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Abstract: The aim of this research is to address the challenge of transforming car-oriented indus-
trial parks into pedestrian- and bicycle-friendly environments. Through the implementation of a
multi-criteria decision-making (MCDM) approach, the study aims to evaluate alternative pathway
connections and assess their potential impact on bicycle and pedestrian traffic volumes. By enhancing
the connectivity of the cycling pathway network, the research seeks to demonstrate the potential for
substantial increases in cycling and walking within industrial zones. This research leverages a multi-
criteria decision-making framework, specifically the ARAS-G method, and integrates geographic
information system analysis alongside Python scripting to project future bicycle usage and assess
alternative pathway connections. The study underscores the potential for substantial increases in
cycling and walking by augmenting the connectivity of the cycling pathway network. The findings
hold practical significance for urban planners and industrial zone developers, advocating a holistic
approach to sustainable transportation. The research contributes a comprehensive set of criteria
encompassing connectivity, safety, accessibility, efficiency, integration within the urban fabric, and
cost-effectiveness to evaluate sustainability and prioritize actions and measures for reestablishing
industrial zones as bicycle-friendly spaces.
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1. Introduction

The urgent need to address global greenhouse gas emissions, which are significantly
attributed to motorized transportation (accounting for up to 16%), has prompted countries
worldwide to commit to achieving carbon neutrality and decarbonizing the transport
sector [1]. In line with these sustainability goals, the European Union has set an ambitious
target of reducing greenhouse gas emissions by 90% by 2050, and countries such as the
UK aim to have 50% of trips made by walking and cycling in towns and cities by 2030 [2].
Achieving these objectives necessitates a shift towards sustainable active modes of travel,
such as walking, wheeling, and cycling [3].

As transportation planning progresses from strategy to implementation, localized plan-
ning interventions have gained prominence in both policy and academic discourse [4]. Re-
searchers and policymakers in the transportation field are actively seeking practical solutions
to achieve carbon neutrality through modal shifts [5,6]. Cities across Europe are making
substantial investments in cycling and walking infrastructure to promote sustainable travel.
Notably, countries like the Netherlands, Denmark, Sweden, and other regions where cycling
is a prevalent mode of transportation have achieved remarkable success.

The introduction of electric-powered personal mobility vehicles (e-PMVs) has fur-
ther transformed travel patterns [7,8]. Shared e-scooters, in particular, have significantly
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impacted cycling path traffic volume, accounting for nearly 50% of overall cycling traffic
since 2019 [8]. It is important to check the sources of electricity. While existing research
primarily relies on shared e-scooter trip data [9–11], it is worth noting that personally used
e-PMVs enable faster speeds (30–35 km/h) and longer travel distances (7 km) compared
to traditional human-powered bicycles, expanding the possibilities for micro-mobility
options [11].

The COVID-19 pandemic and associated restrictions have also amplified interest
in cycling and walking [12]. Governments have responded by reallocating streets and
transforming vehicle lanes and parking spaces into temporary walking or cycling paths [13].
Should these changes become permanent, they hold substantial implications for population
health, travel behavior, and transport equity [14].

While cycling promotion and infrastructure development are prioritized in urban cen-
ters, determining where and when to invest in cycling infrastructure remains a challenge.
Understanding travel demand between residential areas and job sites, especially concern-
ing industrial zones, is critical, yet studies have not precisely estimated these connections.
Many European cities require more links between industrial zones and residential areas
due to planning decisions that have historically separated these zones from living spaces.
However, as heavy-polluting industries have relocated to other regions, these zones now
have the opportunity to establish these missing links. Rebuilding and reorganizing exten-
sive industrial territories present an opportunity to consider transport decarbonization
targets and offer accessibility beyond traditional automobile modes.

The freight and passenger transport sector is poised to make significant strides in
reducing greenhouse gas (GHG) emissions. Electromobility is emerging as a viable alter-
native to traditional mobility systems throughout the EU [15]. Assessing GHG emissions
from electric vehicles and comparing GHG savings relative to internal combustion engine
vehicles hinge on understanding the carbon intensity of the electricity used to recharge
electric vehicle batteries [16].

Despite the growing prevalence of electric-drive vehicles, internal combustion engines
remain predominant as power units in mobile systems across diverse economic sectors, es-
pecially in industry. However, reducing emissions, particularly NOx and PM, is imperative
due to their adverse impact on human health and the environment’s pollution with harmful
exhaust gases [17]. To mitigate exhaust gas emissions and comply with legal regulations,
hybrid drives featuring optimized internal combustion engines and associated systems are
increasingly deployed as interim solutions. This underscores the ongoing importance of
addressing emissions from internal combustion engines, particularly in industrial zones
where pedestrian and cyclist safety is paramount. Diesel engines hold potential as power
units for hybrid vehicles due to their good fuel economy [18].

While progress has been made in constructing missing links in many cities, there is a
need for more comparative studies on alternative bicycle pathway segments, priority lists,
or estimations of changes in travel time and costs following the establishment of new links.
This situation can be attributed to traditional transport planning methods that calculate
traffic flows between transportation districts without considering local street segment-level
changes, but traditional methods are not sensible to micro-level or pathway segment-level
changes. The present generation of traffic planners often relies on macro-level data, despite
advancements in processing speed and data capacity [19–22]. Micro-simulation, typically
performed with software such as PTV VISIM, analyses changes in existing traffic flows,
link delays, volumes, and traffic light phases [23,24], but often fails to provide detailed
predictions at the neighborhood level.

This study aims to address these gaps by introducing a pioneering approach that
encompasses various analytical objectives. It not only facilitates the computation of con-
nectivity using prediction of traffic volumes for non-existing links to support investment
strategies but also employs the novel Multi-Criteria Decision-Making (MCDM) method,
ARAS-G, characterized by its distinctive feature of incorporating Grey theory. ARAS-G
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represents an innovative tool that effectively grapples with the inherent uncertainties of
decision-making processes, particularly in the context of sustainable urban mobility.

Grey theory is a robust method revered for its competence in addressing uncertainty,
notably excelling in the mathematical analysis of systems with incomplete or uncertain data.
Its preeminence over fuzzy sets theory lies in its adeptness at accommodating situations
riddled with vagueness and indeterminacy.

Nevertheless, information collected from real-world scenarios invariably presents
itself as uncertain and frequently incomplete. Consequently, the expansion of application
domains from traditional white numbers, characterized by crisp values, to grey numbers
becomes a requisite undertaking for authentic real-world scenarios. ARAS-G emerges as a
quintessential fusion of MCDM and Grey theory, giving decision–makers the capacity to
navigate complex and ambiguous situations. This innovative integration contributes to the
advancement of rigorous and nuanced decision-making strategies in the face of pervasive
uncertainties and information gaps, thereby bolstering the prospects of sustainable urban
mobility planning.

This study seeks to address these gaps by presenting a practical method for various
analysis purposes, enabling connectivity calculations in real traffic volume numbers and
predicting traffic volumes for non-existing links to support investment strategies. This
method utilizes standard and affordable GIS software (QGIS 3.34.4 ‘Prizren’ for Windows
and Python libraries for network graph analysis), eliminating the need for specialized
expertise or computer programming skills. It leverages an origin–destination matrix
generated from GIS point layers and a network graph derived from OpenStreetMap (OSM)
GIS data.

2. Aims and Scope of Research

The primary objectives of this research include the following:

• Addressing the Challenge with the ARAS-G MCDM for alternative selection: This
study aims to bridge gaps by introducing a practical approach for various analytical
purposes, primarily focusing on using the innovative Multi-Criteria Decision-Making
(MCDM) method ARAS-G. The research employs ARAS-G for the selection of the most
suitable alternatives in the context of enhancing pedestrian and bicycle connectivity
in car-oriented industrial parks. This method is adeptly applied to facilitate the
systematic and objective evaluation of alternative solutions; it aids in selecting the
most appropriate interventions for transforming car-oriented industrial parks into
pedestrian- and bicycle-friendly environments;

• Analyzing and Predicting Bicycle Flows through Micro-Scale Analysis: This research
undertakes an in-depth analysis of bicycle flows and forecasts, primarily relying on
micro-scale origin–destination (OD) analysis;

• Evaluating pathway connections: In the process, the study evaluates the efficacy of
alternative pathway connections to determine their potential impact on enhancing
bicycle and pedestrian connectivity. This entails assessing the performance of different
pathway connections while considering key criteria;

• Demonstrating the potential for increases in cycling and walking: The ultimate aim is
to highlight the potential for significant increases in cycling and walking within car-
oriented industrial parks by improving pathway connectivity. Through the selection
of alternatives facilitated by ARAS-G and comprehensive micro-scale analysis, the
research aims to substantiate the viability of these improvements.

This research is poised to deliver valuable insights and contribute to the discourse on
sustainable urban mobility. By utilizing ARAS-G for alternative selection and focusing on
micro-scale OD analysis for forecasting and evaluation, the study endeavors to provide
a rigorous and data-driven approach to transforming car-oriented industrial parks into
pedestrian- and bicycle-friendly environments. The research outcomes contribute to so-
ciety’s well-being, environmental sustainability, and the creation of more livable cities by
advocating for the integration of pedestrian- and bicycle-friendly environments.
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3. Recent Research and Literature Review

Micro-mobility, which encompasses lightweight shared transportation solutions within
urban environments, has garnered significant attention as a means to address issues such
as traffic congestion, environmental considerations, and last-mile transportation challenges.
The integration of multi-criteria decision-making (MCDM) approaches into modeling and
simulation techniques is crucial for comprehensively understanding the intricate dynamics
of micro-mobility systems and for formulating effective implementation strategies. This
literature review aims to provide an extensive overview of recent developments in micro-
mobility modeling and simulation research, with a specific emphasis on the utilization
of MCDM techniques. It also highlights the main methodologies, challenges, and future
research directions in this field.

In the realm of urban planning, decisions regarding planned bicycle and pedestrian
infrastructure are frequently made without rigorous calculations. This practice is rooted
in various financial and professional considerations, with one of the key factors being
the absence of supportive methodologies. As many cities grapple with the inadequacy of
cycling infrastructure networks, policymakers are confronted with the task of designing
interconnected bicycle facility networks to ensure safe and convenient access for cyclists
to various urban destinations. This not only promotes infrastructure utilization but also
enhances the overall usability of these facilities [25,26].

While there is ample evidence illustrating the multifaceted impacts of infrastructure
on demand, only a limited number of studies have delved into the combined cost-benefit
performance of bicycle infrastructure. A recent study from Denmark, for instance, revealed
that the benefits derived from investments in bicycle infrastructure translate into an im-
pressive internal rate of return of 11% annually [27]. This figure significantly surpasses the
returns associated with most other public transportation and car infrastructure investments.

Conversely, industrial zones are typically strategically located with optimal access to
road, rail, or maritime transportation. In European countries, these zones are often situated
on the outskirts of core cities to minimize pollution in residential areas. However, contem-
porary industry zones within the European Union tend to produce minimal pollution, with
the majority of environmental impacts stemming from heavy freight transportation. Re-
grettably, many industrial zones are poorly connected to cycling and pedestrian pathways
due to their considerable distance from residential areas. This issue is seldom addressed in
traffic planning, despite a substantial portion of daily commuting transpiring between resi-
dential districts and industrial zones. While studies have examined noise and air pollution
stemming from traffic or traffic congestion in industrial zones [28,29], they rarely explore
non-pollutant modes of transportation, such as cycling, wheeling, and walking.

Several proposals have surfaced concerning eco-friendly solutions and the revitaliza-
tion of industry zones within their boundaries [30,31]. Nevertheless, few studies have been
dedicated to reconnecting industrial zones with urban cores.

One recent concept gaining traction is the “15-minute” or “20-minute city,” advocated
by New Urbanism and Smart Growth approaches [32,33]. At its core, this concept revolves
around the idea that most essential needs can be satisfied within a 15-minute round trip
from one’s residence, often equating to a 10-minute walk or cycling and public transport
in certain definitions [32,34,35]. The distance between residential and working areas takes
center stage in this concept. Achieving a 15-minute commute from residential zones to
industrial areas poses a significant challenge; other amenities in European cities are often
already optimally located [34].

Micro-Mobility Modeling and Simulation

Multiple micro-mobility modeling approaches can be categorized into three main
groups, namely Agent-Based Modeling (ABM), Network-based Modelling, and Data-
Driven Modelling. Authors may combine these groups for various purposes, and the
integration of Multi-Criteria Decision-Method (MCDM) approaches can further enhance
the analysis and decision-making process in micro-mobility modeling [36].



Sustainability 2024, 16, 2994 5 of 21

Agent-based modeling allows for the representation of individual actors and their
interactions within a micro-mobility system. Recent studies have highlighted the integra-
tion of MCDM approaches within ABM frameworks to account for multiple criteria, such
as accessibility, equity, and environmental impact, when evaluating the performance of
micro-mobility systems [37].

Network-based models represent micro-mobility systems as a network of nodes and
links, considering factors such as origin–destination flows, route choice behavior, and
network topology. The application of MCDM techniques in network-based modeling can
support decision-making related to infrastructure planning, resource allocation, and system
optimization in micro-mobility contexts [38–44].

Data-driven modeling techniques leverage abundant data from micro-mobility service
providers, urban sensors, and social media. Recent research highlights the integration of
MCDM methods with data-driven models to consider multiple criteria, such as demand
patterns, service coverage, and user satisfaction, for effective decision making in micro-
mobility planning and management [38,45–47].

In the field of transportation modeling, the conventional practice involves employing
a mezzo-scale approach wherein territories are partitioned into larger transport zones for
the sake of simplifying calculations. The primary software utilized for this purpose is PTV
VISUM or VISIM. However, these commercial software packages primarily focus on tasks
related to traffic regulation, traffic signal adjustment, and automobile-centric mobility.

Remarkably, micro-mobility modeling and prediction in commercial software have re-
ceived limited attention thus far, primarily due to the considerable increase in the scope and
complexity of calculations involved. It is only in recent years that emerging approaches to-
wards predicting individual mobility have surfaced, thanks to advancements in individual
data collection methods and computing techniques. The advancements in computational
power and the availability of cloud services for interactive computing have also greatly
facilitated the evaluation of prediction models on a large scale and with high data demand.

Over the last decade, traffic in large urban areas and road networks have been simu-
lated also using ABMs. These models usually simulate the impacts and the overall system
performance of innovative transport modes, such as shared autonomous vehicles, electric
taxis, demand-responsive buses, electric scooters, etc.. For micro-simulations, “TRANSIMS”,
“MATSim”, “NetLogo”, “SimMobility”, “Anylogic”, and “SARL” are considered the most
used [48]. They give very detailed simulations of travel volumes in time and space. These
methods can be used for predicting travel demand, but mainly they are used to predict the
traffic in peak hours, manage traffic congestion, and synchronize the traffic lights.

Recent studies provide methods to forecast cycling/pedestrian flow from mobile
devices, STRAVA and other web platforms [49–52], but these methods are limited to work
only on existing infrastructure.

There are numerous research on using Multi-Criteria Decision Methods (MCDM) for
finding the best locations for mobility hubs [40,42,53], shared bicycle locations [54,55], path
segment construction priorities, etc.

Existing methods for evaluating network connectivity and choice on the micro-scale are
mostly Space Syntax (SS)-based tools to define the central nodes and segments in the path
network [56–58]. However, SS methodology does not take into account the people connected
to the network. Therefore, the obtained analysis results have weak supporting arguments
behind them, although mathematically they are correct. More geographically localized data
on each building with numbers of living places, working places or number of visitors, have to
be added to SS to provide a sufficient basis for urban development scenarios.

4. Materials and Methods
4.1. Establishing a Criteria Framework for the Multi-Criteria Decision-Making
(MCDM) Approach

In order to develop a comprehensive system for evaluating connection alternatives, an
expert group consisting of transportation and urban planning specialists from Vilniustech,
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in collaboration with town planners, were briefed on available research data and methods
for predicting traffic volumes. Through a series of discussions, a set of 10 criteria was
meticulously devised, ensuring that the criteria values could be accurately estimated
through proposed calculations.

The criteria system was meticulously delineated, and the weights of each criterion were
once again determined by experts, as illustrated in Table 1. The selected criteria include:

Table 1. Expert rankings for criteria.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 Σ w

x1 9 9 9 9 8 9 9 9 9 9 89 0.14

x2 8 8 8 8 8 9 8 8 8 8 81 0.13

x3 7 7 8 7 7 8 8 7 7 8 74 0.12

x4 7 7 8 7 7 8 8 7 7 8 74 0.12

x5 6 7 6 6 6 6 6 7 6 6 62 0.10

x6 5 5 6 5 5 6 6 5 5 6 54 0.08

x7 5 5 5 5 5 5 5 5 5 5 50 0.08

x8 4 4 5 4 4 5 5 4 4 5 44 0.07

x9 3 4 3 4 4 4 4 3 3 4 36 0.06

x10 3 3 3 3 3 3 3 3 3 3 30 0.05

Σ 642 1

X1—Population within the attractive distance to use the bicycle or electricity-powered
personal mobility vehicles. The distance considered was 5 to 7 km; therefore, this criterion
has two numbers or a G value number.

X2—Average travel distance from all residential areas to workplaces within a 7 km
radius, expressed in meters.

X3—Estimated number of daily non-motorized commuters, denoted in terms of the
percentage of total individuals within the 7 km catchment area, with scenarios accounting
for both 5 percent and 15 percent usage rates.

X4—Reduction in traffic flow on the A6 road, quantified in terms of the number of
vehicles, resulting from the increased adoption of non-motorized commuting methods.

X5—Financial savings derived from reduced greenhouse gas emissions, measured in
million euros per year, attributable to the greater utilization of bicycles or electric personal
mobility vehicles.

X6—Total distance traveled via non-motorized means, expressed as 1000 km per year
per passenger, reflecting the increased accessibility of workplaces from residential areas.

X7—Financial savings arising from reduced traffic congestion, measured in million
euros per year, stemming from alleviated congestion along the A6 route due to heightened
bicycle commuting.

X8—Financial savings resulting from reduced travel costs, measured in million euros
per year, consequent to the preference for bicycles over other modes of transportation for
commuting purposes.

X9—Construction costs associated with alternative connections, quantified in million
euros. These cost estimates were sourced from the 2022 annual traffic construction bulletin
from Poland, where similar constructions have been undertaken. The data indicate that
the average cost for constructing either a viaduct or tunnel crossing a 50 m wide highway
is approximately 1.25 million euros. Additionally, the construction costs for additional
connecting bicycle lanes were estimated at 50,000 euros per kilometer and vary for each
alternative. When evaluating projects, a more thorough analysis of construction costs
must be conducted. X10—Risk of accidents at hazardous A6 crossings, determined by the
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projected number of potential non-vehicle commuters on this route, serving as a proxy
for the perceived level of danger. Lower values indicate lower perceived risk levels, with
increased commuter presence correlating with heightened accident risk.

These criteria collectively serve as the foundation for evaluating the efficacy and impact
of interventions or policies aimed at promoting bicycle commuting, with considerations
spanning economic viability, environmental sustainability, congestion mitigation, and the
safety of individuals traversing the A6 route.

Experts ranked the criterion X1—Population within the attractive distance as the most
important for this type of research. Other important criteria were X2—average travel
distance, X3—number of daily non-motorized commuters, and X4—Reduction of traffic
flow. While financial savings, safety, and construction costs were deemed less pivotal,
they remained important considerations. Expert consensus suggested that the construction
costs of such measures typically recoup within 5 to 10 years, mitigating the necessity of
prioritizing this criterion as extensively as in traditional cost-effectiveness analyses.

4.2. Grey Numbers

Grey theory serves as a methodology for scrutinizing uncertainty, demonstrating
particular prowess in mathematically analyzing systems imbued with uncertain data.
Notably, grey theory surpasses fuzzy sets theory by adeptly managing situations marked
by fuzziness. The process of alternative selection mirrors a grey system process, amenable to
effective resolution through grey theory methodologies. Criteria assessments are delineated
using linguistic variables, feasibly represented through grey numbers. Grey theory, first
introduced by Deng [59], offers a robust mathematical framework for:

• Addressing issues characterized by incomplete information;
• Overcoming the inherent limitations of conventional statistical methods;
• Utilizing a limited dataset to predict the behavior of uncertain systems, especially

when dealing with discrete data and incomplete information [60].

White numbers, grey numbers, and black numbers are three classifications used to
discern the degree of uncertainty in information [61]. Let

⊗x = [α, γ] = {x|α ≤ x ≤ γ, α and x ∈ R}. (1)

Next, a grey number, denoted as ⊗x with two real numbers α (the lower limit) and γ
(the upper limit) is defined as follows:

• If α → −∞ and γ → ∞ , then ⊗x is called a black number, indicating a lack of mean-
ingful information;

• Else if α = γ, then ⊗x is referred to as a white number, indicating complete information;
• Otherwise, ⊗x = [α, γ] is termed a grey number, indicating insufficient and uncertain

information.

However, information derived from real-world sources inherently carries uncertainty
or incompleteness. Thus, broadening the scope from precise white numbers (crisp values) to
grey numbers becomes imperative for real-world applications. The fundamental definitions
and operations of grey numbers are outlined as follows.

Let a grey number be defined as a grey number defined by two parameters (α, γ). Let
+, −, × and ÷ denote the operations of addition, subtraction, multiplication and division,
respectively. The basic operations of grey numbers ⊗n1 and ⊗n2 are defined as follows:

⊗n1 +⊗n2 =
(
n1α + n2α , n1γ + n2γ

)
addition (2)

⊗n1 − ⊗n2 =
(
n1α − n2γ , n1γ − n2α

)
subtraction (3)

⊗n1 ×⊗n2 =
(
n1α × n2α , n1γ × n2γ

)
multiplication (4)

⊗n1 ÷⊗n2 =

(
n1α

n2γ
,

n1γ

n2α

)
division (5)
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k × (⊗n1) =
(
kn1α , kn1γ

)
Number product of grey numbers if k is positive real number (6)

(⊗n1)
−1 =

(
1

n1γ
,

1
n1α

)
(7)

4.3. The Proposed Grey MCDM: An Additive Ratio Assessment Method with Grey Values
(ARAS-G)

The ARAS method, as outlined in [62], is rooted in the premise that understand-
ing complex phenomena in our world can be achieved through straightforward relative
comparisons. It posits that the degree of optimality attained by a compared alternative
is determined by the ratio of the sum of normalized and weighted values of the criteria
describing the alternative in question to the sum of the values of normalized and weighted
criteria characterizing the optimal alternative.

In accordance with the ARAS method, the value of the utility function, which assesses
the complex relative efficiency of a feasible alternative, correlates directly with the relative
influence of the values and weights assigned to the key criteria evaluated in a given project.
The initial step involves forming a Grey Decision-Making Matrix (GDMM). In the context
of the Generalized Multi-Criteria Decision-Making (GMCDM) framework for discrete
optimization problems, any problem at hand is represented by a GDMM that accounts for
preferences across m reasonable alternatives (rows) evaluated against n criteria (columns):

X̃ =



⊗x01 · · · ⊗x0j · · · ⊗x0n
...

. . .
...

. . .
...

⊗xi1 · · · ⊗xij · · · ⊗xin
...

. . .
...

. . .
...

⊗xm1 · · · ⊗xmj · · · ⊗xmn

;

i = 0, m; j = 1, n,

(8)

where m—number of alternatives, n—number of criteria describing each alternative, ⊗xij—
grey value representing the performance value of the i alternative in terms of the j criterion,
⊗x0j—optimal value of j criterion.

If the optimal value of the j criterion is unknown, then

⊗x0j = max
i

⊗ xij, i f max
i

⊗ xij is pre f erable, and

⊗x0j = min
i

⊗ x∗ij, i f min⊗
i

x∗ij is pre f erable. (9)

Typically, the performance values ⊗xij and the criteria weights ⊗wj are represented
as entries within a Decision-Making Matrix (DMM). Experts determine the criteria system,
values, and initial weights, with potential adjustments based on stakeholders’ objectives and
opportunities. The prioritization of alternatives unfolds across multiple stages, especially
considering that criteria often vary in dimensions.

Subsequently, the focus shifts to deriving dimensionless weighted values from com-
parative criteria, aiming to mitigate challenges stemming from differing criteria dimensions.
To achieve this, the ratio to the optimal value is commonly employed. While various
theories exist on this ratio, the values are typically mapped onto either a specified interval
[0; 1] or [0; ∞] through the normalization process of the DMM. In the subsequent stage,
all criteria’s initial values undergo normalization, defining the values of the normalized
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decision-making matrix. The initial values of all the criteria are normalized—defining
values ⊗xij of the normalized decision-making matrix ⊗X:

⊗X =



⊗x01 · · · ⊗x0j · · · ⊗x0n
...

. . .
...

. . .
...

⊗xi1 · · · ⊗xij · · · ⊗xin
...

. . .
...

. . .
...

⊗xm1 · · · ⊗xmj · · · ⊗xmn

;

i = 0, m; j = 1, n.

(10)

The criteria, whose preferable values are maxima, are normalized as follows:

⊗xij =
⊕xij

m
∑

i=0
⊗xij

. (11)

The criteria, whose preferable values are minima, are normalized by applying a two-
stage procedure:

⊗xij =
1

⊗x∗ij
; ⊗xij =

⊗xij
m
∑

i=0
⊗xij

. (12)

When the dimensionless values of the criteria are known, all the criteria, originally
having different dimensions, can be compared.

The next stage is defining the normalized-weighted matrix—⊗X̂. It is possible to
evaluate the criteria with weights 0 < ⊗wj < 1. Only thoroughly grounded weights can be
utilized, as they inherently carry subjectivity and significantly impact the resultant solution.
The values of weight ⊗wj are usually determined by the expert evaluation method. The
sum of weights wj would be limited as follows:

n

∑
j=1

wj = 1. (13)

⊗X̂ =



⊗x̂01 · · · ⊗x̂0j · · · ⊗x̂0n
...

. . .
...

. . .
...

⊗x̂i1 · · · ⊗x̂ij · · · ⊗x̂in
...

. . .
...

. . .
...

⊗x̂m1 · · · ⊗x̂mj · · · ⊗x̂mn

;

i = 0, m; j = 1, n.

(14)

Normalized-weighted values of all the criteria are calculated as follows:

⊗x̂ij = ⊗xij ×⊗wj; i = 0, m, (15)

where wj is the weight (importance) of the j criterion and xij is the normalized rating of the
j criterion.

The following task is determining values of the optimality function:

⊗Si =
n

∑
j=1

⊗x̂ij; i = 0, m, (16)

where ⊗Si is the value of the optimality function of the i alternative.
The highest value represents the optimal outcome, while the lowest signifies the least

favorable. Considering the computational procedure, the optimality function ⊗Si has a
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direct and proportional relationship with the values ⊗xij and weights ⊗wj of the examined
criteria and their respective impact on the ultimate outcome. Hence, the higher the value
of the optimality function ⊗Si, the more effective the alternative. The prioritization of
alternatives can be established based on the value ⊗Si. Therefore, this method proves
advantageous for assessing and ranking decision alternatives.

The result of grey decision making for each alternative is the grey number ⊗Si. Various
techniques exist for converting grey values into crisp values. Among them, the center-of-
area method stands out as the most practical and straightforward to implement:

Si =
1
2
(Siα + Siγ). (17)

The utility of the alternative is assessed by comparing it to the ideally best one S0.
The equation used for the calculation of the utility degree Ki of an alternative Ai is

given below:

Ki =
Si
S0

; i = 0, m, (18)

where Si and S0 are the optimality criterion values, obtained from Equation (16).
It is evident that the calculated values Ki fall within the interval [0; 1] and can be

arranged in an increasing sequence, as desired.

4.4. The Micro-Scale Origin–Destination Method for Forecasting Bicycle Flows on Links That Do
Not Currently Exist

This case study presents a methodology for forecasting micro-scale bicycle and pedes-
trian flows, utilizing easily collectable data and affordable software. This method can be
applied to diverse urban contexts. The network is represented as a bidirectional Graph
based on existing and proposed bicycle path segments within the area. To assess the
usability of network segments, an Origin–Destination (OD) matrix is constructed using
the nodes of the Network Graph. For each graph node, the cumulative counts of the
nearest employment and residential destinations are computed. Subsequently, the gravity
method is employed, incorporating various threshold travel distances to fine-tune the
decay function, as outlined in Equation (19) below.

On = ∑ j∈J,i∈I SjDi f
(
cij
)

(19)

where
On is the cumulative opportunity of use of network segment n ∈ N,
Sj is the weight of supply facility (housing) at node j ∈ J,
Di is the weight of demand facility (jobs) at node i ∈ I,
f (. . .) is the distance decay function,
cij is the travel distance between locations i and j.
To calculate the real number of bicycle commuters, Formula (20) is used, where the

town population, accessible population employment-to-population ratio, travel mode ratio,
and total number of jobs in the area are used for calculation.

Nc =
Pa

P
· E · kC · D (20)

where
On is the number of commuters passing daily through the network segment n ∈ N,
P is the population in the town or adjacent territories from where the workers will

arrive,
E is the employment-to-population ratio,
Pa is the number of people who can access the job places at a fixed distance calculated

by Equation (20),
kc is the travel mode coefficient for the cycling travel mode (desired or measured),



Sustainability 2024, 16, 2994 11 of 21

D is the total number of jobs in the destination area.
The number of people living in proximity to jobs is calculated similarly to On in

Equation (19), but it is normalized by the total number of jobs and a number Pa is derived,
characterizing all the network N; see Equation (21). Pa is calculated as an integral equation,
because the jobs are distributed in the territory and situations occur where only part of jobs
can be reached in a specified distance.

Pa = ∑ j∈J,i∈I SjDi f
(
cij
)
/D (21)

where
Pa is the number of people who can access the job places at a fixed distance. Pa shows

the number of people who can access the jobs fully or partially; it is normalized to 1 unit,
given if full coverage of jobs is achieved by a specified distance.

Sj is the weight of supply facility (housing) at node j ∈ J,
Di is the weight of demand facility (jobs) at node i ∈ I,
f (. . .) is the distance decay function,
cij is the travel distance between locations i and j.
D is the total number of jobs in the destination area.

4.5. Data Sources and Software for the Modeling

The data used for this study were of two types: GIS vector layers of buildings and
bicycle pathways and streets, and official population registry as well as legal entities and
employees registry to obtain locations and quantities of living and working places.

Subsequently, the data were integrated into the Geographic Information System (GIS),
wherein the locations were linked to a graph generated from the bicycle pathway network.

The software used was freeware QGIS 3.34.4 ‘Prizren’ for Windows with Python
libraries for graph analysis and mathematical operations Networkx, Scipy, and Numpy.

5. The Facts about Kaunas Free Economic Zone (FEZ)

Kaunas Free Economic Zone (FEZ) is located near the A6 and A1 motorways in close
proximity to Kaunas town, Lithuania. It is a 534-hectare industrial development area which
offers favorable taxes for production and logistics companies. One third of the territory has
already developed transportation and infrastructure. The territory of Kaunas FEZ is huge;
it is only starting to build up and has potential for further development. It has a perfect
position for freight logistics and connection to skilled workforce coming from Kaunas city.

Kaunas FEZ was established in 1996, but has been used for this purpose only from
2005. Kaunas FEZ has attracted 680 million euros of direct investment from its opening in
2005. Businesses operating in Kaunas FEZ territory have some tax relief. Companies are
exempt from real estate tax until 2045, do not pay income tax for 10 years, and pay half of
the income tax for the next 6 years. Only big companies that invest at least 100 thousand
euros and have at least 20 employees are allowed to settle here. By the year 2023, 38 foreign
and Lithuanian companies were operating in Kaunas FEZ. There are around 5500 working
places created in the territory.

The territory is generally accessible by car and there is only one public bus route
passing beside the territory. Bicycle infrastructure inside the territory is persistent, newly
built, but there are no proper connections to Kaunas town.

Although the territory is in a strategic location, during the morning and evening rush
hours the traffic congestion around the A1–A6 road crossing is the worst in the whole
Kaunas region. Especially during the evening rush hours (17:00–18:30) the main roads
are blocked for about 1–2 h daily. It is caused mainly by private cars and heavy freight
transport. In recent years the traffic problems have been increasing. Alternative travel
modes for the FEZ workers coming from Kaunas town would be an essential mean to
reduce the congestion. It would also be a popular solution amongst workers, who are now
spending a few hours daily in traffic jams.
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As Figure 1 shows, the existing bicycle path runs along the A6 road, crossing the
motorway. Then the cyclist has to cross the A6 by viaduct to enter the FEZ territory only in
the middle, after already passing half of its functioning territory. This connection is unsafe
for cyclists.
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Figure 1. Bicycle connections to Kaunas FEZ territory (red dashed line marks the FEZ territory, green
bold lines with numbers—proposed highway crossing connections 1 to 4 as viaducts or tunnels).

6. Calculations and Results

The Graph of the bicycle pathway network for the case study of Kaunas FEZ and
town territory analysis was created from combined OSM layers for roads, cycle paths and
pedestrian walkways. The geometry was simplified to create a network Graph consisting of
538 nodes and 610 edges with real distance attributes attached to each edge. This attribute
is used for shortest distance calculations later.

The exact data of living places and jobs were collected from the registry. Only the upper
part of the Kaunas town living area was selected, because other parts are problematic to reach
from Kaunas FEZ. This area contains 8896 point entities representing housing units with an
attribute value for the number of people living in the building. The total number of people
living in this area is 210,958 and corresponds to 71% of the Kaunas town population (297,214).
The other 29% of inhabitants live in areas disconnected from Kaunas FEZ by physical barriers
and distance; therefore, they could not be considered as cycling commuters.

Jobs data are taken from the registry and represented by 97 point entities in the FEZ
territory with an attribute of the number of jobs in each building location. The total number
of jobs is 5642.
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To simplify calculations, the numbers from population point entities as well as jobs
point entities are summed up to the nearest Graph nodes and an Origin–Destination matrix
with weight values is created. Not all the nodes receive housing or jobs numbers; some
of the Graph nodes serve only as connecting nodes. There are 388 nodes with non-zero
housing (origin) weights and only 50 nodes with non-zero weights for jobs (destination).
Figure 1 represents the scheme of the created Graph with Origin—Destination nodes
marked by proportional size symbols.

To examine the existing situation and evaluate the improvements made by adding
safe crossing tunnels or viaducts across the A1 motorway, the status quo situation and
expanded bicycle pathway network situations are examined with distances of 5000 m and
7000 m.

Figure 2 demonstrates the traffic flow graph in the status quo situation with 5 km
and 7 km estimation distances. The schemes show overused unsafe bicycle path segments
along the A6 road, since this is the only existing connection to the FEZ territory.
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Figure 2. Status quo situation: (a) generated bicycle flow within a 5 km distance; (b) generated bicycle
flow within a 7 km distance (red dashed line marks the FEZ territory, blue lines represent traffic flow
cartogram, red dots—locations of living places, and purple dots—locations of FEZ companies).

The initial decision matrix is outlined in Table 2, featuring four criteria expressed as
grey values. The criterion “Population in reachable zone” encompasses a degree of uncer-
tainty regarding the optimal distance for comfort, prompting calculations for both 5 km
and 7 km distances to establish lower and upper values for the X1 criterion. Consequently,
this calculation yielded additional uncertain values for criteria X3, X4, and X10.

Table 3 displays the normalized decision matrix, along with the corresponding weights
of the criteria. Table 4 presents the normalized and weighted decision-making matrix, along
with the rankings assigned to each alternative.
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Table 2. Initial decision-making matrix.

x1α x1β x2 x3α x3β x4α x4β x5 x6 x7 x8 x9 x10α x10β

Population within
5–7 km distance,

number of people

Average
Distance,

m

Number of daily
non-motorized

commuters,
number of people

Reduction of
traffic flow on A6
road, number of

cars

Savings
from

re-
duced
GHG
emis-
sions,
mln.

€/year

Non-
motorized
travel

dis-
tance,
1000

km/year

Savings
from

re-
duced
traffic

conges-
tion,
mln.

€/year

Savings
from

re-
duced
travel
cost,
mln.

€/year

Cost,
mln. €

Risk of Accident
on dangerous A6

crossings,
Number of

possible non-car
commuters

A0 23,825 85,882 5629 238 795 0 0 0 1342.5 0 0.1718 0 23,565 85,351
A1 44,331 109,438 5174 304 1013 66 218 0.3774 1572.4 0.7737 0.2013 1.263 20,077 64,129
A2 41,188 106,427 5232 295 985 57 190 0.3711 1546.1 0.6744 0.1979 1.266 11,180 34,666
A3 27,651 99,047 5602 275 916 37 121 0.3695 1539.4 0.4295 0.197 1.372 23,565 80,538
A4 24,656 95,301 5663 265 882 27 87 0.3596 1498.4 0.3088 0.1918 1.318 23,565 83,640
A12 45,435 110,329 5142 306 1021 68 226 0.378 1575 0.8021 0.2016 2.529 20,077 64,129
A13 47,011 114,200 5157 317 1057 79 262 0.3925 1635.3 0.9299 0.2093 2.635 20,077 64,129
A14 45,162 115,212 5207 320 1066 82 271 0.3996 1665.2 0.9618 0.2131 2.581 20,077 64,129
A23 43,202 110,738 5218 307 1025 69 230 0.3851 1604.5 0.8163 0.2054 2.638 11,180 34,666
A24 42,019 111,747 5261 310 1034 72 239 0.3917 1632 0.8483 0.2089 2.584 11,180 34,666
A34 28,249 102,548 5612 285 949 47 154 0.3834 1597.7 0.5466 0.2045 2.689 23,565 80,538
A134 47,609 117,696 5179 327 1089 89 294 0.4061 1692 1.0435 0.2166 3.953 20,077 64,129
A234 43,801 114,236 5239 317 1057 79 262 0.3987 1661.3 0.9299 0.2126 3.956 11,180 34,666
A1234 47,898 117,924 5154 327 1091 89 296 0.4049 1686.9 1.0506 0.2159 5.219 20,077 64,129

Note: Columns with greyed background represent Grey values.

Table 3. Normalized decision-making matrix.

x1α x1β x2 x3α x3β x4α x4β x5 x6 x7 x8 x9 x10α x10β
Criteria
weights 0.16 0.14 0.12 0.12 0.11 0.09 0.08 0.07 0.06 0.05

A0 0.04316 0.05685 0.06741 0.01702 0.18960 0.00000 0.00000 0.06034 0.08427 0.00000 0.06033 0.0000 0.01418 0.16483
A1 0.08030 0.07244 0.07334 0.02175 0.24159 0.02316 0.25319 0.07068 0.07195 0.07649 0.07069 0.1305 0.01887 0.19346
A2 0.07461 0.07045 0.07252 0.02110 0.23492 0.02000 0.22067 0.06950 0.07317 0.06667 0.06949 0.1302 0.03491 0.34742
A3 0.05009 0.06556 0.06773 0.01967 0.21846 0.01298 0.14053 0.06920 0.07349 0.04246 0.06918 0.1201 0.01503 0.16483
A4 0.04466 0.06308 0.06700 0.01896 0.21035 0.00947 0.10105 0.06734 0.07550 0.03053 0.06735 0.1251 0.01447 0.16483
A12 0.08230 0.07303 0.07379 0.02189 0.24350 0.02386 0.26249 0.07079 0.07183 0.07929 0.07079 0.0652 0.01887 0.19346
A13 0.08516 0.07559 0.07358 0.02268 0.25209 0.02772 0.30430 0.07350 0.06918 0.09193 0.07350 0.0626 0.01887 0.19346
A14 0.08181 0.07626 0.07287 0.02289 0.25423 0.02877 0.31475 0.07483 0.06794 0.09508 0.07483 0.0639 0.01887 0.19346
A23 0.07826 0.07330 0.07272 0.02196 0.24446 0.02421 0.26713 0.07212 0.07051 0.08070 0.07213 0.0625 0.03491 0.34742
A24 0.07612 0.07397 0.07212 0.02217 0.24660 0.02526 0.27758 0.07335 0.06932 0.08386 0.07336 0.0638 0.03491 0.34742
A34 0.05117 0.06788 0.06761 0.02039 0.22633 0.01649 0.17886 0.07180 0.07081 0.05404 0.07181 0.0613 0.01503 0.16483
A134 0.08624 0.07791 0.07326 0.02339 0.25972 0.03123 0.34146 0.07605 0.06686 0.10316 0.07606 0.0417 0.01887 0.19346
A234 0.07934 0.07562 0.07243 0.02268 0.25209 0.02772 0.30430 0.07467 0.06810 0.09193 0.07466 0.0417 0.03491 0.34742
A1234 0.08677 0.07806 0.07362 0.02339 0.26020 0.03123 0.34379 0.07583 0.06707 0.10386 0.07582 0.0316 0.01887 0.19346

Note: Columns with greyed background represent Grey values.

Figure 2 shows the traffic flow graph in the status quo situation with 5 km and 7 km
estimation distances. The only way from the living districts to FEZ is through the dangerous
A6 road path. From these schemes, it also becomes clear that only one connection, shown
in Figure 1 by number 1, is enough to achieve the best results. Other connections would
work and be useful only after the future development and expansion of Kaunas FEZ.

Figure 3 shows the traffic flow graph with proposed new connections (all four con-
nections, alternative A1234) with 5 km and 7 km estimation distances. The diagrams
demonstrate a more uniform distribution of traffic compared to the status quo scenario,
along with a reduced reliance on the hazardous A6 path. These representations elucidate
that the connection denoted as number 1 in Figure 1 experiences the highest usage, indi-
cating that its construction would yield the most significant improvements in connectivity
and safety. The efficacy of other connections is contingent upon the future development
and expansion of Kaunas FEZ, particularly when companies occupy eastern territories.
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Table 4. Normalized and weighted decision-making matrix.

x1α x1β x2 x3α x3β x4α x4β x5 x6 x7 x8 x9 x10α x10β Ki Ui Rank
A0 0.000000 0.006905 0.009096 0.009437 0.002043 0.022752 0.000000 0.000000 0.006637 0.007584 0 0.004223 0.000000 0.000709 0.008241 0.052755 0.535542 14
A1 0.007830 0.012849 0.011591 0.010267 0.002609 0.028991 0.002779 0.030383 0.007774 0.006475 0.006119 0.004948 0.007830 0.000943 0.009673 0.093324 0.947375 9
A2 0.007812 0.011938 0.011272 0.010153 0.002532 0.028190 0.002400 0.026481 0.007645 0.006586 0.005334 0.004865 0.007812 0.001745 0.017371 0.093358 0.947721 8
A3 0.007208 0.008014 0.010490 0.009483 0.002361 0.026215 0.001558 0.016864 0.007612 0.006614 0.003397 0.004843 0.007208 0.000751 0.008241 0.076403 0.775608 12
A4 0.007504 0.007146 0.010093 0.009380 0.002275 0.025242 0.001137 0.012125 0.007408 0.006795 0.002442 0.004715 0.007504 0.000723 0.008241 0.071735 0.728223 13
A12 0.003911 0.013169 0.011685 0.010331 0.002627 0.029220 0.002863 0.031498 0.007787 0.006465 0.006344 0.004956 0.003911 0.000943 0.009673 0.090631 0.920043 10
A13 0.003753 0.013625 0.012095 0.010301 0.002721 0.030250 0.003326 0.036516 0.008086 0.006226 0.007354 0.005145 0.003753 0.000943 0.009673 0.095440 0.968862 6
A14 0.003832 0.013090 0.012202 0.010202 0.002747 0.030508 0.003453 0.037770 0.008232 0.006115 0.007607 0.005238 0.003832 0.000943 0.009673 0.096418 0.978784 4
A23 0.003749 0.012521 0.011728 0.010180 0.002635 0.029335 0.002905 0.032056 0.007933 0.006346 0.006456 0.005049 0.003749 0.001745 0.017371 0.094862 0.962988 7
A24 0.003827 0.012179 0.011835 0.010097 0.002661 0.029592 0.003032 0.033310 0.008069 0.006239 0.006709 0.005135 0.003827 0.001745 0.017371 0.095939 0.973924 5
A34 0.003678 0.008188 0.010861 0.009466 0.002446 0.027160 0.001979 0.021463 0.007898 0.006373 0.004323 0.005027 0.003678 0.000751 0.008241 0.077309 0.7848 11
A134 0.002502 0.013799 0.012465 0.010257 0.002807 0.031166 0.003747 0.040976 0.008366 0.006018 0.008253 0.005324 0.002502 0.000943 0.009673 0.098508 1 1
A234 0.002500 0.012695 0.012099 0.010140 0.002721 0.030250 0.003326 0.036516 0.008213 0.006129 0.007354 0.005226 0.002500 0.001745 0.017371 0.097924 0.994073 3
A1234 0.001895 0.013883 0.012489 0.010307 0.002807 0.031223 0.003747 0.041254 0.008341 0.006036 0.008309 0.005307 0.001895 0.000943 0.009673 0.098205 0.996927 2

Note: Columns with greyed background represent Grey values. Bold column at the end of the table shows final result—the evaluated rank of alternative.
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The findings indicate the potential to double the number of commuters upon estab-
lishing the missing links. For instance, when accounting for a closer commuting distance
of 5 km, the actual number of commuters per day surges from 221 to 446. Conversely, if
commuters can cover a larger distance of 7 km, the increase is less substantial—calculations
reveal a rise from 797 to 1096, representing only a 37% increment. Nonetheless, this remains
a considerable figure, achievable through the construction of two or even just one 50 m
tunnel or viaduct crossing the highway at a strategic location.

Study results show that a significant increase in cycling and walking is possible if the
connectivity of the cycling pathway network can increase significantly if proper connections
crossing the highway would be established. Such investments have a high risk of not paying
back; therefore, they are not welcomed by stakeholders and private companies.

7. Discussion

To stimulate investment, stimulate economic growth, and encourage job creation,
many countries have established “zones of advantage” tailored for new business ventures.
Currently, there are approximately 5400 industry zones worldwide [63]. offering various
incentives such as tax breaks, financial assistance, and logistical support. However, the
growth of these zones has paralleled an uptick in traffic volumes, leading to congestion
and prolonged travel times.

The expansion of job opportunities in these zones necessitates improved accessibility.
Implementing proper cycling and walking connections, alongside other infrastructure en-
hancements, is essential to reducing reliance on automobiles among workers. Emphasizing
non-motorized travel modes aligns with the European Union’s transport decarbonization
objectives and discourages further expansion of car-centric areas.

The promotion of cycling and walking as preferred modes of transportation aligns
closely with the principles of sustainable urban mobility, offering numerous benefits such
as improved human health, energy conservation, and enhanced urban vibrancy. However,
facilitating infrastructure for pedestrian and bicycle mobility poses a multifaceted challenge,
particularly in industrial territories where highways often encircle these zones. Achieving
comfortable and safe passage for cyclists and pedestrians across these highways is crucial
to fostering increased cycling and walking activity.

In addition to the challenges posed by highway encirclement in industrial zones,
there are several other factors that contribute to the complexity of providing pedestrian
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and bicycle infrastructure in car-oriented industry zones. One such factor is the need to
accommodate diverse user needs and preferences, including varying levels of cycling profi-
ciency and mobility limitations. Ensuring that cycling and walking routes are accessible
and user-friendly for individuals of all ages and abilities is essential to promoting their
widespread adoption.

Furthermore, the integration of cycling and walking infrastructure must be accom-
panied by supportive policies and initiatives to encourage mode shift away from car
dependency. This may include measures such as implementing traffic-calming measures,
establishing pedestrian zones, and providing incentives for active transportation, such as
bike-sharing programs or subsidies for purchasing bicycles.

The planning and design of cycling and walking infrastructure must consider broader
urban planning objectives, such as promoting compact, mixed-use development and creat-
ing vibrant, livable communities. By incorporating cycling and walking infrastructure into
larger urban design strategies, cities can enhance the overall quality of life for residents
while reducing reliance on automobiles and mitigating the negative impacts of traffic
congestion and air pollution.

Addressing concerns related to safety and security is paramount to encouraging
greater uptake of cycling and walking. This involves not only designing infrastructure
that minimizes conflicts between different modes of transportation but also implementing
measures to improve lighting, signage, and visibility to enhance the perception of safety
for cyclists and pedestrians.

Overall, while the task of enhancing pedestrian and bicycle connectivity in industrial
zones may be complex, it presents an opportunity to advance broader goals of sustainable
urban development, including promoting public health, reducing greenhouse gas emis-
sions, and creating more resilient and equitable communities. By taking a holistic approach
that considers the diverse needs of users and integrates cycling and walking infrastructure
with supportive policies and urban design principles, cities can foster a more sustainable
and livable built environment for all.

Safety concerns are paramount in urban planning, particularly in the integration of
freight transport and bicycle lanes. This separation is a common practice in countries with
a strong bicycle culture, such as the Netherlands, Denmark, and Belgium. Urban plan-
ners and policymakers can draw valuable lessons from successful examples in industrial
zones like the eco-industrial park (EIP) in Kalundborg, Denmark, Kawasaki Eco-town in
Japan [64], and the Antwerp seaport zones. These areas demonstrate the effective coexis-
tence between bicycle lanes and freight transport, offering insights for improving safety
and accessibility in similar urban environments.

This study acknowledges the varied locations of industrial areas, where many are po-
sitioned far from residential districts, posing challenges for integrating sustainable mobility
solutions. Additionally, the configuration and dispersal of these industrial zones, along
with physical barriers separating them from living areas, may present insurmountable
obstacles. Furthermore, constraints such as restricted zone access and the impracticabil-
ity of constructing segregated bicycle lanes in certain areas further complicate efforts to
promote pedestrian and bicycle connectivity. These factors underscore the complexity of
implementing sustainable transportation initiatives in car-oriented industrial parks.

It is imperative to underscore the necessity of augmenting the study’s validity and
reliability through the integration of comprehensive real-world data and the proposition of
future research directions. Despite the valuable insights gained from the current investiga-
tion, there remains an exigency for further refinement and expansion of methodologies.

To fortify the study’s conclusions, forthcoming research endeavors should prioritize the
acquisition and assimilation of extensive empirical data reflective of existing traffic patterns,
commuting behaviors, and infrastructure conditions within industrial zones. This empirical
grounding will serve to refine models and simulations, leading to more precise assessments.

There is a need to explore the long-term implications and sustainability of proposed
interventions. Through longitudinal analyses and scenario planning, researchers can
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evaluate the enduring influence of implemented bicycle and pedestrian connections on
travel behaviors, traffic flows, and environmental outcomes. Such an approach would
offer invaluable insights into the efficacy and durability of proposed solutions, facilitating
informed decision making by policymakers and urban planners.

Interdisciplinary collaboration and stakeholder engagement are pivotal for future
research endeavors. By involving experts from diverse disciplines and engaging with local
communities, businesses, and policymakers, researchers can gain multifaceted perspectives
and address the complex challenges associated with sustainable mobility comprehensively.
This collaborative approach will ensure that research findings are aligned with the needs
and priorities of stakeholders, fostering greater acceptance and implementation of sustain-
able transportation initiatives.

8. Conclusions

Instances where job sites are isolated from residential areas are frequently encountered
in industrial zones, often situated near highways in proximity to larger towns. The issue of
bicycle and pedestrian accessibility to such zones has historically received limited attention
from researchers or planners until recent years, coinciding with the emergence of sustainable
traffic solutions. Even presently, established methods for assessing accessibility by bicycle or
walking at the micro-scale remain elusive. This case study, employing a practical evaluation
method, illustrates the opportunities afforded by innovations of the last decade, including
enhanced computational capabilities and easily executable GIS data operations facilitated by
web cloud computational platforms and advanced Python libraries.

The utilization of the Multi-Criteria Decision-Making (MCDM) ARAS-G method offers
an objective and mathematically rigorous perspective on connection alternatives, allowing
for weighted assessments that account for various criteria. Moreover, this method provides
a structured approach to evaluating uncertainties, as it enables the incorporation of grey
numbers for uncertain evaluation criteria. By leveraging these analytical tools, planners
and decision makers can make informed choices regarding infrastructure development,
fostering sustainable and efficient transportation solutions in industrial zones.

The study findings indicate the potential for a notable increase in cycling and walking
if the connectivity of the cycling pathway network is substantially enhanced through the
establishment of suitable connections crossing the highway. Furthermore, the Multi-Criteria
Decision-Making (MCDM) analysis, incorporating expert rankings of criteria, underscores
that investment in infrastructure to achieve sustainability and carbon-neutral transportation
goals is primarily contingent on the usability of links rather than construction costs and
economic benefits. Consequently, the best-ranked alternative is the one with connections
1, 3, and 4. Following closely is the alternative with all four connections. Interestingly,
connections numbered 1 and 2, despite being positioned favorably, were ranked only 9 and
8 out of 14 alternatives, respectively, highlighting a nuanced evaluation process.

Study findings underscore the potential for a significant uptick in cycling and walking
within Kaunas FEZ if the connectivity of the cycling pathway network is bolstered through
the construction of additional links crossing the A1 highway. This enhancement could
nearly double the opportunity for individuals to reside close to their workplaces, from
23,797 to 47,989. However, the direct return on investment in connecting bridges or tunnels
may be limited. The benefits would be dispersed across society and the Kaunas FEZ
community, necessitating government intervention rather than reliance on stakeholders or
private companies.

While the current study lays a solid foundation for understanding the potential benefits
of enhancing pedestrian and bicycle connectivity in car-oriented industrial parks, future
research efforts must center on integrating more real-world data, conducting longitudinal
analyses, and fostering interdisciplinary collaboration to advance knowledge and inform
evidence-based decision making in urban mobility planning.
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