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Abstract: The climate crisis, the need for a circular economy, and the large financial losses after
earthquakes have promoted the concept of the sustainable and resilient design of societies, and more
specifically, of lifelines and building environments. Focused on building facilities, it is imperative
to prescribe, within the aforementioned framework, the components that characterize earthquake
resilient near zero energy buildings (ERnZEBs). Through a conceptual analysis, the goal is to
discuss the attributes and perspectives of ERnZEBs within the framework of the view of a designer
engaged in practice. This fact introduces an additional factor recognizing that not all projects
have the same technical and financial values; the difference in budget, the type of owner, and
the investment (private or public, company or private person) play important roles in creating an
ERnZE building. In this direction, this paper reviews the basic principles of ERnZEBs, providing a
combination of pragmatic considerations while also exploiting the state of the art and practice of
current engineering knowledge.

Keywords: earthquake sustainability; earthquake resilience; holistic design; construction technologies

1. Introduction

Starting from the principle of Vitruvius [1], that all buildings must have three charac-
teristics, namely Firmitas (Strength), Utilitas (Utility), and Venustas (Beauty), and moving on
to the current strong urbanization that needs sustainable and resilient societies against mul-
tiple hazards (earthquakes, floods, tsunamis, fires, and explosions) [2–7], it is of paramount
importance to define the attributes and perspectives of the basic components of communi-
ties and societies, which include new and existing building facilities. Definitely, buildings
are a sub-system as compared with the whole system, but they make a great contribution
to the built environment.

Focused on earthquakes, major studies were performed and published that were
associated with building resilience [8–11], providing framework methodologies and tools
generally based on probability. To this end, one can mention that sellers like real estate
developers, insurers, reinsurers, and bankers, as well as asset managers, think about and
take decisions in a probabilistic way. This is due to the fact that probability is never unfair
and shares responsibility and liability as well. Instead, buyers of buildings are characterized
by a deterministic way of thinking. They want to buy an asset that will be durable and
resistant for a long time, with minimum maintenance, and without structural damage,
building downtime, or financial losses in its life cycle. This is true for someone who buys,
although it is not true for technical and financial stakeholders. Therefore, there is a gap
between them. The building’s environment and seismic action are inherently variable and
uncertain. Although it should be recognized that seismic risk is strongly influenced by
political decisions, it is more specifically a tradeoff between risks and costs for a given
known hazard. The question that arises is: how much does a typical homowner know
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about the acceptable risk? Moreover, what is the financial capacity of a typical homeowner
to take a risk? Unbeknownst to the homeowners, this risk has been taken by the design
code without their even knowing it.

Coming back to the Vitruvius attributes and translating them into the current con-
struction practice, a building must be aesthetic, structurally durable against environmental
actions, founded on stable soil with a structurally sufficient bearing capacity against static
(i.e., dead and live actions) and dynamic loads (i.e., wind and seismic actions), water
resistant, thermally and acoustically efficient, as well as fireproof. A building should not
only be mechanically resistant from geotechnical and structural points of view; it is not
sufficient. The aforementioned attributes define only an Earthquake-Resistant Energy
Efficient Building.

Nowadays, this is not sufficient. The climate crisis, the need for a circular economy, and
the large financial losses after earthquakes [12,13], promoted a twofold target: (i) a shift from
fail-safe to safe-fail [3], or specifically, a design shift from collapse prevention and life safety
to a resiliency towards full pre-earthquake functionality [14,15] and (ii) the development of
buildings that are characterized by a very high-energy performance during operation and
where most of the energy required is provided by energy from renewable sources (typically
solar thermal and photovoltaic (PV) systems) [16] (or the new, very optimistic proposal of
zero emission buildings [17]). With regard to the first target, beyond the stiffness, strength,
and ductility, in addition, the adaptability and reparability capacities within a tolerable
timeframe after an earthquake were considered. Related to the second target, buildings
must have the necessary system supplies along with efficient insulating composite systems
that limit the HVAC’s (heating, ventilation, air conditioning) consumption.

According to the above-mentioned issues, such buildings could be described as Earth-
quake Resilient near Zero Energy Buildings, ERnZEBs. Consequently, this prototype
building has the following attributes: the ability to be durable against environmental
actions; to avoid foundation soil failure; to prevent collapse and to protect life safety; to
develop, after an earthquake, repairable damage to structural and non-structural elements;
to recover and restore its occupancy and functionality after an acceptable time (after an
earthquake); to be allocated very high-performance systems, reducing energy consumption
and CO2 emissions; to be waterproof, fire resistant, and acoustically efficient. The first five
characteristics are connected with geotechnical and structural design, while the remainders
are associated with building physics. Certainly, architectural functional adaptability is
a prerequisite for such buildings. ERnZEBs go beyond the current trend of seismic re-
silience and energy efficiency. Equally, it must be taken into account that there is a need
for durability, water, and fire protection, as well as acoustic comfort. In any case, all the
elements, connections, and systems that offer the benefit of near zero energy buildings must
be earthquake resilient. Finally, ERnZEBs must have similar attributes for new and existing
buildings, taking into account the construction period and the desired level of improvement.
Overall, the two pivotal pillars of an ERnZEB are sustainability and resiliency; a strong
interdependency between them is required.

Through a conceptual analysis, the goal is to discuss the structural attributes and
perspectives of ERnZEBs, within the framework of a designer’s view who is engaged
in practice. This fact introduces an additional parameter, namely, that all the projects
are not the same; the difference of budget, the type of owner, and the investment type
(private or public, company or private person) play important roles in creating an ERnZE
building. Furthermore, there should be consideration of the local insights into the task,
tailored to a building facility, not only global insights at a policy level. Therefore, this
paper reviews the principles of an ERnZEB combining a pragmatic approach while also
exploiting the current state of the art and practice of structural engineering knowledge. It is
focused on the low- and mid-rise buildings having different uses, namely, residential, health
care, hospitality facilities, and commercial. The structural materials mainly considered
are reinforced concrete and structural steel. This work is based on the concept that, even
though they behave differently (due to the structural material), buildings are fundamentally
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designed according to capacity design, and thus have the same plastic mechanisms (global
plastic mechanism where the plastic hinges are developed only into the beams and not to
the columns, avoiding soft-story brittle mechanisms).

2. Earthquake Sustainability of ERnZEBs

The climate crisis and the resulting environmental changes strongly promote sustain-
able development. According to the UN’s Brundtland Commission [18], economic growth
for a sustainable society must meet the needs of the present without compromising the abil-
ity of future generations to meet their own needs. However, as reported by the World Green
Building Council [19], the building sector (production of building materials, transportation,
construction, and demolition) is responsible for 39% of global carbon emissions. Focused
on the consequences of strong earthquakes, and more advanced than severe damage, are
the collapsed buildings and their demolition wastes, a serious problem that perturbs sus-
tainability. Moreover, the collapsed buildings should be replaced with new ones. As an
example, approximately 70% of the district of Christchurch, after the 2011 earthquake, was
demolished (namely, over 60% of the reinforced concrete building with three stories and
more, around 1000 commercial properties, and 10.000–15.000 residential properties) [20,21].
The recent Kahramanmaras earthquake in Turkey in 2023, which affected nearly 16 million
people, resulted in approximately 280.000 buildings collapsing or being severely damaged;
hence, it was the second most severe case of post-earthquake demolition [22]. All of the
above-mentioned real facts violate the three basic principles of sustainability: Reduce, Reuse,
and Recycle. It is, therefore, clearly stated that an ERnZEB must respect the rule of Rs. It
should be valid for both new and existing building structures. However, it should not be
forgotten that, in earthquake-prone countries, sustainability continues through the earth-
quake. This means that every energy and environmental design should be supported by a
resilient structural design. Otherwise, there is a loss of investment; see Figure 1.

Evidently, sustainable construction is limited by the use of energy minimization, raw
materials, gas emissions, and waste generation and management. Earthquake sustainability,
and in a more general sense ERnZEBs, goes beyond this, requiring the following: the choice
of highly recycled materials, durability, efficient use of structural, recycled materials exploit-
ing their potential capacity, awareness of geological and local geotechnical soil foundation
conditions, choice of efficient foundation systems, selection of structural systems that offer
mitigation of displacements, equilibrated structural conformation layouts, components
combining different functions (i.e., structural and energetic, energetic and mechanical, etc.),
selection of details that minimize maintenance and repairs, easy erection and demolition,
structural repairability following an earthquake, detailing by considering the disassembly
and reuse of materials or elements. Certainly, apart from the others, we do not forget that
everything starts with the architecture synthesis. Therefore, the functional adaptability of
a building facility is of primary importance; practically all the aforementioned attributes
will be maximized if the architectural layout permits the change of use and the possibility
of renovation.

The drivers of sustainability, specifically, the strategy of reduce, reuse, and recycle,
(reduce the production of construction materials, reduce the waste, reuse all the build-
ing components and elements, recycle everything from a building facility), within the
framework of seismic action, are discussed below and further explained according to
ERnZEB perspectives.



Sustainability 2024, 16, 2317 4 of 19Sustainability 2024, 16, x FOR PEER REVIEW 4 of 20 
 

 
(a) 

 
(b) 

Figure 1. (a) L’ Aquila earthquake, Italy, 2009, and (b) Kahramanmaras, Turkey, 2023. (Photos from 
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of the structural elements increase, consequently the consumption of building materials 
also goes up. Such an example is the case of Romania. For the capital city of Bucharest, 
from 1963 until now, the seismic design acceleration has increased 12 times, while for 
other county cities, this increase achieved 4 to 10 times [23]. It is a typical case for every 
earthquake prone country (Greece, Italy, Turkey, Japan, USA, New Zealand). 

Another debatable issue is the well-established use of the behavior factor q (or re-
sponse factor R according to US practice). For instance, in agreement with the 
forced-based design in EN 1998:1-1 [24], for the low ductility level, the q-factor is equal to 
1. This fact leads to a structure that is designed elastically (of course without ductile de-
tailing, as prescribed in the respective code), and it is not permitted to be applied in high 
seismicity areas. For a high ductility level, corresponding to a dual frame with a regular 

Figure 1. (a) L’ Aquila earthquake, Italy, 2009, and (b) Kahramanmaras, Turkey, 2023. (Photos from
European-Mediterranean Seismological Centre).

2.1. Reduce

Addressing the issue of structural material reduction, for the construction of an
earthquake-resistant building (and, in a more advanced version, an earthquake resilient
building structure), one can easily observe a controversial relationship between the first
sustainable rule and the construction of a new building after a catastrophic earthquake (or
the obsolescence of an existing building after a catastrophic seismic action). Systematically,
after each strong earthquake, the codified seismic forces increase; the dimensions of the
structural elements increase, consequently the consumption of building materials also
goes up. Such an example is the case of Romania. For the capital city of Bucharest,
from 1963 until now, the seismic design acceleration has increased 12 times, while for
other county cities, this increase achieved 4 to 10 times [23]. It is a typical case for every
earthquake prone country (Greece, Italy, Turkey, Japan, USA, New Zealand).

Another debatable issue is the well-established use of the behavior factor q (or response
factor R according to US practice). For instance, in agreement with the forced-based design
in EN 1998:1-1 [24], for the low ductility level, the q-factor is equal to 1. This fact leads to a
structure that is designed elastically (of course without ductile detailing, as prescribed in
the respective code), and it is not permitted to be applied in high seismicity areas. For a
high ductility level, corresponding to a dual frame with a regular layout and cross section,
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the q-factor attains a value of 4.95. This means that the elastic design force is reduced
approximately five times (strictly respecting ductile detailing). Evidently, in a disastrous
earthquake, life safety would be protected; however, with so much damage, the building
must be demolished. This was demonstrated by the New Zealand earthquakes [15]. Overall,
the goals of sustainability are at the opposite end. A concept to design with a q-factor
equal to one or to one and a half, always respecting the ductile detailing, will lead to a
sustainable ERnZEB. According to unpublished studies of the authors, the average cost
increase will be of the order of 20–25% (for a spectral acceleration of 0.36 g). Overall, an
earthquake sustainable proposal occurs when we use a force based design to perform an
elastic analysis and design with a q equal to one, or alternatively one and a half, and further
on to respect the material, section, and member ductility and detailing. It is a pragmatic
way of designing building until a resilient earthquake design, based on accepted target
performance levels of drift, plastic rotation, crack width, accumulated deformation, and
residual deformation, is developed.

Looking from a general perspective, the solution to this problem revolves around two
axes. The first one is to give special attention at the phase of preliminary design, looking
for an efficient conformation (suitable systems of foundation, positioning of structural
walls at all principal directions of action, balanced layouts against torsion, etc.). A proper
structural conformation saves lives, minimizes structural and non-structural damage, and
protects properties; therefore, it reduces demolition cases, material waste, and building
materials used for repair or strengthening. In many cases, this cannot be applied as desired
by the structural engineer; this is due to architectural constraints. This last statement would
be avoided if the architects would take into consideration the basic principles of seismic
design and seismic urban planning in the same manner as sustainability.

The second axis moves toward the application of elements that change the dynamic
characteristics of the building facility (i.e., base isolation) and/or control the behavior with
passive damping (i.e., viscous, friction dampers, etc.), semi-active or active systems [25]. An
illustrative example of the base isolation approach, along with an efficient energy design,
was applied for the reconstruction after the L’ Aquila earthquake, 2009, Italy, [26].

2.2. Reuse

This second principle of sustainability is twofold: (i) it is connected to a greater extent
with existing building facilities, and (ii) the same ones, although after an earthquake. The
concept of reuse must be related with another rule of 3 Rs, namely, with the Rehabilitation,
Restoration, and Renovation.

From a structural point of view, the task is to retain the load-resisting system, LRS.
If we have an existing building, the target is to strengthen the existing one by using the
concept adapted from UNISDR to “build it back better” [27]. In the event that we have
a building under construction, the issue is to employ structural prefabricated members
(from steel, reinforced concrete, or timber) and, under certain conditions, also reuse the
existing foundations (i.e., introduce micropiles, change a pad foundation system to a raft
foundation, etc.).

From another perspective, designers for new buildings should already be thinking
about the deconstruction of a structure. In an undamaged condition, it is relatively easy.
In an earthquake-resistant environment, it is difficult to think about it. However, if the
capacity design is used according to structural hierarchies, then the designer would save
some members without damage, where they would be recovered and reused. Practically,
this is difficult to achieve in the hard conditions after a catastrophic earthquake; as a
consequence, the seismic design should be focused to generate structures that will respond
elastically. To this end, one can mention that elastic stiffness is a structural property of a
mechanical system that is reclaimed. The ductility is used once, and after a severe seismic
action is “consumed”, producing damage; therefore, it is not reversible, and as a matter of
fact, it is not a structural attribute that leads a member or a structure to be reused. Speaking
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in a figurative sense, ductility is not “materially sustainable”, although it must be recalled
that, due to its force, redistribution and deformation capacity lead to lives being saved.

2.3. Recycle

To recycle is not to reuse. The waste materials are converted into new ones and
not transformed. Thus, the recycling process is strongly related to building materials.
At the same time, the topsoil from building excavations will also be put into service for
landscaping works.

For earthquake-resistant purposes, steel structures represent a viable solution due to
their complete recyclability, reduced weight, strength and ductility, architectural flexibility,
dry construction, capacity of dissembling and reuse. It was the building material of choice
for the reconstruction of Christchurch, following the 2010–2011 series of earthquakes
that completely closed the operations in the Central Business District [28]; see Figure 2.
Additionally, steel structures after major worldwide earthquakes behaved excellently,
presenting only local failures and not global building collapses [29].
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A promising solution in the near future will be the construction of multi-story timber
buildings, which are a recycle and sustainable solution for both the environment and human
wellbeing. Structurally, it is similar to structural steel; however, it is a brittle material. Due to
the fact that tall timber buildings have not been tested in strong earthquakes, investors and
private owners are conservative about investing in or buying such buildings. Nevertheless,
great research efforts are performed in order to better understand the cyclic behavior and,
further on, to produce reliable codes that will open the door for the construction of multi-
story building facilities [30–32]. Currently, cross laminate timber panels are used for both
the seismic and energetic improvement of existing reinforced concrete buildings [33] and
can also be applied to steel buildings.

3. Resiliency of ERnZEBs

Recent devastating worldwide earthquakes reveal that, not only life safety, but also
financial losses and building downtime are of great importance [4,34,35]. New well-
designed buildings, generally constructed after the 1990s and based on proper foundation
systems, even in the case of difficult soil foundation conditions, behaved properly and
demonstrated the prevention of collapse and, as a matter of fact, life safety protection.
Nevertheless, the non-structural elements (i.e., partition walls, facades, ceilings, HVAC
systems, etc.) were severely damaged, disrupting the building’s operation and, in many
cases, provoking damage to the nearby properties; see Figure 3. As was expected, regarding
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the old buildings constructed in the 1950s, 1960s, 1970s, failures from severe damage to
collapse were observed. Thus, for the first one, the target is to avoid non-structural damage,
while for the second, the target is to “to build back better”.
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Facing the above-mentioned issues, M. Bruneau et al. first introduced the concept
of the seismic resilience of communities, putting it under discussion and proposing a
framework for the “Reduced failure probabilities”, “Reduced consequences from failures”, and
“Reduced time to recovery” [36–38].

Every building facility is a subsystem of a city (and more generally, a unit component of
a community or a society) connected to and influenced by the performance of lifelines [6,39].
Focused on buildings, and learning from worldwide structural failures, it is imperative to
start changing the position of design, moving from the classical ductility concept (which
generates damage), to the concept of avoiding damage through more rigid structures
(which generates repairable structures after a strong earthquake) [5–15]. The target is
focused on reoccupancy, functional recovery time, and financial loss minimization [4–6]. It
is a step forward from earthquake-performance-based design to resilient-earthquake-based
design. In this direction, the EERI (Earthquake Engineering Research Institute) provided
a definition suitable for both buildings and lifeline infrastructure, as follows: “Functional
recovery is a post-earthquake state in which capacity is sufficiently maintained or restored to support
pre-earthquake functionality” [4].

In a more general way of thinking, M. Bruneau and A. Reinhorn introduce the re-
silient concept in the field of earthquake design, providing the following statement: “The
seismic resilience of a system can be achieved by reducing its probability of failure during an earth-
quake, as well as reducing the consequences from such failures and the time to recovery” [37].
Continuing, they provide the four attributes of a resilient system, namely: Robustness,
Redundancy, Resourcefulness, and Rapidity. Each of them has four dimensions, connected
with engineering, managerial–organizational, social, and financial issues [36,38].

The pivotal pillars of resiliency within the stage of seismic action are discussed below
and further explained, concentrating on ERnZEB perspectives.
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3.1. Robustness

The robustness is associated with the buildings’ structural capacity to avoid damage,
to continually operate after an earthquake, to not disturb the operation of the users, of
the city, or of society, and, further along, to avoid financial losses. Nevertheless, the
basic premise is that the utilities, water, and electric supply, sewerage (locally at the
building and globally at the city level), and elevators will remain undamaged after a strong
seismic action. If the building is fully operational (structurally and with all the utilities in
service), then it will not be directly influenced by a probable collapse of some infrastructure
components (i.e., damage to roads and bridges). Indirectly, the collapse of lifelines indicates
the failure of society’s resilience. There is no possibility of function, thus there is an
inability to perform any type of operation. Consequently, there is a strong interaction
between the performance of lifelines and the building facilities. Evidently, it is a complex
problem with various interdependences referring to building and lifeline endurance [39].
Thus, robustness (considering the five main aspects: engineering, organization, social,
and economic) requires a multidisciplinary approach that is not strictly related only to
engineers, but also to politicians, other public jurisdictions, and social organizations. One
can remark that, due to the different interests of stakeholders and the different level
of knowledge between them, it is difficult to reach a balance; this requires much time,
education, and consent.

Mainly, all research efforts approach the subject of seismic resiliency from a prob-
abilistic way of thinking [36,40,41]. It is a global point of view that is useful to create
a policy, offering data and tools for decision making. However, it is also necessary to
have a local point of view, specifically to develop, promote, and implement low-damage
designs, detailing, and construction technologies, for both new and existing structures [42].
Such a concept is already under way, especially for steel structures [43–45], and other
systems [46,47], and was mainly applied after the New Zealand earthquakes. In practice,
this second approach is the way to materialize ERnZEBs. Overall, construction technologies
associated with structural systems with replaceable fuses, with self-restoring capacity, rock-
ing frames, buckling restrained braces, base isolation, and passive or active damping could
ensure an earthquake resilient facility. In addition, the non-structural elements should
be independent of the lateral load-resisting system and attached elastically to the main
structural system, eventually with sliding capacity within accepted limits of displacement,
as well as with elements capable of easy disassembly.

3.2. Redundancy

Redundancy is a property of a system composed of more than one subsystem of action,
acting as a backup and simultaneously having the ability to have alternative discharge
paths. When a subsystem fails, the second subsystem takes action. This concept should
be applied to the conformation of the lateral load-resisting system. Another characteristic
is that the failure of one subsystem does not cause damage to the other subsystems. This
second idea should be used for the detailing of non-structural elements; namely, non-
structural elements that do not depend on the behavior of the bearing structure. Overall,
the redundancy depicts the capacity of the system to function after the failure of some
components in a safe mode (safe-fail).

An ERnZeB should be designed with a lateral load-resisting system, having two “lines
of defense”. For new buildings, related to steel structures as an example, when we construct
structural systems such as a steel plate or composite shear walls, in the case of failure of
the infill wall (it is the first action of defense against seismic actions), then after that the
boundary elements (that shape a steel frame) take all the seismic actions (it is the second
action of defense) [48]; see Figure 4. Dual systems, in which they use frames with buckling
restrained braces or shear walls, are systems with restoring capacity [49,50]. Related to
reinforced concrete buildings, the simplest is the dual frame-shear wall system. Certainly
for both steel and reinforced concrete structures, base isolation with supplemental damping
provides the most resilient choice for a building [51].
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For existing buildings, a solution to strengthening the structure, combining ease of
application without disturbing the users, the ease of replacing the new structure (in case
of damage), as well as the development of relative two lines of defense to withstand
the seismic actions, is to attach, from the exterior, a structural system that supports the
existing one [52]. Towards this direction, exoskeleton structures, see Figure 5, combined,
concurrently, with energy-efficient systems (which contribute to the earthquake resistance,
i.e., external thermal insulation composite systems, ETICS, see Figure 6, with or without
tensile reinforced mortar, TRM, applied to infill masonry) provide solutions that respect
the sustainability and resiliency principles [53–57].
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3.3. Resourcefulness

A resourceful resilient approach has equally the ability to recognize the vulnerable
points and turn them into resilient points, through an efficient decision-making system,
to manage the priorities in complex situations, and to be prepared for action as well.
Certainly, this attribute has a wider meaning, beyond the structural level and going to the
community and society levels. For ERnZEBs, this means that a building facility would
have the following items: (i) a monitoring system, to detect the behavior, the defects,
and the damage; (ii) a plan for maintenance in order to preserve the building in a sound
condition; and (iii) a plan for evacuation, through earthquake-resistant escape corridors
and compartments.

ERnZEBs, especially for important and sensitive buildings like administrative facilities,
fire stations, hospitals, schools, etc., are strongly recommended to have structural and
energy monitoring systems, as well as early warning systems. The first one provides us
with noteworthy technical information for decision making (diagnosis and prognosis), and
the second one provides us with a way of notifying and alarming the building’s users
(messaging). Such systems are composed of accelerometers, tiltmeters, networking sensors
(load cells, strain gauges, transducers, thermistors, thermocouples), properly placed at
different building levels, and also of a data acquisition system, communication system,
data processing system, data storage system, and cameras as well; see Figure 7 [58,59].

In a building facility’s management plan, maintenance is the basic component, targeted
to ensure the functionality, safety, and longevity of the building. Already at the design
stage, the maintenance plan should be performed and provided with benchmark dates for
inspection (i.e., periodic inspections, detailed periodic inspections). The general action plan
interacts with structural health monitoring, where the second one diffuses information, thus
sometimes alerting for unexpected damage. In this direction, urgent measures could save
lives and properties (i.e., the case of the Champlain Towers South collapse on 24 June 2021,
in Miami, USA, where a 12 story building suddenly collapsed, causing 98 deaths, with
11 injured and 35 rescued people [60]).
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ERnZEBs must be structurally conformed, having a stiff reinforced concrete core,
within which exist stairs and elevators. It is very important to develop safe pathways for
the building’s evacuation. Obviously, it is equally important that this escape route remain
intact during and until the end of the strong seismic action. Only with very rigid reinforced
structural walls forming closed cores can we obtain such a prerequisite. Nowadays, a
novel core under the name “SpeedCore”, (Coupled Composite Plate Shear Wall-Concrete
Filled) [61], concentrates the attributes of a sustainable and resilient system; see Figure 8.
The aforementioned is composed of two steel plates, held in position by cross tie bars, filled
with concrete, and shear studs ensuring the composite action. Such systems are already
used in the steel industry; however, with small adjustments, they could also be used for
reinforced concrete structures. Finally, an organizational issue is to post an escape plan
at the entrance of the building that can inform the occupants of the route they can follow
when the earthquake is over.
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3.4. Rapidity

According to Bruneau et al. [36,37], rapidity refers to “the capacity to meet priorities
and achieve goals in a timely manner in order to contain losses, recover functionality and
avoid future disruption” or in other words “to the rate at which the community attains
its pre-event functionality level”. Through this attribute, the time dimension of resiliency
is introduced; emphasis is given to the recovery time. This aspect is strongly dependent
on society’s level of preparedness. A resilient society is made up of resilient lifelines,
resilient buildings, and policies that promote and ensure resilience. Focused on buildings,
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the main target is to minimize the damage and to maximize solutions that permit rapid
structural rehabilitation.

A building facility is an entity of a larger set of buildings that composes a component
of society’s resilience; thus, each building must be earthquake resilient; this means that
it must be designed and constructed implementing such technologies as will offer rapid
rehabilitation after a severe earthquake. It is well known that a structure has three main
parts: the soil foundation (where the structure is based), the substructure (foundation
system), and the superstructure (which is arranged by the lateral load-resisting system and
the non-structural elements).

Typically, after a severe earthquake, if the foundation system is aggravated, it requires
a lot of time to restore [62–66]. In many cases, demolition (in other respects, of a lightly
damaged building) occurs because of the damage, tilting, or sliding of the foundation [67].
Moreover, in many cases, liquefaction problems require much time for soil foundation
improvement. Generally, foundation damage is irreversible [68]. Consequently, for an
ERnZEB building it is of paramount importance that it is founded on a stable soil (this
requires a thorough geotechnical investigation study primarily for the soil characterization
and, after that, for the calculation of the bearing capacity not from the soil’s capacity but
from its deformation capacity); moreover, in cases of near field earthquakes, especially
within a radius of approximately 10 Km from the epicenter, as well as in the case of nearby
rivers, lakes, sea, the foundation system must be rigid, continuous on the soil foundation,
and of box type, with circumferential rigid reinforced concrete walls [62,63,69,70] (i.e.,
piled raft foundations, piled cap foundations connected with rigid grade beams forming
grids, box-type basements, on approximately 3 m depth, with raft foundation, cellular
rafts filled with sand). Alternative solutions to protect the foundation system would be the
construction of a soil bentonite walls in near proximity to the building [71,72], the execution
of vertical trenches of extruded polystyrene sheets [73], or a design of the foundations
according to the rocking isolation concept [74–76].

Related to the load-resisting system, we have two options in order to reduce the time
to recovery after an earthquake. The first one, as discussed earlier, is to design in a manner
that promotes the stiffness, while at the same time following and respecting the rules for
a ductile detailing, thus ensuring light damage through rigidity, and collapse prevention
through ductile detailing. Dual systems (i.e., reinforced concrete frames and structural
walls or steel frames combined with braced frames in both directions, positioned in proper
locations, receiving more than 60% of the base shear) will minimize the deformation, and
as such will avoid severe or medium damage. Also, base isolation and passive damping are
in this direction. The second option is to use replaceable structural fuses where the damage
will be concentrated, in those elements, and after a severe seismic action a rapid restoration,
through replacement, should be performed; see Figure 9 [43,64,65]. We could simulate the
automobile industry, where, when a machine element fails, it is replaced by spare parts
that exist in stock. In this way, there will always be a reserve, and after a strong earthquake,
critical buildings elements (or structural fuses) will not be constructed, but they will be
able to be replaced immediately. Therefore, the recovery of the structural system will be
performed within a few days.

With regard to non-structural elements, even if we ensure light damage or even
avoid structural damage to the lateral load-resisting frame, we will not avoid damage to
the non-structural elements. Therefore, the crucial point is to defend the non-structural
elements. In order for a building facility to remain fully operational, it is imperative that
the exterior and partition walls, suspended ceilings, ducts, pipes, electrical services, etc.
be protected against damage or have the ability to be rapidly restored. The main concept
to avoid failure of the non-structural elements is that they be decoupled from the lateral
load-resisting system, through the application of gaps between them [77,78] or of use of
sliding mechanisms providing relative movement [79–81]. Otherwise, suitable restrainers,
through fixing or/and bracing, should be introduced.
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In this direction, related to the infill masonry walls, the use of external thermal com-
posite insulation systems, ETICS (applying rigid insulation boards such as mineral wool,
expanded polyurethane, EPS, or extruded polyurethane, XPS, attached to infill masonry
by chemical bonding and mechanical anchoring), are viable solutions providing seismic
resilience and energy consumption reduction towards a near zero energy building [57,82].
Moreover, to strengthen the aforementioned system, textile reinforced masonry, TRM,
should be used after the placement of the rigid insulation boards [83–88]. Concerning sus-
pended ceilings, proper bracing and hanger systems must be used to avoid collapse [89–93].

Finally, in a holistic view of an ERnZEB building, one can also define the seismic
resiliency and proper measurers of the interior content, namely, the furniture and the
equipment [94–96]. The furniture will have been held in position, after an earthquake, as
well as the equipment, through suitable bracing and anchoring. Moreover, the furniture
(i.e., tables) could provide a place where the users could stay safe during the seismic
ground motion [97,98].

For example, according to [65], which prescribes a methodology for rating earthquake
resilience for buildings, platinum seismic resiliency could be achieved by reaching the
following criteria: functional recovery of not more than 72 h, expected economic loss of
not more than 2.5% of the building’s value, and life safety for occupants, with injures
being unlikely. The reader can find in [99–102] practical applications of the methodology
provided in [65].

4. The near Zero Energy Attribute of an Earthquake Resilient Building

An earthquake resilient building must, at the same time, be a near zero energy facility.
This second attribute is related to the energy consumption [103], and further on, a low
energy consumption is associated with two types of components, namely: [i] the external
thermal insulation composite system and/or external façades that confer, as a function
of their composition, earthquake resilience, and [ii] heat and ventilated air conditioning
systems, HVAC. The second one is associated with the field of mechanical engineering and
is beyond the scope and specialization of the current paper. In any case, the HVAC systems
in an earthquake resilient building must be adequately restrained and anchored [104,105].

The main target, respecting the 3 and 4Rs of sustainability and resiliency, is to use
systems that have a twofold purpose: improving seismic resilience and reducing energy
consumption. Thus, ETICS represents the optimum solution in order to fulfill the above-
mentioned conditions. A schematic representation is presented in Figure 10 [106–108]. Stud-
ies regarding the seismic performance of such systems are performed in [57,77,78,84–87],
which nowadays are mature solutions for commercialization. Moreover, for low-rise build-



Sustainability 2024, 16, 2317 14 of 19

ings (of one or two stories), the application of rigid boards of extruded polystyrene would
play the role of passive seismic isolation Figure 11 [109]. The lack of a legal framework (i.e.,
the publication of a European Technical Approval connected with seismic codification and
standardization of these systems) is a real obstacle. Currently, ETICS are used only for the
insulation of buildings, ensuring near zero energy consumption conditions through the
isolation of thermal bridges (details of Figure 10) and the exterior shell as well [110,111].
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5. Conclusions and Discussion

Learning from earthquakes spanning more than 100 years, one can distinguish the
following millstones: we started with an earthquake force-based design (mainly after the
San Francisco earthquake, USA, 1906), we passed to earthquake-performance-based design
(mainly after the Northridge earthquake, USA, 1994), and nowadays we are developing
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earthquake resilient design (mainly after the series of New Zealand earthquakes, 2010).
Sustainable (near zero energy) buildings are dictated by the climate crisis due to the fact that
the building industry is energy consuming. Sustainability and resiliency are not only con-
nected with building facilities; they form a wider philosophy of doing things that embraces
societies and communities and the entire build environment, from the manufacturing
of building materials, to urban planning, to the construction of infrastructure and build-
ings. In order to practically define and apply a sustainable and resilient way of thinking,
environmental, social, and economic issues are interrelated in a multidisciplinary manner.

Earthquake sustainability is mainly focused on material consumption, while resiliency
is concentrated on the ability of a structural and non-structural system to absorb, recover,
and adapt after a destructive seismic action. Both of them strive for society’s protection and
human wellbeing. A basic component of the built environment is the building facilities.
The aforementioned framework creates the need for Earthquake Resilient near Zero Energy
Buildings (ERnZEB) conceptual definition. A localized view on practical construction
practices, and not only a global probabilistic view, is absolutely necessary. The practical
materialization of ERnZEBs requires a proper foundation, structural and non-structural
conformation (already performed from preliminary design), low-damage structural sys-
tems, durability, and flexible connections with the other architectural finishes and HVAC
systems as well. Following the triangle of research, practical application and policies (urban
planning, code development, preparedness plan), we will turn the system’s vulnerability
to resilience and the system’s survivability to sustainability.
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