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Abstract: Increasing the installed capacity of renewable energy sources (RESs) in the power system
is significant for advancing sustainable development. As the proportion of RESs rapidly increases
in power systems, the inherent stochasticity and variability of renewable energies significantly
reduce the regulatory capacity of generation resources. To compensate for the lack of power system
flexibility, it is necessary to coordinate the participation of load-side resources in demand response
(DR). Therefore, this paper proposes a solution to the diminished flexibility of power systems. It
introduces a day-ahead stochastic scheduling model for an integrated thermal-hydro-wind-solar
system. This model relies on customer directrix load (CDL) to efficiently absorb RES output. CDL
represents an ideal load profile shape. Firstly, the stochastic scenario sets of RES output were modeled
using Monte Carlo simulations, and the complementary characteristics between wind and solar
output are considered using Copula theory. Then, CDL is introduced into day-ahead scheduling
model, which considers relevant demand-side responsive load constraints. Secondly, customer-side
DR effectiveness model is proposed to obtain the shaping load profile after DR, based on quantitative
customer response effectiveness evaluation metrics. Lastly, system-side stochastic scheduling model
of high-proportion RES power system is proposed based on the shaping load profile. Case studies
were conducted on a modified IEEE-6 bus system. These studies show that the model effectively
addresses the uncertainty of RES. It improves the power system’s regulation capability. Additionally,
it promotes the absorption of RES.

Keywords: sustainability; day-ahead scheduling; customer directrix load; demand response;
renewable energy sources

1. Introduction

With escalating energy demand and advancements in the energy sector, carbon diox-
ide emissions have surged annually. It is crucial to advance decarbonization in power
generation, develop renewable energy source (RESs) technologies, foster the transition
towards RESs, and build a new power system predominantly reliant on RESs for achieving
China’s carbon peaking and carbon neutrality goals [1].

The conventional power system depends on substantial capacity of thermal units
and the secure, stable operation of backup system for wind and solar power. However,
renewable resources like wind and solar power are highly susceptible to climatic, seasonal,
and temperature variations, introducing significant uncertainty and volatility. As the
integration of these resources into the grid increases, the system faces amplified uncertainty
at both the generation and consumption ends, complicating operation and challenging its
security, stability, and dynamic balance [2]. Thus, it is of paramount importance to study the
optimal scheduling of systems with a high proportion of RESs. Demand response (DR) can
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effectively integrate flexible loads, reducing the use of high-cost thermal units [3]; thereby,
reducing the load in peak periods can avoid unit capacity expansions and ease bottlenecks
in the power system [4]. DR strategies based on demand-side resource management have
emerged as crucial for ensuring reliable power supply and the safe and stable operation of
new power systems due to their flexible regulation, high potential for adjustment, minimal
grid impact, and low costs [5]. In the current study, researchers generally categorize DR
into price-based DR (PDR) and incentive-based DR (IDR) [6,7]. PDR guides electricity
consumers to optimize their own load profiles through the setting of price mechanisms like
time-of-use (TOU) tariffs and categorized electricity price. IDR includes modes of operation
such as interruptible load, incentive coupon issuance, and direct load control, which do
not involve tariffs and customers will not bear direct benefit losses [8]. In Ref. [9], a solid
estimation of consumer demand and its relationship with TOU tariffs is offered. Ref. [10]
proposes a dynamic tariff scheme based on linear regression, which guides residential
customers to participate in DR and addresses the optimization challenge of DR using a
particle swarm optimization algorithm. Ref. [11] introduces an incentive-based DR (IDR)
strategy, employing two-stage optimization approach to minimize the cost of flexibility
management and improve the peak-to-average ratio of the community microgrid load
profile. Ref. [12] explores an optimization problem for operating energy hubs (EHs), aiming
to enhance customer benefit and reduce the overall operational cost of the EH system, in
the context of both PDR and IDR programs. However, the two DR mechanisms mentioned
above currently suffer from the following shortcomings: PDR is an involuntary regulation
method and is affected by differences in customers’ perceptions of the DR benefits, which is
not customer-friendly, and its large-scale rollout can lead to the over-regulation or rebound
of loads [13,14]. IDR widely adopts customer baseline load (CBL) to evaluate customer
contributions, but in large-scale DR, the calculation of CBL for large number of customers
faces enormous data calculation, storage and communication pressure, and the accuracy
and authenticity of CBL cannot be guaranteed [15].

For these reasons, some scholars proposed the strategy of customer directrix load
(CDL), a desired load profile that offsets power system fluctuations effectively [16,17].
Customers can make their load profiles as close as possible to the CDL in order to reap
the benefits. CDL-based DR is simple and easy to implement, has the characteristics
of widespread promotion and normalized implementation, and can well support the
construction of new power systems, so it has received extensive attention from scholars.
Ref. [18] proposes a calculation model of nodal customer directrix load (NCDL) with robust
security, which can guarantee that the power flow across all lines remains within established
limits for any real response outcomes within the designated DR range. The above literature
takes the associated network constraints and the uncertainty of flexible loads into account,
however has not yet considered the uncertainty of RES output, which is also a factor that
should not be ignored in scheduling optimization. The scenario optimization method is one
of the main approaches to study the uncertainty of RES, and uncertainty is considered by
generating sets of scenarios through Monte Carlo simulation. This method can accurately
characterize the random variables. While the current CDL-based DR optimal scheduling
model does not consider hydro units, the modeling of joint optimal scheduling problems
of cascade hydropower plants has emerged as a challenging and significant problem in
the field of optimal scheduling. Ref. [19] introduces a scheduling strategy for a thermal-
hydro-wind-solar system that incorporates the impacts of water head and discharges
within a single function. This strategy enables the transformation of the head-dependent
hydropower conversion function into a piecewise linear function, which can be efficiently
solved using a mixed-integer programming (MIP) model.

To address the above challenges, we propose a multi-sources stochastic coordinated
scheduling model based on CDL-based DR. Compared with traditional methods, the model
we propose integrates the uncertainty of RES through various scenarios generated using
Monte Carlo simulation. By examining the complementary traits between wind and solar
generation, we can establish the fundamental functions of both. The scenarios can be
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generated by using the Copula function, which is used to describe the complementary
traits of wind and solar output. A fast scenario reduction technique based on improved
k-means clustering and the SBR algorithm [20] is employed to balance precision with com-
putational efficiency. The dynamic characteristics of hydro units, which are not currently
considered, are also included to improve energy efficiency and stable supply and reduce
energy volatility through multi-energy complementarity. Finally, case simulations were
carried out by means of a modified IEEE 6-bus power system arithmetic example, and the
results of the case study indicate that the proposed model can effectively improve system
flexibility, reduce the curtailment of RES in a high-proportion RES power system, and
obtain the intermediate scheduling solutions in the base case with the uncertainty of RESs.

The main contributions are presented as follows:

(1) Compared with traditional stochastic optimization methods where the objective
function is to minimize the cost of system operation in all scenarios, the proposed
model aims to obtain a dispatch solution with a stable operating cost in the base case.
This dispatch solution allows for the power system to operate under the forecasted
base case and can safely redispatch all units in response to real-time fluctuations in
RES output.

(2) We introduce the dynamic characteristics of cascade hydro units and CDL-based DR
in day-ahead stochastic scheduling model with RES uncertainty for the first time.
The complementary characteristics of wind and solar are considered and modeled
using the t-Copula function. These all aim to improve energy efficiency, ensure stable
supply, and reduce energy fluctuations through multi-sources complementary and
coordinated scheduling.

We concisely encapsulate this paper’s structure: after this introduction, Section 2
introduces the concept of CDL, defines the response effect metrics and incentives for
CDL. Section 3 introduces our methodology, focusing on the novel day-ahead stochastic
scheduling model incorporating CDL-based DR. In Section 4, we detail the formulation
of our model, elucidating on the use of Copula theory and Monte Carlo simulations for
addressing uncertainties in RESs. Section 5 applies the proposed model to a modified IEEE-6
bus system, showcasing the practical application and effectiveness of our approach through
case studies. The discussion in Section 6 extends the analysis of our findings, contemplating
their broader implications and suggesting avenues for future research. Section 7 synthesizes
our contributions, emphasizing the effectiveness of our novel stochastic scheduling method
in enhancing RES consumption and robustness of system operation.

2. Customer Directrix Load

In this section, we will introduce the concept of CDL and define the response effect
metrics and incentives for CDL.

2.1. CDL-Based DR Strategy

In the domain of power systems, uncontrollable devices such as RES and inflexible
loads are the sources of power fluctuations. To uphold the stability of power systems,
controllable resources including conventional power sources, DR, and curtailment of RES
are required to counteract these fluctuations and ensure real-time power balance. Ref. [16]
posits that, based on the regulation needs generated by RES and inflexible loads within the
system, the ideal shape of the flexible load profile was computed and termed CDL. CDL
serves both as a target for consumer adjustments and as a benchmark for evaluating the
contributions of consumers to system balance.

In this study, the electric load was divided into flexible loads that participate in DR
and inflexible loads that do not participate in the DR as Equation (1). All customers on
the demand side who are interested in participating in the DR as an adjustable resource
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were registered. Since load collimation is only concerned with the shape of the load profile,
industrial, commercial, and residential customers could participate directly.

Pdt = PDR,t + PnDR,t (1)

where PDR,t is flexible loads at t time; PnDR,t is inflexible loads at t time; Pdt is the electric
load demand of load at t time.

The DR center calculates the CDL based on the network-wide operating data before
the day and releases the load parity to the whole community. Customers participating
in the DR make decisions about their electricity usage for the following day, based on
the load baseline and their personal energy needs. They aim to align their load profile as
closely as possible with the CDL to maximize their incentive compensation. This strategy
encourages users to modify their consumption patterns to better match the available supply,
contributing to the overall efficiency and stability of the power system.

It is noted the power system operates at its optimal state when the shape of the
adjustable load exactly matches the CDL, preventing the need for conventional power
adjustments and the curtailment of RESs. In such a scenario, the optimal solution for
flexible loads is identified through optimization models as the value of CDL. However, due
to the physical and comfort limitations of customers, the actual reshaped load profile may
only approximate, not coincide with, the desired load profile. Consequently, per standard
power dispatch models, conventional power resources and reduction in RES outputs are
utilized to mitigate fluctuations and achieve power balance.

We employed the L-1 norm for normalizing the load profile, indicating that alternative
normalization methods do not affect the applicability of CDL. The per unit load profile
eliminates the features in the order of magnitude and retains only the features in the shape
of the load profile, which can provide a load shaping target for all DR participants as
follows:

P∗
DR,t =

PDR,t

CD
, t = 1, 2, . . . , T (2)

CD =
T

∑
t=1

PDR,t (3)

where T is the total number of hours in the dispatch; CD is the total electrical consumption
of the flexible load at t time, also known as the total flexible electricity; P∗

DR,t is the per unit
of flexible load.

The purpose of the CDL-based DR is to encourage customers to modify the shape
of their load profile, achieving peak shaving and valley filling without changing the total
electricity consumption thereby ensuring energy efficiency for consumers. Hence, the
following constraints need to be considered:

T
∑

t=1
P∗

DR,t = 1

0 ⩽ P∗
DR,t ⩽ 1

(4)

In addition, it is necessary to consider the system load balance constraints, thermal
unit constraints, RES capacity constraints and power flow constraints, etc. The calculation
model of CDL and its objective function and associated constraints will be detailed in
Section 3.

2.2. Response Evaluation and Incentives

The DR center needs to measure the effectiveness of customer response and set up
a reasonable incentive subsidy mechanism to ensure that customers are proactive and
obtain positive feedback in the DR process. Therefore, a metric is defined to measure the
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similarity between the customer’s actual load profile and the load CDL, also known as the
CDL similarity: 

E = E
(

l∗t , P∗
DR,t

)
= e−εd2

d =

√
T
∑

t=1
(l∗t − P∗

DR,t)
2

(5)

where d is the Euclidean distance between the two profiles, and d is converted to a similarity
metric E between the intervals (0,1] by the constant value ε. Since d is calculated using the
per unit value of the load profiles, the value of d is approximately between 0 and 1. When
both load profiles are exactly same, the value of d is 0. Figure 1 visualizes the sensitivity of
the E to ε. It is observed that when ε is set to 5, it is better converts d to the similarity metric
E. Therefore, we set ε to 5 in the simulations.
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It is commonly assumed in the current stage of research that customers participating in
DR are completely rational, which means that customers will combine subsidy incentives to
minimize the amount of change in their own electricity use under the premise of ensuring
that the total amount of electricity used does not change and similarity of alignment before
and after participation in DR improves ∆E. It is out of the scope of this paper to discuss
the non-rationality of consumers. Future work may address the impact of non-rational
behavior. The model is as follows:

min
T
∑

t=1
(P∗

l,DR,t − P∗
l,t)

2

s.t. E
(

P∗
l,DR,t, P∗

DR,t

)
⩽

min
(

E
(

P∗
l,t, P∗

DR,t

)
+ ∆E, 1

) (6)

where P∗
l,DR,t is the actual load profile at t time after the customer participates in DR; P∗

l,t
is the load profile before the customer participates in DR. The right side of the inequality
represents that the similarity metric E between the load profiles of DR customers and the
CDL profile can be improved ∆E with DR, but the similarity metric E cannot exceed the
upper bound, i.e., 1.

Most of the DR strategies implemented today stipulate that the peak and off-peak
periods are divided into the peak period (10:00–12:00, 15:00–21:00); flat period (7:00–10:00,
12:00–15:00, 21:00–23:00); and low period: (23:00–7:00 the next day); the upper and lower
limits of DR price are 0–3 $/kW·h. With reference to the above provisions, we set the
subsidy for customers to adjust the power quantity in the peak period at 3 $/kW·h, in the
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low period at 1 $/kW·h, and in the flat period at 2 $/kW·h and set reasonable subsidy
coefficients to ensure that the subsidy was fair and reasonable, described as:

St = µ(3Phigh
t + 2Pmid

t + Plow
t ) (7)

where St is the amount of DR subsidy at t time, µ is the subsidy coefficient set to 7.2;
Phigh

t , Pmid
t , Plow

t are the amounts of adjustment of electricity consumption during the peak,
flat, and low periods at t time. This algorithm integrates the actual power consumption
adjustment of the customer and CDL similarity, which can simultaneously measure the
peak shaving of the customer’s load and its contribution to RES absorption, ensuring that
the subsidy is fair and effective.

3. Operation Decision Model of Multi-Sources Power System with CDL-Based DR

In this section, we will introduce the calculation model of CDL and the scheduling
model of a multi-sources power system. In the first stage, the DR center obtains the CDL
based on the day-ahead forecasted RES output, load demand, and other relevant constraints.
At this point, the flexible load PDR,t participates in the decision as a variable. Then, the
decision-making process of customers who participate in DR is simulated by using the
customers decision model introduced in Section 2.2. The actual load profile P∗

l,DR,t after
DR can be obtained in this customers decision model. In the second stage, based on the
simulation results of the first stage, the scheduling model of multi-sources power system is
solved. At this point, the flexible load PDR,t participates in the decision as a constant with
the same value as P∗

l,DR,t.

3.1. Deterministic Scheduling Model
3.1.1. Objective Function

The purpose of the water-thermal-wind-solar scheduling model is to minimize the
system costs (including fuel cost and unit start-stop cost) while considering the cost asso-
ciated with curtailed RES output and loss of load and to promote the absorption of RES.
It is noted that DR costs are reflected ex-post, meaning that the response targets are set
decoupled from DR costs. Therefore, DR costs do not need to be considered in the objective
function as shown:

min[CS + CG + CC + CL] (8)

where CS is the start-up and shutdown cost of the thermal power units; CG is the operating
cost of the thermal power units; CC is the cost of RES abandonment; and CL is the loss of
load cost;

CS =
T

∑
t=1

NG

(∑
i=1

(SUit + SDit)) (9)

CG =
T

∑
t=1

NG

(∑
i=1

(aiP2
it + biPit + ci)) (10)

CC =
T

∑
t=1

(CR · (
Nw

∑
w
(Pf ,wt − Pwt) +

Ns

∑
s
(Pf ,st − Pst))) (11)

CL =
T

∑
t=1

(Cl · PLoL,t) (12)

where NG is the number of flexible generators; SUit and SDit are the start-up and shutdown
costs of thermal unit i at t time; ai, bi, ci are the cost coefficient of thermal unit i; Pit is active
power thermal unit i at t time; CR is the penalty coefficient of RES abandonment; PR,max,t is
the maximum power of RES generation output at t time; PR,t is the power of RES generation
output at t time; Cl is the penalty coefficient of loss of load; and PLoL,t is the power of loss
of load at t time.
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3.1.2. Constraints

The constraints of the model mainly consist of system constraints, thermal power unit
constraints, cascade hydro unit constraints, wind power and solar output constraints, and
load collinear constraints [21]. The system constraints mainly include the load balancing
constraint (13) and the direct current (DC) power flow constraint (14)

∑
t

Pit + ∑
h

Pht + ∑
w

Pwt + ∑
s

Pst + PLoL,t = ∑
t

Pdt (13)

−PLmax ≤ SF · (Ki · Pit + Kh · Pht + Kw · Pwt
+Ks · Pst − Kd · Pdt) ≤ PLmax

(14)

where Pht is the output of hydro unit h at t time; Pdt is the demand value of electric load d at
t time; SF is the transfer matrix; PLmax is the maximum capacity matrix on each transfer line;
Pit, Pht, Pwt, Pst are the scheduling vectors of thermal power, hydro power, wind power,
and solar power, and Ki, Kh, Kw, Ks are the correlation matrix of buses with thermal power,
hydro power, wind power, and solar power; Pdt is the dispatch vector of bus load; and Kd
is the incidence matrix of bus load.

The thermal power unit constraints mainly include the unit capacity constraint (15),
minimum start/stop time constraints (16) and (17), start/stop cost constraints (18) and (19),
and upward and downward climb constraints (20) and (21):

Pmin
t · Iit ≤ Pon

t ≤ Pmax
t · Iit (15)(

Xon
i(t−1) − Ton

i

)
·
(

Iit(t−1) − Iit

)
≥ 0 (16)(

Xoff
i(t−1) − Toff

i

)
·
(

Iit − Ii(t−1)

)
≥ 0 (17)

SUit ≥ sui ·
(

Iit − Ii(t−1)

)
, SUit ≥ 0 (18)

SDit ≥ sdi ·
(

Ii(t−1) − Iit

)
, SDit ≥ 0 (19)

Pi(t−1) − Pit ≤ DRi · Iit + Pmin
i ·

(
Ii(t−1) − Iit

)
+ Pmax

i ·
(

1 − Ii(t−1)

)
(20)

Pit − Pi(t−1) ≤ URi · Ii(t−1) + Pmin
i ·

(
Iit − Ii(t−1)

)
+ Pmax

i · (1 − Iit) (21)

where Iit is the commitment state of unit i at t time, Ton
i , Toff

i are the minimum on/off time
of unit i, Xon

it , Xoff
it are the timers for the on/off of unit i at t time, which record the times

of startup and shutdown of the unit, sui, sdi are the startup/shutdown costs of unit i, and
DRi, URi are the ramp-up and ramp-down rates of unit i.

The hydro unit constraints between upstream and downstream reservoirs need to be
considered for the cascade hydro unit, and its main constraints are:

Vht = Vh(t−1) +
(

rht + Q(h−1)t − Qht

)
(22)

Qmin
h · Iht ≤ Qht ≤ Qmax

h · Iht (23)

Vmin
h ≤ Vht ≤ Vmax

h (24)

Vh,0 = V0
h , Vh,NY = VNT

h (25)

where V0
h , VNT

h is the initial and final storage capacity of the hydro unit h; Qht is the reservoir
discharge volume of the hydro unit h at the moment of t; Vht is the storage capacity of the
hydro unit h at t time; Qmin

h is the minimal reservoir discharge volume of the hydro unit
h; Qmax

h is the maximal reservoir discharge volume of the hydro unit h; Vmin
h , Vmax

h is the
minimum/maximum storage capacity of the hydro unit h, and rht is the natural incoming
water volume of the hydro unit h at t time.
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Equations (26) and (27) are the water head function of the cascade hydro unit, which
represents the hydropower conversion relationship.

Hht = h0,h + αh · Vht (26)

Pht = ηh · Qht · Hht = ηh · Qht · (h0,h + αh · Vht) (27)

where Hht is the water head level of the hydro unit h at time t, the value of which is related
to the physical dimensions of the terraced hydroelectric power plant, h0,h, αh is the physical
constant with respect to the hydro unit h, and ηh is the water-to-power conversion factor.

The RES constraints ensure that the dispatched output of the RESs will not exceed the
predicted value at time:

0 ≤ Pwt ≤ Pf ,wt (28)

0 ≤ Pst ≤ Pf ,st (29)

3.1.3. Piecewise Linearization of the Hydropower Conversion Function

Ref. [19] introduced extra integer variables to convert the nonlinear water-to-power
conversion function into a piecewise linear function. Ref. [21] utilized the heuristics to
convert the transformation profile into piecewise linear functions. The previous function
is divided into a lattice where each element is divided into two triangles. Therefore, the
hydropower conversion function can be expressed in terms of piecewise linearization, then
it can be incorporated into the MIP model.

As noted above, we used a (m − 1)× (n − 1) grid to divide Qht and Vht into subin-
tervals [qz, qz+1] and [vr, vr+1] where z = 1, 2, . . . m − 1, r = 1, 2, . . . n − 1. Therefore,
Equation (27) can be expressed as (30)–(34):

m

∑
z=1

n

∑
r=1

λz,r = 1, λz,r ≥ 0 (30)

Qht =
m

∑
z=1

n

∑
r=1

qz · λz,r, Vht =
m

∑
z=1

n

∑
r=1

νy · λz,r (31)

m

∑
z=1

n

∑
r=1

(
Lu

z,r + Rd
z,r

)
= 1, Lu

z,r, Rd
z,r ∈ {0, 1} (32)

λz,r ≤ Lu
z,r−1 + Lu

z,r + Lu
z,r+1 + Rd

z−1,r + Rd
z,r + Rd

z+1,r (33)

Ph =
m

∑
z=1

n

∑
r=1

ph
z,r · λz,r, ph

z,r = η · qz · (h0 + α · νr) (34)

Every grid is divided into two triangles in the upper left and lower right corners. Lu
z,r

represents the location index of the upper left triangles. Rd
z,r represents the location index

of the lower right triangles.

3.1.4. Abstract Formulation

The model we proposed can be expressed in an abstract form to ease the introduction
of the stochastic model, as shown in (35)–(38):

mincTx + dTy (35)

s.t. x ∈ {0, 1} (36)

Ax ≤ e (37)

Cx + By ≤ f (38)

where x is a binary vector representing start-stop states, start-stop actions, and auxiliary
variables of the linearized hydropower conversion function. y is a continuous vector repre-
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senting the scheduling decisions for each energy source, and A, B, C, c, d, e, f are abstract
matrices and vectors related to the cost and constraint coefficients. Constraint (36) ensures
that x is a binary vector. Constraint (37) represents the constraints of binary variables, and
Constraint (38) represents the conditions of a system with both binary and continuous
variables. Specifically, Equation (35) represents the objective function of the model, i.e.,
(8)–(12). cTx represents the start-up and shutdown cost of thermal power units i.e., (9).
dTy represents all costs related to thermal, hydro, wind and solar generation, including
all penalty costs, i.e., (10)–(12). Equation (36) represents that x only takes values of 0 or
1. Equation (37) represents constraints related only to the start/stop state of units, i.e.,
(16)–(19). Equation (38) represents rest constraints related to outputs of various units.

3.2. Stochastic Scheduling Model

The deterministic scheduling model only considers accurate prediction information for
scheduling. However, in practice, the DR center prefers to take into account as much uncer-
tainty as possible a day ahead, based on the scenarios, to find a relatively stable operation
cost. This study introduces a stochastic scheduling model for a thermal-hydro-wind-solar
system that takes into account the uncertainties of RESs as shown in Equations (39)–(44).
The design allows the system to function based on a base-case scenario using projected
data, with the capability to securely re-dispatch thermal and hydro units to address the
real-time variabilities of RESs.

Given the unpredictable nature of wind and photovoltaic generation due to their
intermittent characteristics, operators would favor minimal fluctuations in operating costs
across various realizations of renewable generation. The objective function (39) consists
of the cost of base-case operations and the anticipated variance between other potential
scenarios and the base case.

min
[
cTx + dTyb + ρξ

∣∣∣dTyb − dTyξ
∣∣∣] (39)

where yb is the base-case scheduling decision; yξ is the scheduling decision in other poten-
tial scenarios; ξ represents the serial number of typical scenarios; ρξ is the weight of the
scenario ξ, and the value of ρξ is set as the probability of occurrence of typical scenarios
calculated at Section 4.2. Scenario Reduction. cTx + dTyb represents the base-case costs, i.e.,
deterministic scheduling model.

∣∣∣dTyb − dTyξ
∣∣∣ represents the absolute value of difference

in operating costs excluding start/stop costs between all typical scenarios and the base case.
Equations (40)–(44) represent operational constraints. Specifically, flexible resources

like adaptable generators with rapid ramping capabilities are reallocated to balance the
electric load. The dispatches in these scenarios are further interconnected through constraint
(44), which regulates the corrective ramping capacity of the generating units [22,23].

s.t. x ∈ {0, 1} (40)

Ax ≤ e (41)

Cx + Byb ≤ f (42)

Cx + Byξ ≤ f (43)

Gyb + Hyξ ≤ ∆ (44)

where G, H, ∆ are abstract matrices and vectors of cost and constraint coefficient correlations.
Specifically, Equation (40) represents that x only takes values of 0 or 1. Equation (41) repre-
sents constraints related only to the start/stop state of units, i.e., (16)–(19). Equation (42)
represents rest constraints related to outputs of various units in base case. Equation (43)
represents rest constraints related to outputs of various units in all typical scenarios. Equa-
tion (44) represents the constraints that can further couple the dispatch solution in the base
case and typical scenarios.
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The absolute value function in Equation (39) can be solved linearly by the big-M
method of operational optimization. We have:

o =
∣∣∣dTyb − dTyξ

∣∣∣, p = dTyb − dTyξ (45)

−(1 − Γ)M ⩽ o − p ⩽ (1 − Γ)M (46)

−ΓM ⩽ o + p ⩽ ΓM (47)

−(1 − Γ)M ⩽ p ⩽ ΓM (48)

where Γ, a binary value vector, indicates the positive/negative components of p. M
represents a sufficiently large value.

Based on the above models, the CDL that can consume as much RESs as possible
at the system level can be obtained, and the DR center only needs to publish this profile
to inform the customers of the load adjustment target. Figure 2 shows the CDL profiles
derived from both deterministic and stochastic scenarios. It is evident that the CDL
profile generated under deterministic conditions exhibits a larger peak-to-valley difference
compared to its stochastic counterpart, thus more effectively guiding customers towards
achieving peak shaving objectives. However, the deterministic approach yields less robust
outcomes. In contrast, the stochastic scenario accounts for uncertainties, necessitating
additional committed units to maintain system security. This method results in more robust
scheduling decisions that avoid excessive conservatism.
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4. Generation and Reduction of Uncertainty Scenario Sets

RES output exhibits evident randomness, volatility, and intermittency, with their
uncertainty primarily stemming from prediction errors induced by climatic conditions.
Considering the complementary traits between wind and solar power generation within
the same region, this study employs a model to represent the uncertainty of both as random
variables and utilizes Copula theory to capture their correlation. Numerous deterministic
scenarios are then generated by using Monte Carlo simulations. Subsequently, scenario
reduction techniques are applied to enhance computational efficiency and ensure the
representativeness of the generated scenarios.

4.1. Scenario Generation

The outputs of wind and solar have natural complementary characteristics. Existing
research has demonstrated that the use of copula theory to account for their correlation
can effectively improve the output fluctuations caused by grid-connected wind and solar



Sustainability 2024, 16, 2589 11 of 21

power [24]. Sklar’s theorem notes that let H(·, ·) be the joint distribution function of the
marginal distributions F(·) and G(·). Then, there is a Copula function C(·, ·).

H(x, y) = C(F(x), G(y)) (49)

t-Copula is employed to integrate the marginal distribution functions of wind and
solar power, considering the nonlinear complementarity between wind and solar ener-
gies [25]. The t-Copula function was chosen for its flexibility and ability to capture tail
dependence more effectively than the other Copula functions, making it better suited for
modeling extreme value correlations and non-normal data distributions [26]. Firstly, the
nonparametric kernel density (NKD) is utilized to describe the historical data of wind and
solar output and does not need to rely on the information of probability distributions and
can accurately express the uncertainty of RES output.

fw(Pw) =
1

NT · β

NT

∑
n=1

K
(

Pw − Pw,n

β

)
=

1
NT

NT

∑
n=1

Kβ(Pw − Pw,n) (50)

fs(Ps) =
1

NT · β

NT

∑
n=1

K
(

Ps − Ps,n

β

)
=

1
NT

NT

∑
n=1

Kβ(Ps − Ps,n) (51)

where NT is day number, β is the smoothing coefficient, K(·) is the kernel function, and
Pw,n and Ps,n are the sample historical data of the random variable Pw and Ps.

Fw(Pw) =
∫ Pw

−∞
fw(Pw)dPw (52)

Fw(Pw) =
∫ Pw

−∞
fw(Pw)dPw (53)

F(Pw, Ps) = Ct
Λ,k(FW(Pw), FS(Ps)) =

t−1
k (Fw)∫
−∞

t−1
k (Fs)∫
−∞

[
1

2π
√
(1 − Λ2)

(1 +
s2 − 2Λst + t2

k(1 − Λ2)
)
− k+2

2

]dsdt (54)

where Ct
Λ,k(Fw, Fs) is the distribution function of t-Copula; k is the degree of freedom; Λ

is the correlation coefficient, t−1
k is the inverse of the univariate distribution, Fs(Ps) and

Fw(Pw) are the cumulative probability distributions of wind and solar output.
From Equations (49)–(54), scenario samples of wind and solar output were generated

based on the inverse function of the marginal distribution.

(Pw, Ps) = F−1(Pw, Ps) =
(

Ct
Λ,k(Fw(Pw), Fs(Ps))

)−1
(55)

4.2. Scenario Reduction

The accuracy of the Monte Carlo scenario generation relies on the generated samples’
number, but large number of samples require a long time to calculate. The significance of
the scenario reduction algorithm is leveraging a concise set of representative scenarios to
accurately represent a broad spectrum of complex scenarios and maintain their authenticity.
This method aims to lower computational complexity and, in turn, boost the processing
efficiency of extensive scenario collections. This paper uses a scenario reduction method
based on improved K-means clustering and the SBR algorithm which can be found in
Ref. [20]; its flow is shown in Figure 3.
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5. Case Studies

The effectiveness of the proposed day-ahead stochastic model was tested in a modified
6-bus power system [19]. The system node wiring diagram is shown in Figure 4. There are
three conventional flexible thermal power units G1, G2, G3, two hydro units H1, H2, three
loads L1, L2, L3, one wind power unit W, and one solar power unit PV.
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The detailed parameters of these generators are shown in Tables 1–4, with data for
the water-lined generators. The historical data and forecasted values of load, wind, and
solar power generation are derived from Ref. [27]. The forecasted values of electrical load,
wind, and solar generation are shown in Figure 5. CR is set to 100 $/MW, and Cl is set to
1000 $/MW. All case studies were solved using Gurobi 9.5.2 on a personal computer.

Table 1. Thermal generation data.

Unit Lower (MW) Upper (MW) Min
Up/Down (h)

Ramp
(MW/h)

Corrective
(MW)

G1 50 150 8 100 80
G2 30 80 4 40 30
G3 10 50 3 40 15

Table 2. Fuel data.

Unit a
(MBtu)

b
(MBtu/MWh)

c
(MBtu/MW2h)

Start-Up
Fuel

(MBtu)

Fuel Price
($/Mbtu)

G1 0.0044 13.29 39 100 2.5
G2 0.0459 15.47 74.33 40 2.5
G3 0.0080 14.50 42 40 2.5

Table 3. Transmission line data.

Line From To X (p.u.) Flow Limite
(MW)

L1 1 2 0.0370 200
L2 1 4 0.0160 200
L3 2 3 0.1015 175
L4 2 4 0.1170 175
L5 3 6 0.0355 175
L6 4 5 0.0370 200
L7 5 6 0.1270 200

Table 4. Hydro generator data.

Unit H1 H2

Efficiency 6.197 6.465
H0 0.82679 0.58434
α 4.2 × 10−4 1.15 × 10−3

Max discharge (m3) 2 × 105 2 × 105

Min discharge (m3) 0 0
Max volume (m3) 2.4 × 106 3.0 × 106

Min volume (m3) 1.0 × 106 1.2 × 106

Ramp (MW/h) 60 60
Min on/off time (h) 1 1
Lower bund (MW) 7 7

Upper (MW) 115 120
Nature inflow (m3) 1.5 × 105 5 × 104
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5.1. Deterministic Scheduling Case
5.1.1. Case 1

In this case, the dispatch model for the multi-source power system without DR can only
dispatch for deterministic forecast values of electrical load and wind and solar generation.
Table 5 shows the impact of RES penetration on the associated dispatch costs in Case 1. The
total costs consist of the loss of the load penalty, curtailed RES output costs, and power
generation costs. With RES penetration increasing, total costs decrease and then increase
mainly due to the loss of the load penalty and curtailed RES output cost. The load loss
penalty decreases first but no longer decreases when the penetration rate is 0.4, and the
curtailed RES output costs rise rapidly. The cost of thermal power generation has been
decreasing, a trend attributed to the rising share of RES installations. This increase in the
proportion of renewable sources reduces the generation costs for thermal power plants.
When the RES penetration reaches 0.4, the limit of load balancing is reached. In the absence
of DR, increasing the penetration of RES at this time will only increase curtailed RES output
and reduce the output of thermal units without contributing to the source-load balance of
the system and reducing loss of load.

Table 5. The operation results in case 1.

RES Penetration Total Costs ($) Loss of Load
Penalty ($)

Curtailed RES
Output Costs ($)

Thermal Power
Generation

Costs ($)

0 8,133,874.52 7,894,789.48 0 239,085.03
0.1 4,385,292.05 4,102,886.12 49,335.65 233,070.28
0.2 3,894,427.85 3,528,935.00 134,761.06 230,731.79
0.3 3,737,378.09 3,300,696.17 216,548.96 220,132.96
0.4 3,687,348.71 3,164,161.34 308,954.21 214,233.16
0.5 3,777,943.05 3,164,161.34 404,495.06 209,286.65
0.6 3,867,915.24 3,164,161.34 499,074.22 204,679.68

Loss of load and curtailed RES under different RES penetration rates are shown in the
Figure 6. The rate of loss of load decreased from 7.42% to 2.97% and then did not change
again. Curtailed RES output rate continued to increase from 46.35% to 78.15%. Obviously,
at low permeabilities, like 0.1, the curtailed RES output rate reached 46.35%. This is a very
high value. These results show that in a new power system, the reduction in installed
capacity of conventional units leads to a huge challenge in the source-load balance of the
system and the absorption of RESs.



Sustainability 2024, 16, 2589 15 of 21

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 21 
 

5.1. Deterministic Scheduling Case 
5.1.1. Case 1 

In this case, the dispatch model for the multi-source power system without DR can 
only dispatch for deterministic forecast values of electrical load and wind and solar gen-
eration. Table 5 shows the impact of RES penetration on the associated dispatch costs in 
Case 1. The total costs consist of the loss of the load penalty, curtailed RES output costs, 
and power generation costs. With RES penetration increasing, total costs decrease and 
then increase mainly due to the loss of the load penalty and curtailed RES output cost. The 
load loss penalty decreases first but no longer decreases when the penetration rate is 0.4, 
and the curtailed RES output costs rise rapidly. The cost of thermal power generation has 
been decreasing, a trend attributed to the rising share of RES installations. This increase 
in the proportion of renewable sources reduces the generation costs for thermal power 
plants. When the RES penetration reaches 0.4, the limit of load balancing is reached. In the 
absence of DR, increasing the penetration of RES at this time will only increase curtailed 
RES output and reduce the output of thermal units without contributing to the source-
load balance of the system and reducing loss of load. 

Loss of load and curtailed RES under different RES penetration rates are shown in 
the Figure 6. The rate of loss of load decreased from 7.42% to 2.97% and then did not 
change again. Curtailed RES output rate continued to increase from 46.35% to 78.15%. 
Obviously, at low permeabilities, like 0.1, the curtailed RES output rate reached 46.35%. 
This is a very high value. These results show that in a new power system, the reduction in 
installed capacity of conventional units leads to a huge challenge in the source-load bal-
ance of the system and the absorption of RESs. 

Table 5. The operation results in case 1. 

RES Penetration Total Costs ($) Loss of Load Penalty 
($) 

Curtailed RES 
Output Costs ($) 

Thermal Power 
Generation Costs ($) 

0 8,133,874.52 7,894,789.48 0 239,085.03 
0.1 4,385,292.05 4,102,886.12 49,335.65 233,070.28 
0.2 3,894,427.85 3,528,935.00 134,761.06 230,731.79 
0.3 3,737,378.09 3,300,696.17 216,548.96 220,132.96 
0.4 3,687,348.71 3,164,161.34 308,954.21 214,233.16 
0.5 3,777,943.05 3,164,161.34 404,495.06 209,286.65 
0.6 3,867,915.24 3,164,161.34 499,074.22 204,679.68 

 

(a) (b) 

Figure 6. Relevant data under different RES penetration rates: (a) loss of load power; (b) curtailed 
RES power. 

5.1.2. Case 2 

Figure 6. Relevant data under different RES penetration rates: (a) loss of load power; (b) curtailed
RES power.

5.1.2. Case 2

The rate of flexible load participation in DR was set at 0.3. The influence of RES
penetration on scheduling outcomes in case 1 is presented in Table 6. We have examined
three scenarios where flexible loads can be seamlessly adjusted to the optimal load profile,
i.e., CDL. The results compared to case 1 show that CDL-based DR can effectively mitigate
loss of load and reduce the curtailed RES output. When RES penetration is 0.1, the rate
of curtailed RES output reduces from 46.35% in case 1 to 0%. Additionally, when RES
penetration is 0.6, the rate of curtailed RES output reduces from 78.15% in case 1 to
54.43% because here there is a large RES output, but the load is small in comparison.
Although it increases the DR costs, the total costs and the thermal power generation costs
are much lower.

Table 6. The operation results in case 2.

RES Penetration Total Costs ($) Loss of Load
Penalty ($) DR Costs ($) Curtailed RES

Output Costs ($)

Thermal Power
Generation Costs

($)

0.1 228,093.07 0 16,515.37 0 211,577.70
0.3 286,240.79 0 27,775.37 86,842.88 171,622.54
0.6 529,491.71 0 28,715.36 347,585.02 153,191.33

5.2. Stochastic Scheduling Case

The complementary traits of wind-solar generations were modeled by using the
Copula theory proposed in Section 4.1 to obtain 10,000 scenarios of wind-solar generations.
Subsequently, we employed the fast-forward method presented in Section 4.2 to obtain
reduced data sets of scenarios, providing 5 scenarios as a reasonable approximation of the
10,000 scenarios, as shown in Figure 7. Table 7 shows the value of the weighting coefficients
ρξ in the objective function (39) obtained in scenario reduction.

Table 7. The value of the weighting coefficients ρξ .

Scenario ξ 1 2 3 4 5

1-6
ρξ

0.205 0.237 0.179 0.225 0.154
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In this section, we consider the uncertainties associated with wind and solar power
generation, and the following scenarios are explored.

5.2.1. Case 3

Case 3 considers stochastic scheduling based on case 2. The rate of flexible load
participating in DR was set at 0.3 and the RES penetration was set at 0.3. The customers
adjust their load profiles as much as possible to improve the similarity metric E in order to
obtain more incentives. In case 3, the customer decision-making process was modeled by
using the response evaluation model mentioned in Section 2.2. As described in Section 3,
we obtained the value of P∗

l,t and P∗
DR,t in first stage. Then we calculated the value of

E
(

P∗
l,t, P∗

DR,t

)
. We can constrain the variable P∗

l,DR,t by setting the value of ∆E as described
in (6). For ease of discussion, we incremented the value of ∆E by 0.05. Thus, the value of
the right-hand side of inequality (6) was increased by 0.05 from 0.75. Specially, because in
practice it is impossible for E to take the value 1, the last band was set to 0.99 instead of 1.
Therefore, the similarity metric E was divided into six bands from 0.75 to 0.99.

Figure 8 shows the shaping of the CDL profiles and actual customers’ load profiles
at different response effects: during time periods 1 to 7, the units take on less load, and
the CDL guides the customers to shift as much load as possible into that time period in
the process of improving similarity E, boosting the load and thus filling in the valleys.
Meanwhile, during time periods 9 to 16 and 17 to 23, the units take on more load, and
the CDL guides the customers to shift as much load as possible out of that time period
in the process of improving similarity metric E, reducing the load and thus achieving
peak shaving.
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The various costs at different values of E are shown the Table 8. Building on the
observation from Table 8, the diminishing overall system costs with the increase in the
similarity metric E underscores the efficiency of DR mechanisms. As E ascends, indicating
higher customer participation in DR, it not only compensates for the DR costs incurred
but also reduces operational and imbalance costs significantly. This trend demonstrates
the value of aligning consumer behavior with system needs, leveraging flexible loads
to enhance grid stability and integrate RES more effectively. This analysis suggests that
a proactive DR strategy, supported by incentives and robust forecasting, can lead to a
sustainable, cost-efficient energy system by mitigating the challenges posed by renewable
intermittency and demand fluctuations. Therefore, the system can not only reduce the
traditional generating units and use more RES units, which is conducive to the protection of
the environment and reduce the use of fossil energy, but also obtain great economic benefits.

Table 8. The operation results in case 3.

E Total Costs
($)

Loss of Load
Penalty ($) DR Costs ($)

Curtailed
RES

Output Costs
($)

Thermal
Power

Generation
Costs ($)

0.75 786,499.26 347,849.23 9979.60 189,504.68 239,165.75
0.80 637,888.21 204,554.24 10,966.03 187,600.48 234,767.46
0.85 551,383.35 134,914.78 12,007.54 175,994.67 228,466.36
0.90 450,929.18 59,744.99 13,179.74 163,780.85 214,223.60
0.95 372,115.47 0 14,655.71 152,900.71 204,559.05
0.99 326,324.58 0 16,559.33 132,819.44 176,945.81

5.2.2. Case 4

In this case, with the aim to discuss the influence of forecasting errors in wind and
solar generation, we reduced forecasting errors on the basis of case 3 by using the scenario
modification method proposed in Ref. [19]. The error rate was set within 0.05. The
forecasted wind and solar generation values and scenarios are displayed in Figure 9. In
comparison with Figure 7, it can be observed that larger forecasting errors result in greater
deviations in wind and solar generation, as well as higher levels of uncertainties. Forecasted
errors in wind and solar generation were set to less than 0.05, and we discuss stochastic
dispatch when the similarity metric E was set to 0.9.
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Figure 10 shows the results of unit commitment (UC) in case 3 and case 4. It should be
noted that throughout the day hydro units H1, H2, along with thermal units G1, G3, remain
in continuous operation. The UC solutions we obtained in case 3 differ from those in case
4. Due to the higher level of uncertainties in case 3, additional units must be activated to
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ensure the security of the system. In particular, there is a significant fluctuation in wind and
solar generation in hour 12, during which the system shows insufficient ramping capacity.
Therefore, thermal unit G2 provides enough ramping capabilities in case 3 by operating
in additional hour 12, and the operation cost in case3 is USD 214,223.60, which is 11.37%
more than that of case 4.
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Table 9 shows the operation costs in case 4, and it is noted that the total costs, loss of
load penalty, and thermal power generation costs are lower than those of case 3.

Table 9. The operation results in case 4.

Total Costs ($) Loss of Load
Penalty ($) DR Costs ($) Curtailed RES

Output Costs ($)

Thermal Power
Generation

Costs ($)

418,091.17 49,232.03 13,179.74 163,324.90 192,354.50

The base-case dispatches of H1 and H2 are increased from 3652.70 MWh in case 3 to
3751.45 MWh in case 4, and the dispatch of G3 was decreased from 1073.65 MWh in case 3
to 876.96 MWh in case 4. To ensure the system security under increased uncertainty and
larger deviations in Case 3, an additional spinning reserve must be allocated to offset the
fluctuations in wind and solar power generation from hydroelectric units. Consequently,
less expensive hydro units operate at a suboptimal dispatch level in Case 3, but hydro units
in case 4 are operating at a better dispatch level. As a result, the total costs are much lower
in case 4.

6. Discussion

The simulation results in each case reveal the following insights: firstly, hydro units, as
an effective regulatory resource, enhance the thermal-hydro-wind-solar system’s capacity
to absorb RESs. However, hydro generation is influenced by hydrological conditions,
seasonal variations, and other factors. Secondly, compared to scheduling models without
DR, this study’s approach encourages consumers to adjust their electricity usage proactively,
engaging more actively in DR. With increased participation in CDL-based DR, the system
experiences significant peak shaving and valley filling effects, thereby enhancing the
system’s reliability and economic efficiency. This, in turn, substantially facilitates the
integration of a high proportion of new energy sources. Thirdly, the uncertainty of RES and
the prediction errors in their generation affect operational costs. Larger prediction errors
lead to increased levels of uncertainty, necessitating that hydro units provide more spinning
reserve to compensate for the variability in wind and solar power generation. Additionally,
more thermal units are required to ensure system reliability and stability. In summary, the
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proposed stochastic model offers a practical approach for identifying an optimal base-case
dispatch strategy, thereby minimizing cost fluctuations amidst uncertainties.

As noted in Ref. [28], the expansion of the number of scenarios considerably increases
the computational load. Table 10 shows the average computation time for all parameters in
cases 1–4. It is observed that when not considering uncertainties in RESs, the computation
time in case 1 is 4.09 s and that in case 2 is 4.78 s. When considering uncertainties in RESs,
the computation time is increased significantly in case 3 and case 4. The computation time
in case 3 with higher-level uncertainties is 458.59 s. It is about three times as long as in
case 4. The reason is that more reserves are required to be turned on to balance real-time
fluctuations in RES output by turning on additional units. Therefore, it needs longer time
to obtain the solution in case 3.

Table 10. Computation time of cases 1–4.

Cases 1 2 3 4

Time (s) 4.09 4.78 458.59 145.41

7. Conclusions

We present a day-ahead stochastic scheduling method for day-ahead energy systems
with CDL-based DR. The complementary traits between wind and solar power generation
are modeled through Copula theory, and the Monte Carlo method is applied to simulate the
wind and photovoltaic output errors to establish a set of stochastic scenarios for RES output.
The objective function aims at minimizing the costs associated with RES integration, DR
and load shedding, incorporating the uncertainties of cascaded hydroelectric units and RES
to develop a day-ahead economic dispatch model that leverages multiple energy sources
complementarily. Our model aims to obtain a dispatch solution with stable operating cost
in the base case. This dispatch solution allows for the power system to operate under the
forecasted base case and can safely redispatch all units in response to re-al-time fluctuations
in RES output. Additionally, the model includes safety constraints to ensure more secure
dispatch outcomes and effectively prevent flow overloading.

Our study demonstrates the potential of a day-ahead stochastic scheduling model
with CDL to enhance the flexibility and efficiency of power systems. However, practical
implementation faces several challenges: The deployment of this model requires advanced
infrastructure capable of handling high volumes of data from diverse energy sources. Effec-
tive implementation relies on sophisticated communication protocols to ensure seamless
interaction between the power system’s components. The protocols must ensure data in-
tegrity, security, and timeliness to facilitate the dynamic scheduling process. The regulatory
environment plays a crucial role in the model’s implementation. Successful implementation
requires coordination among all stakeholders, including power generators, grid operators,
consumers, and regulatory bodies. Overcoming these challenges requires concerted efforts
from all stakeholders and researchers.
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