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Abstract: We investigated the relationship between benthic macroinvertebrate community attributes
(richness, abundance, biodiversity, and climate-specific and resistance forms) and the physical charac-
teristics of distinct mesohabitats (hydromorphological unit types) discretized into fast (e.g., riffles
or rapids) and slow (e.g., pools or glides) flow types in four Mediterranean rivers of Spain. Key
attributes of hydromorphological units, including length, width, depth, shade, substrate composition,
embeddedness, abundance of aquatic vegetation, and density of woody debris, were considered.
Through a comprehensive suite of multivariate analyses, we unraveled taxonomic and habitat distinc-
tions among rivers and hydromorphological unit types, with a notable influence of spatial proximity
(greater similarity within the same river basin). In slow hydromorphological units, aquatic vegetation,
depth, and abundance of coarse substrate emerged as pivotal factors shaping macroinvertebrate as-
semblages, whereas in fast-flowing units, vegetation, substrate embeddedness, and density of woody
debris were the most important. Contrary to the remaining community attributes, the studied resis-
tance forms (absent, eggs, cocoons, and cells against desiccation and diapause) exhibited uniformity
across rivers despite observed variations in macroinvertebrate communities, underscoring regional
functional analogies in biological and ecological mechanisms within the investigated Mediterranean
river basins. This study contributes valuable insights for anticipating the repercussions of ongo-
ing climate change, particularly in regions where fast-flowing hydromorphological units are more
susceptible to depletion during drought periods.

Keywords: flow regime; fuzzy principal component analysis; Iberian Peninsula; Mediterranean
rivers; resistance form

1. Introduction

Freshwater ecosystems have been recognized among the most globally disturbed
environments, owing to the multifaceted impacts of land use changes, climate fluctuations,
pollution, overexploitation, and the intrusion of invasive alien species [1,2]. Assessing the
health and sustainability of these ecosystems requires a comprehensive understanding of
their intricate dynamics. Benthic macroinvertebrates have emerged as pivotal indicators,
serving as proxies for both water quality and the biotic integrity of freshwater biomes
(e.g., [3]). However, unraveling cause-and-effect relationships in the face of abiotic processes
acting across diverse spatial scales poses a significant challenge [4–6]. The intricate interplay
of environmental attributes and stressors influencing biotic communities requires studies
at varying scales, from unaltered to regulated rivers, spanning catchment kilometers
down to mesohabitats at the square meter level [7–9]. In this hierarchical framework,
macroinvertebrate communities exhibit associations with river habitats across spatial scales,
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ranging from catchment dimensions to mesohabitats, underscoring the need for a nuanced
understanding of their distribution [10–14].

At the macro-scale, encompassing catchment and basin dimensions, macroinvertebrate
communities parallel climatic, geological, and land-use factors [15,16]. Comprehending
how environmental factors such as flow regime, temperature, nutrients, oxygen, and
pH influence macroinvertebrate composition along the longitudinal gradient from head-
waters to mouth is crucial [8,17–19]. Conversely, at the microhabitat scale, hydraulics
and associated environmental factors drive the distribution of macroinvertebrates within
river segments, leading to locally differentiated communities [20–22]. Mesohabitats, or
hydromorphological units (HMUs), offer a valuable middle ground for studying and man-
aging these communities, as they effectively synthesize the influences of environmental
factors at various spatial scales [21]. Mesohabitats, characterized by consistent depth,
velocity, slope, substrate distribution, and cover elements, present distinct macroinverte-
brate communities in slow-flow (e.g., pools or glides) and fast-flow (e.g., riffles or rapids)
HMUs [21,23,24]. Understanding the effects of hydrological events on macroinvertebrate
communities requires an analysis of these mesoscale units [25]. Despite the existence of
various mesohabitat classification approaches, a simplified categorization into slow-flow
and fast-flow mesohabitats enables the application and generalization of results across
diverse rivers, especially when referring to the assessment of the invertebrate communities
that live in these habitats [26,27]. In addition to abiotic factors, biotic interactions such as
predation and competition, as well as colonization events, play pivotal roles in shaping
the distribution patterns of invertebrates [28,29]. Understanding these dynamic ecological
processes is essential for elucidating the complex mechanisms driving community assembly
and biodiversity dynamics in river ecosystems.

The role of environmental attributes, particularly hydraulics, in shaping macroinver-
tebrate assemblages at the genus or family level has been extensively explored [18,30,31].
However, the significance of other factors such as detritus, woody debris, and aquatic vegeta-
tion and their influence on macroinvertebrate communities, remains underexplored [32–36].
Furthermore, the integration of biological traits, reflecting species adaptation to the environ-
ment, into the study of macroinvertebrate communities has recently gained prominence [37].
While studies have delved into the relationship between hydraulics and microhabitat-scale
traits [38], HMUs have been employed to scrutinize the connections among biological traits,
community structure, richness, and diversity of aquatic macroinvertebrates [39]. Notably, func-
tional trait-based approaches have proven robust in discerning differences between species
across rivers [37].

Despite these advances, there remains a notable gap in research concerning climate-
specific adaptive traits and their distribution across HMUs. Given the anticipated ex-
acerbation of hydrological variability by global change in Mediterranean climate rivers,
understanding the functional traits that allow macroinvertebrates to endure these impacts
becomes imperative [40–42]. Our study tries to fill this gap by investigating the rela-
tionships between taxonomic- and trait-based macroinvertebrate descriptors and HMU
attributes across diverse Mediterranean rivers, aiming to enhance our understanding of the
dynamics shaping freshwater ecosystems in the face of ongoing environmental changes.

2. Materials and Methods
2.1. Study Sites

This study was carried out on four headwater rivers in the Júcar River Basin District,
located in the eastern Iberian Peninsula (Figure 1). The sampled rivers were Ebrón (Turia
River tributary), Vallanca (Turia River tributary), Villahermosa (Mijares River tributary),
and Palencia. All sampling sites were located in the Mediterranean region, where the
climate is temperate with a dry season and a hot (Cfa) or temperate (Cfb) summer, according
to the Köppen–Geiger classification [43]. The hydrological regimen is very variable, with
precipitations concentrated at the end of winter and the beginning of spring and low flows
in summer [44]. Consequently, they are typical Mediterranean rivers with an irregular
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flow regime, with large seasonal floods and strong droughts; in fact, frequent droughts
have recently been documented in the headwaters of these rivers [45]. The mean annual
discharge recorded in situ in the Ebrón, Villahermosa, Vallanca, and Palancia rivers was
1.13, 1.08, 0.35, and 0.26 m3/s, respectively. The maximum water temperature oscillates
between 12 and 14 ◦C in the winter, with minimum temperatures usually greater than 5 ◦C,
while in summer maximum temperatures usually do not exceed 20 ◦C. Land use along the
four rivers is mainly forest (84%), while agricultural and urbanized areas represent only a
small percentage of the total land use (16%). Additional details of the study sites can be
found in [46,47].
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with a focus on the highlighted Júcar River basin in Spain.

2.2. Data Collection

Data were collected during low flow (July and August) between 2004 and 2006. Four sam-
pling sites were selected in the upstream-downstream gradient for each river, and two different
HMUs (slow- and fast-flow) were established per site. The recurrence of drought was evident in
the last two years (2005 and 2006), which were characterized by scarce precipitation that caused
the upper reaches of the Vallanca and Villahermosa rivers to dry out. In total, 82 HMUs were
sampled: 44 in slow-flow habitats and 38 in fast-flow habitats.

2.3. Mesohabitat Survey and Characterization

Habitat classification was based on previous studies in which HMUs were grouped
into two types: (i) slow-flow HMUs that included pools and glides and (ii) fast-flow HMUs
that included riffles and rapids [27,47]. Once an HMU was classified, several mesohabitat
attributes were measured: HMU length, width, obtained from three equidistant cross-
sections, and mean depth calculated from nine point measurements (three per cross-section),
while the maximum depth of the mesohabitat was also recorded. Because the structure of
the macroinvertebrate community is largely determined by habitat characteristics such as
substrate and sediment types [48], several cover-related attributes were visually estimated
(expressed as percentages) following the Basinwide Visual Estimation Technique sampling
protocol [27,47,49]. These were: shade, embeddedness (riverbed covered by fine sediment
particles), aquatic vegetation (vascular plants), substrate, and woody debris. Specifically,
substrate granulometry was divided into three categories: coarse (diameter > 256 mm),
medium (diameter between 2 and 256 mm), and fine (diameter < 2 mm). The density of
woody debris was visually estimated and expressed in pieces of wood per m2.
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2.4. Macroinvertebrates Data Compilation

We took two macroinvertebrate samples from each HMU to adequately cover the en-
tire mesohabitat area. The Hess Stream Bottom Sampler (total area 0.05 m2) with a 460 µm
mesh size was used to catch macroinvertebrates following the international standard proto-
col (ISO 8265:1988). All samples were preserved in 4% formalin for subsequent processing
in the laboratory, where macroinvertebrates were sorted, identified, and counted. The
samples were classified at the family level, according to Oscoz et al. (2011) [50]. Using
macroinvertebrates at the family level offers efficient data analysis and a comprehensive
community overview, mitigating errors associated with higher taxonomic resolutions
(genus and species) and reducing identification costs. Nonetheless, this strategy compro-
mises species-level variability and constrains the detection of finer-scale changes within
communities [51]. For each HMU, macroinvertebrate abundance was calculated as individ-
uals per square meter (henceforth simply termed abundance) and relative abundance was
defined as the percentage of the total macroinvertebrate sample comprised by the given
macroinvertebrate family. Furthermore, the taxa richness was estimated as the number of
families present in each sample, as well as the Shannon (H′) and Simpson (1 − λ) diversity
indices that were calculated following Equations (1) and (2), where pi is the proportion of
families i in a benthos sample [52,53].

H′ = −∑ piln pi (1)

1 − λ = 1 − ∑ p2
i (2)

2.5. Statistical Analyses

First, we evaluated the role of habitat in macroinvertebrate communities along the
two types of HMU (slow and fast) using principal component analysis (PCA). Abundances
were grouped according to their taxonomic order to display all information on the biplots.
We used a permutation Monte Carlo approach to test the statistical significance (p < 0.05)
of the analysis corresponding to each river [54]. Second, we related richness, abundance,
and diversity indices with habitat attributes using canonical correspondence analysis
(CCA). Before CCA analysis, habitat attributes and macroinvertebrate diversity indices
were normalized because the data was non-normal according to the Shapiro–Wilk (N < 50)
and Kolmogorov–Smirnov (N > 50) tests. Thus, ANOVA and Kruskal–Wallis tests for
normal and non-normal distributed data (respectively) were used to detect differences in
environmental and biological parameters between rivers and HMU types. All tests were
considered statistically significant at p < 0.05.

In a third step, fuzzy principal component analysis (FPCA) was used to analyze
macroinvertebrates communities according to that resistance trait in each of the HMU
types independently. FPCA is a method for robust estimation of principal components
and is capable of diminishing the influence of outliers [55]. The trait database (developed
after Tachet et al. [56]) was used for the trait-based approach. The resistance traits include
five categories: absent (indicating the absence of any discernible resistance form within
the family) eggs (reproductive structures laid capable of enduring adverse environmental
conditions until hatching), cocoons (protective structures produced to encase their eggs,
providing insulation and safeguarding against environmental stressors), cells against desic-
cation (specialized cellular adaptations that confer resistance against dehydration, allowing
survival during periods of low water availability) and diapause or dormancy (physiological
state entered in response to unfavorable conditions, characterized by metabolic suppression
and reduced activity until environmental conditions become more favorable) [56].

The taxonomic resolution used in the classification process corresponded to the family
level, using the average profile of all genera in the same family [57]. Trait information was
structured using a “fuzzy coding” procedure [58]. A score was assigned to every taxon
describing its affinity for each of the five trait categories, with “0” indicating “no affinity” and
“5” indicating “high affinity” [56]. Affinity scores were rescaled as proportions (summing
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up to 1) for each taxon, representing the probability that any taxon belonged to a particular
category. Then, to describe the structure of the community in terms of the relative abundance
of each trait, the relative abundance of each taxon was multiplied by the proportion of each
category per trait (Relative Abundance × Affinity score per category = Category matrix) [59].
The resulting trait-by-species array contained the relative abundance of each trait category in
each river, and this new array was used in the multivariate analysis (Table S3). The Monte
Carlo test was used to explore the difference between groups (p < 0.05). All analyses and
graphical outputs of the PCA, CCA, and FPCA models were calculated with the “ade4” [60]
and “vegan” [61] packages implemented in the version 4.2.2. of R software [62].

3. Results
3.1. Differences by River and HMU Type

The habitat attributes of fast and slow HMUs reveal substantial variations, emphasiz-
ing the intricate ecological diversity present within stream habitats. Despite similarities in
width, shade, and aquatic vegetation coverage between both groups, pronounced distinc-
tions arise in depth parameters and substrate composition. Slow HMUs had greater mean
and maximum depths, as well as higher percentages of embeddedness, fine substrate, and
woody debris (Table 1). Conversely, fast HMUs exhibit shallower depths, with a higher
proportion of medium substrates (Table 1).

Table 1. Habitat attributes, units, and mean values (range in parentheses) by fast and slow HMUs.

Attribute Unit Slow HMU Fast HMU Statistical Test

Width m 4.69 (1.84–8.54) 4.84 (1.26–8.80) ANOVA tests; p = 0.685
Mean depth m 0.43 (0.11–0.79) 0.25 (0.04–0.53) ANOVA tests; p < 0.001

Maximum depth m 0.78 (0.32–1.20) 0.44 (0.15–0.83) ANOVA tests; p < 0.001
Shade % 56.70 (0–100) 49.47 (0–100) Kruskal–Wallis test; p = 0.341

Embeddedness % 39.09 (0–100) 21.84 (0–100) Kruskal–Wallis test; p = 0.013
Aquatic vegetation % 8.64 (0–60) 8.42 (0–95) Kruskal–Wallis test; p = 0.862

Substrate coarse % 14.09 (0–90) 12.63 (0–100) Kruskal–Wallis test; p = 0.183
Substrate medium % 67.16 (0–100) 77.76 (0–100) Kruskal–Wallis test; p = 0.072

Substrate fine % 18.98 (0–85) 9.61 (0–60) Kruskal–Wallis test; p = 0.034
Woody debris pieces/m2 0.009 (0.000–0.142) 0.003 (0.000–0.051) Kruskal–Wallis test; p = 0.038

At the family level, a total of 86 taxa were identified, and macroinvertebrate abundances
varied widely among sampling sites (Table 2). Chironomidae were the most abundant taxon
within the slow and fast habitats of Palancia and Villahermosa, representing between 44.0%
and 54.6% of the total number of individuals. On the contrary, Elmidae (24.6% in slow
habitats) and Gammaridae (20.6% in fast habitats) dominated Ebrón habitats. Furthermore,
Gammaridae (23.6% and 31.1% within slow and fast habitats, respectively) prevailed in the
Vallanca (Figure S1 and Table S1). Analysis of biological parameters in fast HMU indicated that
abundance (p = 0.008) and Simpson index (p = 0.029) were statistically different among rivers,
while Shannon index and richness showed marginal differences (0.05 < p < 0.1). However, in
slow HMUs, no significant statistical differences were found (p > 0.1).

PCAs revealed differences among rivers in both HMU types, considering either the
habitat attributes or macroinvertebrate communities (Figure 2). Regarding the PCA on
habitat attributes, the two axes of the slow HMUs explained 50.7% of the total variance
(with eigenvalues of 2.85 and 2.22), while for the fast HMUs, they contained 53.3% (2.98
and 2.33). The overlap among rivers was smaller in slow than in fast HMUs (permutations
test; p < 0.001), with the Ebrón and Palancia rivers completely overlapping in fast HMUs.
Villahermosa had the lowest variability, in contrast to Vallanca, as was highlighted by the
different sizes of its ellipses (Figure 2a,b). Concerning macroinvertebrate communities, the
two axes of slow HMUs explained 35.7% (with eigenvalues of 2.95 and 1.69), whereas for
fast HMUs, the two contained 33.8% of the total variance (2.55 and 1.85). There was overlap
between Ebrón and Vallanca (both are tributaries of the Turia river) and Palancia and
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Villahermosa, but with notable differences among rivers (permutations test; p = 0.001 for
slow and p = 0.006 for fast water) (Figure 2). Despite a clear overlap in the habitat attributes
of the fast HMUs between Palancia and Ebrón, such conditions did not replicate in their
macroinvertebrate communities (Figure 2c,d). In contrast, no similarity was observed
between the communities on those two rivers, either in slow or fast HMUs. In general,
the communities were better explained by the gradient in the abundance of Gastropoda,
Oligochaeta, Crustacea, and Coleoptera in the Vallanca and Ebrón rivers, while Diptera,
Ephemeroptera, Odonata, and Plecoptera prevailed in the Palancia and Villahermosa rivers
(Figure 2c,d).

Table 2. Mean of macroinvertebrate abundance (ind./m2), Simpson’s Index, Shannon’s Index,
and richness.

Ebrón Palancia Vallanca Villahermosa Statistical Test

Slow water

Abundance 4503.3 7276.2 10,258.2 11,545 Kruskal–Wallis test; p = 0.830
Simpson 0.8 0.7 0.7 0.6 Kruskal–Wallis test; p = 0.615
Shannon 0.8 0.8 0.7 0.7 ANOVA tests; p = 0.415
Richness 17.9 21.2 18 18.9 ANOVA tests; p = 0.464

Fast water

Abundance 4621.8 16,314.4 4475 8782.3 Kruskal–Wallis test; p = 0.008
Simpson 0.8 0.7 0.6 0.7 ANOVA tests; p = 0.029
Shannon 0.9 0.8 0.7 0.7 ANOVA tests; p = 0.055
Richness 18.4 23.7 14.7 16.3 Kruskal–Wallis test; p = 0.063Sustainability 2024, 16, 3075  7  of  16 
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The CCA revealed clear differences by HMU types and by river in terms of the
macroinvertebrate community (Figure 3). The first two axes were sufficient to depict the
relationships between the community descriptors (richness, abundance, and diversity) and
habitat attributes, accounting for more than 75% of total variability in every case. In general,
for slow HMUs (left column in Figure 3), vegetation, mean depth, and coarse substrate were
the most important attributes, whereas for fast HMUs (right column in Figure 3), vegetation,
substrate embeddedness, and woody debris were the most important attributes (Figure 3
and Table S2). Specifically, the Shannon and Simpson diversity indices increased with
mean depth in slow HMUs (Table S2) and decreased with a higher abundance of aquatic
vegetation in slow HMUs. By contrast, the diversity indices increased with embeddedness
and shade in fast HMUs (Table S2).
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tors (richness, abundance, and diversity indices) and environmental attributes (width, mean depth,
maximum depth, shade, embeddedness, aquatic vegetation, density of woody debris, substrate
coarse, substrate medium, and substrate fine) by (a) slow and (b) fast hydromorphological units
(HMUs) in the Ebrón River, (c) slow and (d) fast HMUs in the Vallanca River, (e) slow and (f) fast
HMUs in the Palancia River, and (g) slow and (h) fast HMUs in the Villahermosa River.
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3.2. Analyses of Macroinvertebrate Traits (Resistant Forms)

The FPCA exhibited a clear overlap of the resistance traits among rivers, either in
slow or fast HMUs (permutations test; p > 0.05 in both cases) (Figure 4), despite the
differences among rivers found in preceding analyses (Figure 2). For slow HMUs, the first
axis explained 59% of the total variance, whereas the second axis explained 25% (with
eigenvalues of 0.040 and 0.068, respectively); similarly, in fast HMUs, the first axis explained
58% and the second axis 27% (with eigenvalues of 0.067 and 0.039, respectively). The most
relevant resistance forms were cells against desiccation and eggs, although cocoons and
diapause had certain explanatory powers. Thus, these trait categories were positively
related to either the slow or fast HMUs, regardless of the river considered.
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4. Discussion

Variations in habitat attributes were discernible both among and within rivers across
diverse hydromorphological units (HMUs). In addition, macroinvertebrate communities
exhibited distinct differences among rivers, despite being statistically demonstrated primar-
ily in fast HMUs, which altogether underscores the suitability of meso-scale approaches
for comprehensively investigating macroinvertebrate communities in the headwaters of
Mediterranean rivers. Noteworthy dissimilarities in the family of different order levels were
apparent in macroinvertebrate communities between the studied HMU groups. In particu-
lar, the diversity and abundance of macroinvertebrates exhibited variations in fast HMUs.
These disparities emphasize the critical importance of sampling various habitat types
to ensure dependable community comparisons, as the selection of sampled habitats can
significantly influence results and conclusions based on the sampled habitat ratio [63,64].

Numerous studies have elucidated the transition of macroinvertebrate communities
from slow to fast habitats [23,63,65]. Carter and Fend [66] distinguished two primary
mesohabitats, pools and riffles, highlighting their influence on macroinvertebrates in a
Mediterranean riverine system in eastern California. However, the variation of macroin-
vertebrates in these habitats was influenced by the large-scale effects of climate and flow
regime. It was particularly relevant that riffles exhibited significantly higher richness than
pools during years of lower discharge in California, contrasting with normal years [66]. In
contrast, studies in Central Italy and Brazil rivers did not observe such richness differences
between pool (slow) and riffle (fast) HMUs [67,68]. This apparent inconsistency may be
attributed to differences in river size or geological variation in the sampled areas. Pace
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et al. [68] conducted the study in siliceous and small rivers, whereas our samples were
collected in calcareous rivers. Our study, examining diversity, abundance, and traits in
fast and slow HMUs, revealed substantial spatial variations (Table 2), which may indicate
local environmental constraints for macroinvertebrate communities. In addition, habitat
attributes emerge as primary drivers influencing macroinvertebrate communities and their
descriptors. Discrepancies observed in our results compared to other studies may be caused
by the unique combination of abiotic attributes within the studied rivers or at varying
spatial scales. Our investigation encompassed a spectrum of mesohabitat scale attributes,
revealing that in slow habitats, mean depth, vegetation, and coarse substrate played pivotal
roles, whereas in fast-flow HMUs, vegetation, embeddedness, and woody debris were
key drivers. On the mesohabitat scale, the richness and abundance of macroinvertebrates
in fast habitats (riffles) were linked to the pronounced variability of depth [65]. On the
contrary, at the microhabitat scale, most of the studies focused on the relationships between
macroinvertebrate distribution and habitat attributes, especially hydraulic parameters such
as roughness, Reynolds number, shear velocity, and Froude number [20,21,33,69,70]. Never-
theless, it is undeniable that the mesohabitat scale can reasonably summarize microhabitat
conditions, thereby streamlining sampling efforts in terms of time and resources [21].

Our findings align with Seger et al. [69], who observed reduced invertebrate richness
due to modifications in the riparian zone, emphasizing the crucial role of woody debris.
Wood in aquatic habitats serves vital functions such as enhancing structural complexity,
refuge, flow velocity range, and providing new places for attachment, feeding, and ovipo-
sition [33–35]. Furthermore, some families in high mountains and pristine rivers were
observed to be independent, whereas other families and functional feeding groups have
been specifically associated with certain types of native riparian vegetation [71,72]. It
has also been reported that some macroinvertebrates may almost exclusively inhabit the
depositional zones (e.g., silt); nevertheless, most mountain river species inhabit coarse
substrates [73]. Notably, stable substrates (usually the coarse ones) are sites of minimal dis-
turbance during peak flows, and thus, these substrates are associated with high abundance,
richness, and community persistence (e.g., [74,75]). In our case, the impact of substrate
type on macroinvertebrate communities was evident, with diversity tending to be higher
in coarse substrates in slow habitats, while embedded habitats exhibited higher diversity
in fast-flow environments. This underscores the influence of substrate stability, with coarse
substrates associated with high abundances and richness during peak flows, ensuring
community persistence.

Contrary to the widely recognized detrimental effect of fine sediment on aquatic
biodiversity, our results, consistent with studies using sediment-specific indices, suggest
that hydrological variability and mesohabitat-scale hydraulic conditions play key roles
in shaping the functional response to deposition and embeddedness [76]. Additionally,
depth emerged as a positive driver for macroinvertebrate communities, echoing previ-
ous studies [31,77]. The interplay between depth and velocity, demonstrated by Shearer
et al. [70], emphasizes their contextual interaction, varying with river size and affecting
macroinvertebrate abundance. Our study aligns with this, indicating that depth, particu-
larly crucial in mountainous rivers where remarkable changes in flow magnitude occur,
plays a determinant role in community structure. Mediterranean rivers, known for their
particular hydrology (extreme hydrological regimes), pose unique challenges to aquatic or-
ganisms due to these events [7]. Such challenges may result in the alteration of invertebrate
populations or their spatial re-distribution. Nonetheless, owing to the inherent qualities of
stability, complexity, and integrity within freshwater ecosystems, they possess the capacity
for sustainability over time [78]. Our use of a single group of biological traits (resistance
forms) as a proxy for climate-specific adaptive traits highlighted that habitat types (fast-
versus slow-flow) in different Mediterranean rivers were dominated by taxa with similar
strategies to counteract climatic events. These results resonate with previous studies em-
phasizing the significant role of disturbances caused by large flow events and droughts in
determining macroinvertebrate distribution, abundance, and recolonization [20,79–81]. The
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observed differences in resistance forms among HMUs suggest that specific combinations
of biological traits reflecting adaptation to environmental variability may be present in
each major group of HMUs [82]. Proximity and the resulting similarity in environmental
conditions likely contribute to the analogy in biological adaptations, a factor deserving
attention in future studies. Notably, fast-flow HMUs accumulate a relevant part of the
biodiversity and are more susceptible to drying during drought periods than slow-flow
HMUs [83], but slow-flow HMUs (i.e., pools) can act as microrefugia to accumulate and
conserve biodiversity during drought periods [83]. Recent projections about the impact
of climate change on Mediterranean rivers in Spain show that macroinvertebrate richness
will largely decrease over the next few decades [84]. Thus, it is important to note the key
role of slow-flow habitats in understanding and mitigating climate change impacts on
macroinvertebrate communities in Mediterranean regions, along with other mitigation
measures such as the restoration of riverside vegetation [84]. Current global change sce-
narios pose threats to macroinvertebrate communities; more attention needs to be paid
to phenological shifts in aquatic insect emergence based on exposure and sensitivity to
climate change [85] and the consequences of such phenological shifts on upper trophic
levels [86]. In this regard, it is reasonable to posit that resistance forms enhance population
maintenance in streams given their functional importance to overcome floods and droughts
in future climate scenarios [87,88].

5. Conclusions

A caveat should be exercised regarding conclusions, as they may suffer limitations
regarding the date of sampling and not be representative of the current macroinvertebrate
communities. It should be kept in mind that Mediterranean macroinvertebrate communities
are dependent on environmental conditions that change temporally [89,90]. This repre-
sents a particularly promising area for future research to understand whether the drivers
responsible for the macroinvertebrate communities in the study area change over time as a
result of climate change. Another limitation was the taxonomic resolution (family level)
used in this study; deeper taxonomic analyses (genus and species level) of the macroin-
vertebrate communities are needed in future research. Still, this study has addressed the
intricate dynamics of macroinvertebrate communities in the headwaters of Mediterranean
rivers, employing meso-scale approaches to unravel the relationships between habitats,
hydromorphological characteristics, and biological communities. The application of these
methodologies has unveiled substantial differences in habitat attributes and macroinverte-
brate communities both within and among rivers, emphasizing the necessity to account
for spatial and contextual variability in future investigations. The pivotal influence of
factors such as mean depth, woody debris, vegetation, and coarse and embedded substrate
composition on community structure has been clearly elucidated. Furthermore, the diverse
responses of macroinvertebrates to different habitat types and hydraulic conditions under-
score the importance of sampling a variety of habitats for reliable community comparisons.
This study has enhanced our understanding of macroinvertebrate community responses to
environmental conditions in Mediterranean rivers, providing valuable insights for the sus-
tainable management of these ecosystems amid current and future challenges, particularly
in the context of climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16073075/s1, Figure S1. Relative abundance of macroinverte-
brates (%) aggregated by families (excluding the order Ostracoda) and river. Data are categorized
on habitat types, delineated as (a) slow and (b) fast hydromorphological units (HMUs). Other
families comprise taxa present in less than 5 % of the samples in any of the four rivers; Table S1.
Relative abundance of macroinvertebrates (%) pooled by river. Data are displayed by habitat type
(slow and fast hydromorphological units or HMUs); Table S2. Pearson correlation coefficients
between biological parameters (abundance, richness and diversity indices) and environmental at-
tributes in (a) slow and (b) fast hydromorphological units (HMUs). HMU width (Wid), mean depth
(Dmed), maximum depth (Dmax), substrate coarse (Scoarse), substrate medium (Smed), substrate fine

https://www.mdpi.com/article/10.3390/su16073075/s1
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(Sfine), aquatic vegetation (Veg), density of woody debris (WD), embeddedness (Emb), shade (Sha).
No significant outcomes were found for Wid and Sfine. Only significant relationships are shown
(p < 0.05); Table S3. Trait-by-families Excel.
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