80 (±35.76) 10.15 (±1.76) 44.35 (±7.04) 173.80 (±33.46)
DQN 16.75 (±1.77) 66.11 (±8.89) 193.13 (±25.76) 7.69 (±1.03) 36.70 (±5.40) 153.90 (±13.26)
IQL 19.98 (±2.11) 75.11 (±11.96) 208.19 (±38.13) 8.07 (±0.70) 38.10 (±8.14) 161.05 (±33.08)

DDQNPER 18.84 (±1.81) 71.11 (±6.64) 199.36 (±17.45) 8.19 (±0.86) 39.06 (±4.83) 162.05 (±18.00)
QPLEX 15.62 (±0.88) 65.04 (±4.47) 195.05 (±11.20) 7.09 (±0.29) 35.65 (±3.02) 156.49 (±16.73)

MN_Light 14.91 (±0.71) 66.83 (±7.82) 193.88 (±19.78) 6.63 (±0.56) 35.02 (±3.26) 157.05 (±23.03)
CMARL 13.55 (±0.67) 61.71 (±6.59) 187.47 (±17.04) 6.27 (±0.41) 34.06 (±3.67) 151.05 (±18.89)
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Figure 4 shows the average reward function for each model episode during the training
process. Its physical meaning is the total delay for the entire road network (all vehicles)
within 12 s (the quotient of the iterative simulation time and the number of episode
simulation steps). This indicator is numerically equal to the sum of the reward function
values of all the steps in each episode divided by the step size of each episode. Its numerical
value reflects the signal control effect of the signal control model on the road network and
its changing trend reflects the convergence of the model to a certain extent. As shown in
Figure 4, the reward function value of CVDMARL after convergence is significantly lower
than that of the other algorithms, and the model convergence speed is relatively fast. The
reward function values for DQN and QPLEX after convergence are basically at the same
level, but the convergence speed of DQN is significantly higher compared to QPLEX. The
reward function value for DDQNPER is slightly higher than the above-mentioned deep
reinforcement learning algorithms, and the convergence speed of the model is slow. The
reward function value for IQL is relatively high, and the model convergence situation is not
advantageous. To further analyze the reasons for the above results, we discuss the model’s
stability, convergence, and control effects in conjunction with Figure 4.
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In terms of system stability, some researchers have used a nonlinear analysis and
inequality techniques to discuss the stability of system solutions and have combined nu-
merical simulation algorithms to test the correctness and effectiveness of the theoretical
results and simulation algorithms through examples [44,45]. In the work related to rein-
forcement learning, researchers have generally evaluated the control effect and stability
of the built model based on the mean, standard deviation, median, and other parameters
of multiple test experimental results for different random seed environments after the
algorithm’s convergence [4,46,47]. Based on the same idea, this paper conducted 10 test
experiments with different random seeds after the model’s convergence, and the evaluation
results for each model are shown in Table 3. Taking the average queue length as an example,
during the peak hours, the mean queue length of the CVDMARL model is 13.55, and the
standard deviation is 0.67. The mean and variance during the flat peak period are 6.27 and
0.41, respectively, which is significantly lower than those of the other DRL algorithms, and
the model’s test performance is stable.

As can be seen from the table, various types of DRL algorithms have better control
effects than the FixedTime algorithm. In order to further compare and demonstrate the
control effects of the various algorithms, we arranged the information in Table 3 into
a clustered column chart, as shown in Figure 5. And the average training time and
convergence of each model are shown in Table 4. Since the FixedTime model does not have
a training process, it is not in Table 4. It can be seen that compared to the basic distributed
control methods, such as IQL and DDQNPER, the centralized control method based on
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DQN obviously has better control effects, and DQN converged at the 82nd generation,
while IQN and DDQNPER converged at the 127th and 131st generations, respectively. This
is in line with our inference; that is, a centralized method that collects all the information
implies a communication and collaboration mechanism between the agents, and can easily
obtain the global optimal solution. However, the basic distributed control method is more
likely to fall into local optimality due to the lack of information and interaction between
agents. However, the disadvantages of the centralized method are also particularly obvious.
The average training time of DQN is as high as 232.4 s, far exceeding that of the other DRL
algorithms. As the scale of the road network further expands, the centralized method will
occupy more computing space, and the efficiency of the method will decrease significantly.
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Table 4. Average training time and convergence for each model.

Model DQN IQL DDQNPER QPLEX MN_Light CVDMARL

Average Epoch
Training Time (s) 232.4 73.6 72.44 83.1 85.7 84.2

Convergent Epoch 82 127 131 102 113 104

QPLEX and MN_Light belong to the distributed control methods of implicit com-
munication and explicit communication, respectively. The former adds the global state
information during the training process, and realizes information interconnection by de-
composing the global rewards according to their respective contributions. The latter uses
bidirectional LSTM to identify the context information to achieve temporal feature extrac-
tion in complex environments and enrich the state information that the agent can receive.
Compared to the previous two distributed methods, both improved to a certain extent
regarding various evaluation indicators: taking the peak hours as an example, compared
to DDQNPER, the queue length of QPLEX was reduced by 17.09%, the waiting time was
reduced by 8.53%, and the travel time was reduced by 2.16%. MN_Light’s queue length
was reduced by 20.86%, the waiting time was reduced by 6.01%, and the travel time was
reduced by 2.75%. However, due to the increase in network depth, the improved model’s
control effect also brings more computing overhead. Compared to DDQNPER, the average
training time for QMIX and MN_Light increased by 23.13% and 14.16%, respectively.

CVDMARL combines two communication methods: implicit communication and
explicit communication. It decouples the complex relationships between multi-signal
agents through the CTDE paradigm, and uses an improved DNN network to realize
the mining and selective transmission of traffic flow features, with better control effects:
compared to the optimal method, MN_Light, among the baseline methods, the queue
length of CVDMARL during the peak hours was reduced by 9.12%, the waiting time was
reduced by 7.67%, and the travel time was reduced by 3.31%; the queue length during
the off-peak hours was reduced by 5.43%, the waiting time was reduced by 2.72%, and



Sustainability 2024, 16, 2160 14 of 17

the travel time was reduced by 3.83%. In terms of model complexity, due to the increase
in network depth, the average training time for CVDMARL was only reduced by 1.75%
compared to MN_Light, but the convergence speed of the network was greatly improved.
Compared to MN_Light, the convergence epoch of CVDMARL was reduced by 7.97%.
It can be seen that CVDMARL can improve the intersection signal control effect while
reducing communication overhead to a certain extent.

4.2.2. Ablation Experiment

To further explore the effectiveness of the proposed feature extraction module, we
designed an ablation experiment as shown below. Figure 6 shows the evaluation indicators
of QMIX (QMIX is the network framework of CVDMARL after stripping off the feature
extraction module), CVDMARL, and the model after removing the GRU module in CVD-
MARL (Remove_GRU) during the peak and off-peak periods. It can be seen that after
removing the feature extraction module, the model’s control effect drops significantly. This
phenomenon is especially obvious during peak hours. During peak hours, CVDMARL’s
queue length and queuing time were reduced by 9.73% and 5.64%, respectively, compared
to QMIX; while during off-peak hours, compared to QMIX, CVDMARL’s queue length and
queuing time were reduced by 8.87% and 4.47%, respectively. This is because there are
many vehicles in the road network during peak hours, and the spatiotemporal relationship
between traffic flows is relatively complex. During this time, relying only on the status
information directly obtained by the detector, the agent cannot obtain enough environ-
mental information with which to determine the optimal action. Through a comparison
with Remove_GRU, we can also see the importance of the GRU module for improving
the model’s control effect: taking the average vehicle queuing time as an example, after
removing the GRU module, the queuing time of the model increased by 2.44% during peak
hours, and increased by 1.42% during off-peak hours.
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5. Conclusions

This paper presents a multi-agent deep reinforcement learning model with an empha-
sis on communication content to solve the signal control problem of road networks. In
order to alleviate the instability of model learning caused by local observable states, we use
a modified DNN network to excavate and selectively share the nonlinear features in the
traffic flow data, enriching the information content and reducing the communication over-
head caused by the increase in information. Using real data sets, we conduct a comparative
analysis between CVDMARL and six advanced traffic signal control methods, and come to
the following conclusions:

(1) CVDMARL can effectively improve the traffic efficiency of a road network, reduce
the queuing time and travel time of motor vehicles, and play an important role in alleviating
traffic congestion, reducing exhaust emissions, and improving the sustainable development
of the transportation system. Compared to the optimal method, MN_Light, among the
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baseline methods, CVDMARL’s queue length during peak hours was reduced by 9.12%, the
average waiting time was reduced by 7.67%, and the average travel time was reduced by
3.31%; the queue length during off-peak hours was reduced by 5.43%, the average waiting
time decreased by 2.72%, and the average travel time decreased by 3.83%.

(2) In relatively complex traffic environments, the further extraction of high-dimensional
nonlinear features helps the agent to select the optimal actions. After adding the feature
extraction module, the model’s control effect for QMIX was greatly improved, and the
queue length and average waiting time during peak hours were reduced by 9.73% and
5.64%, respectively.

However, this study also has the following limitations:
(1) In the agent design process, the reward function was constructed under the as-

sumption that all the intersections had the same priority, and the impact of the differences
between intersections in the road network on the agent’s action selection was not fully
considered.

(2) We only considered the mining and utilization of the traffic flow’s temporal char-
acteristics, and did not further explore the spatial correlation between the road network’s
intersections.

In future work, we will consider the spatiotemporal differences at road network
intersections and design an agent reward function and feature extraction network that are
more consistent with the actual situation.
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