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Abstract: Studies using ecological niche models highlight the vulnerability of forest species to climate
change. This work aimed to analyze the distribution of timber species Aspidosperma desmanthum,
Cariniana micranta, Clarisia racemosa, Couratari oblongifolia, and Vouchysia guianensis, which are targets
of deforestation, to predict the impacts of climate change and identify areas for their conservation in
the Amazon. For this purpose, 37 environmental variables were used, including climatic and edaphic
factors. The models were fitted using five algorithms, and their performance was evaluated by the
metrics Area Under the Curve (AUC), True Skill Statistic, and Sorensen Index. The deforestation
analysis was conducted using data accumulated over a period of 14 years. The study indicated that
under the most pessimistic predictions, considering continued high emissions of greenhouse gases
(GHGs) from the use of fossil fuels, SSP5–8.5, potential habitat loss for the studied species was more
significant. Analyses of the species show that the Western Amazon has a greater climatic suitability
area for the conservation of its genetic resources. Further study of the accumulated deforestation
over 14 years showed a reduction in area for all species. Therefore, in situ conservation policies and
deforestation reduction are recommended for the perpetuation of the analyzed forest species.

Keywords: conservation; niche modeling; impacts of climate change

1. Introduction

The Amazonian ecosystem has an important role in the conservation of biodiversity
and the regulation of the global climate because it is home to the largest rainforest, which
has been intensively devastated [1,2]. The maintenance and conservation of biodiversity
have been the biggest challenges in the last few decades [3–5]. The loss and fragmentation of
biodiversity are related to factors such as deforestation, fires, the spread of invasive and/or
exotic species, and anthropic activities, especially those influencing climate change [6,7].

Deforestation in the Amazon promotes environmental degradation and consequently
the reduction in species and natural resources in the region [8]. During 2022, the increase
in deforestation in the Brazilian Amazon was about 12,480 km2, presenting an increase
of 2.3% compared to 2021 (12,188 km2) [9]. The rainforest is highly heterogeneous and
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considered a complex system, which makes it difficult to conduct species monitoring and
to obtain more information about mortality, growing and natural regeneration, and climate
change impacts [10–12].

Several studies highlight the vulnerability of forest species to climate change [13],
including changes in the region’s rainfall regime leading to much more intense and longer
dry and rainy seasons, which can cause changes in the distribution of these species within
an ecosystem [14–16], causing changes in its natural habitat. The vulnerability of these
areas to land use and climate change has significant implications for their conservation
and management, as well as the impact of climate change on the natural ecosystem com-
prehension [17,18]. The tree species have genetically specific characteristics that may limit
their capacity to adapt quickly to environmental changes, from the long cycle of vegetative
growth until the period of reproduction and seed formation [19].

Another way of monitoring these changes is through ecological niche models (ENMs).
These models allow monitoring on temporal and spatial scales to predict the distribution
of species and habitats in future scenarios [20–22]. We were able to identify the presence
areas of and deduce the relevant holes in economics, culture, and forest ecosystems [23].

To predict the geographic distribution of bats in Europe and Asia, a study performed
in the ENMTML package used climatic and landscape relationships. The results showed
that the effects of climate, land use, and cover changes made the presence of the studied
species more fragmented [24]. ENM application is an important tool for evaluating the
threat status of species.

The objective of this study was to analyze the potential distribution of Amazonian
timber forest species, Aspidosperma desmanthum Benth. ex Müll. Arg., Cariniana micranta
Ducke, Clarisia racemosa Ruiz & Pav., Couratari oblongifolia Ducke & Knuth, and Vouchysia
guianensis Aubl.; present the effect of global climate changes in the studied area under the
current period and future scenarios; and identify the areas with more climatic suitability
for species conservation.

2. Materials and Methods
2.1. Study Area

In this study, occurrence and distribution analyses of the species A. desmanthum, C.
micranta, C. racemosa, C. oblongifolia, and V. guianensis were carried out. The tree species
data were obtained from the Environmental Information Reference Center (CRIA) database
via the SpeciesLink network (https://specieslink.net/; accessed on 1 March 2023), the
Global Biodiversity Information Facility database (GBIF, https://www.gbif.org/; accessed
on 1 March 2023), and the Botanical Information and Ecology Network database (BIEN)
version 1.2.6, available in R software version 4.2. (https://bien.nceas.ucsb.edu/bien/
biendata; accessed on 1 March 2023) [25].

For modeling, this study used data from South America; however, the results were
limited to the Brazilian Amazon. Furthermore, the scientific name verification of all the
species was carried out through the platform Tropicos (https://www.tropicos.org/name/
Search?name=; accessed on 1 March 2023). The concentration of these occurrence points
was analyzed using kernel density estimation (KDE), obtained through the extension of the
interpolation “Heat Map” Epanechnikov and a 1◦ radius (~111 km) in QGIS version 3.22.8.

2.2. Environmental Variables

Ecological niche model (ENM) development was carried out using 37 environmen-
tal variables, of which 19 corresponded to bioclimatic variables and 9 to edaphic ones
(Table S1). The climate data were obtained from WorldClim version 2.1, covering a tempo-
ral interval of 30 years (1970–2000) and using 9000 to 60,000 meteorological stations [26].
Bioclimatic variables combined include minimum, mean, and maximum temperatures and
precipitation, available on the WorldClim dataset (https://www.worldclim.org/; accessed
on 1 March 2023) at a temporal resolution of 2.5 min or ~0.041◦ (~4 km2 per pixel).

https://specieslink.net/
https://www.gbif.org/
https://bien.nceas.ucsb.edu/bien/biendata
https://bien.nceas.ucsb.edu/bien/biendata
https://www.tropicos.org/name/Search?name=
https://www.tropicos.org/name/Search?name=
https://www.worldclim.org/
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Climate data predictions utilized averages from the projections of the sixth Intergov-
ernmental Panel on Climate Changes (IPCC) report of the atmospheric circulating models
HadGEM-GC31-LL [27], IPSL-CM6Ä-LR [27], and MIROC6 [28] for two periods: 2021–2040
and 2041–2060. In addition, two Shared Socioeconomic Pathways (SSPs) were considered:
SSP2–4.5, which predicts a temperature rise of 2.5 ◦C, and SSP5–8.5, with a prediction of a
global temperature rise of 3 ◦C by 2060 [26,29].

The effect of edaphic variables was represented using two soil depths (0–20 cm,
20–40 cm) for a total of 18 variables considering soil chemical and physical properties
(Table S1). The data used were from the Harmonized World Soil Database at a spatial
resolution of 1 km2 (30 s) (version 2.0; [30]) (https://www.fao.org/documents/card/en/c/
cc3823en; accessed on 1 March 2023). Edaphic variables were used to improve the modeling
process for ENMs since soil attributes may be prevalent as determinants in modeling plant
species [31–34]. Furthermore, the spatial resolution of these variables was reduced to
2.5 min, or ~0041◦ (~4 km2 per pixel), the same resolution as climatic data.

2.3. Creation and Predictor Modeling Analysis

All the simulations were carried out in the ENMTML Ecological Niche Models at the
MetaLand EcologyLab package [20] from RStudio software version 4.3.2, an integrated
tool of R software (version 4.2), and when utilizing the tool, it was necessary to extend
the Rtools extent (version 4.2). The ENMTML package provides models with different
methodologies developed in the ENM field, which are divided into preprocessing, process-
ing, and postprocessing, and it offers different kinds of algorithms to create individual and
combined ecological niche models (Table S1).

In the first stage, known as preprocessing, georeferenced occurrence points were
checked, along with the environmental variables. Despite the rigorous verification of data
presence, these data often showed sampling bias due to sampling concentration in easily
accessible locations. Thus, to decrease spatial data autocorrelation, the extension from
an occurrence site was reduced to 5 km, through the argument “thin_occ” [20] using the
“spThin” [35] package. In order to avoid sampling bias, the data were partitioned into
4 folds through the K-fold, and the validation was carried out according to the total number
of folds [36].

The climate variable data present a high collinearity, which is undesirable during the
modeling process [37]. To reduce this collinearity, principal component analysis (PCA)
was carried out, and fourteen principal components were selected, namely those with
more contribution to the analysis, such as the environmental layer, which explains >95% of
variation from the original data [20,34,37].

Due to the lack of absence occurrence of the studied species, the geographical and
environmental combination methodology [38] was used to allocate pseudo-absence and
backgrounds. To relocate the backgrounds, they were delimited in a buffer of 50 km around
the presence points, and all the sites without similarity with the presence points were
extracted as possible backgrounds to select pseudo-absence. These sites, without similarity,
were grouped by K-mean and used to select a representative sample [39]. Additionally, in
order to maintain homogeneity in the distribution of pseudo-absences, we determined that
the number of pseudo-absences would be the same as the presence number [40].

In the processing stage, thirteen algorithms available in the ENMTML package were
tested, and the analysis of the average metric values of AUC, TSS, and Sorensen for each
algorithm was performed, considering the five studied species. Then, five best-performing
algorithms were selected. Thus, the fit of the consensus model was carried out through the
algorithms: Random Forest (RDF), Boosted Regression Trees (BRT), Support Vector Machine
(SVM), Bayesian Gaussian Process (GAU), and Maximum Entropy Default (MXD). The
consensus model was based on the PCA method, which uses the first principal component
to generate the final map [41].

In the postprocessing stage, a predictive performance evaluation of the consensus
model was carried out using the following metrics: Area Under the Curve (AUC) [36], True

https://www.fao.org/documents/card/en/c/cc3823en
https://www.fao.org/documents/card/en/c/cc3823en
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Skill Statistic (TSS) [42], and Sorensen Index [43]. The suitability range establishment was
performed by the threshold value TSS [42]. Cell values equal to 1 indicate the suitability
area; on the other hand, 0 indicates the unsuitability area for the studied species. Models
that presented metric values above 0.7 were considered satisfactory [41,42].

2.4. Loss Analysis of the Environmental Suitability Areas Due to Deforestation

The area loss due to accumulated deforestation for 14 years (2008–2022) was quantified
as potential occurrence areas for the species A. desmanthum, C. micrantha, C. oblongifolia, C.
racemosa, and V. guianensis in the Brazilian Amazon, with the intention of subtracting these
areas due to the probability of the occurrence of these species decreasing in deforested
areas. To do so, accumulated deforestation data were based on [9] from the Monitoring
Project of Legal Amazon Deforestation by Satellite (PRODES) (terrabrasilis.dpi.inpe.br/
downloads/#cat_5; accessed on 1 March 2023).

3. Results
3.1. Distribution Analysis of Species Occurrence

After the species occurrence data were manually cleaned, there were 249 occurrence
points for A. desmanthum, 120 points for C. micranta, 852 points for C. racemosa, 110 points
for C. oblongifolia, and 115 occurrence points for V. guianensis (Table 1). These points are
distributed in countries that are part of the International Amazon; however, it was observed
that the concentration is located in the Brazilian Amazon (Figure 1).

Table 1. Quantity of georeferenced occurrence points after the checking of the following timber wood
species: A. desmanthum, C. micranta, C. racemosa, C. oblongifolia, and V. guianensis, plus the quantity of
occurrence points after spatial reduction to 5 km using the SpThin package.

Species
Number of Points

Without Spatial Reduction With Spatial Reduction

A. desmanthum 249 203
C. micrantha 120 58
C. racemosa 852 455

C. oblongifolia 110 71
V. guianensis 115 75

Despite the notorious reduction in occurrence points sampled after the manual clean-
ing of data, it was observed that some of these occurrence points were concentrated in easy
locations, which is undesirable. The concentration of records may generate sampling bias,
which influences the model performance, creating an underestimation or overestimation in
modeling and, consequently, an increase in high spatial autocorrelation [35,44,45].

After the application of a spatial reduction of 5 km through the spThin packages to
the species, it was observed that there was a spatial reduction among occurrence points,
which decreased their autocorrelation. It was possible to identify the species A. desmanthum,
C. micrantha, C. racemosa, C. oblongifolia, and V. guianensis, which presented a reduction
of 18%, 52%, 47%, 35%, and 35%, respectively, in the occurrence points (Table 1). This
reduction was observed near roads, research institutions, and regions that comprise the
International Amazon. The spatial reduction did not exclude the sites that presented new
conditions but decreased point agglomeration in the site. Likewise, a reduction can be
observed in Figure 1, where the KDE is essentially based on color density; the orange
color indicates high density, and the green color indicates low density of occurrence points
within a 111 km radius.

terrabrasilis.dpi.inpe.br/downloads/#cat_5
terrabrasilis.dpi.inpe.br/downloads/#cat_5
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Figure 1. Geographical distribution and kernel density estimation (KDE) of A. desmanthum, C. micranta,
C. racemosa, C. oblongifolia, and V. guianensis in South America, without a spatial reduction and with
spatial reduction of 5 km. South America: Brazilian biomes: Amazon, Caatinga, Cerrado, Atlantic
Forest, Pampa, Pantanal; kernel density, high to low; also shown are the geographic coordinate
system, cartographic base, and scale. Points in orange indicate higher Kernel density and those in
green indicate lower Kernel density, from points of occurrence within a radius of 111 km.

3.2. Environmental Variable Analysis

A principal component analysis (PCA) was carried out using the available dataset and
generated 37 new environmental variables [46]. Among the principal components (PCs)
generated, the first fourteen were selected, representing 97% of the entire variability data.
The first and second PCs were those that best explained the variation, representing 32%
and 14%, respectively, of the entire variability dataset (Figure 2).

In an analysis of the variation in the environmental data used and the eigenvectors
that make up PC1, temperature seasonality was the most significant variable among the
environmental variables, with the highest eigenvector (eigenvector = 0.2432). In PC2, the
most significant eigenvector was the sand content for depth intervals of 0–20 m below the
surface, presenting values around 0.3383. Among the most expressive eigenvector values
for the fourteen PCs are those according to edaphic features, precipitation, and temperature.

Temperature seasonality refers to regular variations and predicted temperatures
throughout the year, with increase or decrease periods of analysis. This variable plays an
important role in the occurrence and distribution of forest species, as it influences plant
growth, phenology, dormancy, and survival [47]. Concerning edaphic features, sand con-
tents are an important element in the ability of rainwater to percolate; consequently, they
affect water retention for plants as well as the availability of nutrients in the soil [48].



Sustainability 2024, 16, 3458 6 of 15

Sustainability 2024, 16, x FOR PEER REVIEW  6 of 16 
 

3.2. Environmental Variable Analysis 

A principal component analysis  (PCA) was carried out using  the available dataset 

and generated 37 new environmental variables  [46]. Among  the principal components 

(PCs) generated, the first fourteen were selected, representing 97% of the entire variability 

data. The first and second PCs were those that best explained the variation, representing 

32% and 14%, respectively, of the entire variability dataset (Figure 2). 

 

Figure  2. The  variance  plot,  the  fourteen  principal  components  (PCs)  that  best  represent  the 

variation in bioclimatic and edaphic data together. The gray bars represent the PCs, while the red 

line represents the explained variable. 

In an analysis of the variation in the environmental data used and the eigenvectors 

that make up PC1, temperature seasonality was the most significant variable among the 

environmental variables, with the highest eigenvector (eigenvector = 0.2432). In PC2, the 

most significant eigenvector was the sand content for depth intervals of 0–20 m below the 

surface, presenting values around 0.3383. Among the most expressive eigenvector values 

for  the  fourteen  PCs  are  those  according  to  edaphic  features,  precipitation,  and 

temperature. 

Temperature  seasonality  refers  to  regular  variations  and  predicted  temperatures 

throughout the year, with increase or decrease periods of analysis. This variable plays an 

important role in the occurrence and distribution of forest species, as it influences plant 

growth,  phenology,  dormancy,  and  survival  [47].  Concerning  edaphic  features,  sand 

contents are an important element in the ability of rainwater to percolate; consequently, 

they affect water retention for plants as well as the availability of nutrients in the soil [48]. 

3.3. Areas of Environmental Suitability for the Reference Period 

The potential areas for the occurrence of the species A. desmanthum, C. micranta, C. 

racemosa, C.  oblongifolia,  and V.  guianensis  generated  using  the  ENMTML  package  are 

shown in Figure 3. The results showed that in base scenarios, all the species presented an 

environmental suitability area in the Brazilian Amazon. 

Figure 2. The variance plot, the fourteen principal components (PCs) that best represent the variation
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3.3. Areas of Environmental Suitability for the Reference Period

The potential areas for the occurrence of the species A. desmanthum, C. micranta, C.
racemosa, C. oblongifolia, and V. guianensis generated using the ENMTML package are
shown in Figure 3. The results showed that in base scenarios, all the species presented an
environmental suitability area in the Brazilian Amazon.
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The species A. desmanthum and C. racemosa showed the highest areas of environmental
suitability, approximately 4,136,188 km2 and 4,093,816 km2, respectively, representing
98% and 97% of the total area of the Amazon. The species C. micranta presented an
environmental suitability area of approximately 2,465,926 km2, of which 30% is in the
Amazonas State, while the area of the species V. guianensis was 2,999,466 km2. C. oblongifolia
was the species that showed the lowest area of environmental suitability in the Brazilian
Amazon, covering approximately 2,224,906 km2 (Table 2).

Table 2. Area with environmental suitability for the occurrence of the timber forest species A.
desmanthum, C. micranta, C. racemosa, C. oblongifolia, and V. guianensis according to two climate
scenarios (SSP2–4.5 and SSP5–8.5) for two periods 2021–2040 and 2041–2060 in km2 and the reduction
in these areas in relation to the base period in %.

Species Base
Period

SSP2–4.5

2021–2040 % 2041–2060 %

A.
desmanthum 4,136,188 4,102,344 –1 4,067,493 –2

C. micranta 2,465,926 2,628,901 7 2,448,709 −1
C. racemosa 4,093,816 3,544,000 −13 2,889,697 −29

C. oblongifolia 2,224,906 2,484,873 12 2,472,128 11
V. guianensis 2,999,466 2,892,412 −4 2,596,902 −13

Species Base
Period

SSP5–8.5

2021–2040 % 2041–2060 %

A.
desmanthum 4,136,188 4,087,326 −1 2,450,481 −41

C. micranta 2,465,926 2,599,843 5 2,393,141 −3
C. racemosa 4,093,816 3,454,992 −16 1,548,902 −62

C. oblongifolia 2,224,906 2,431,419 9 1,803,522 −19
V. guianensis 2,999,466 2,796,509 −7 1,886,705 −37

3.4. Area of Environmental Suitability for the Future

Table 2 shows the area of environmental suitability of species occurrence in the Brazil-
ian Amazon for the periods 2021–2040 and 2041–2060. In relation to the base period, it
is also possible to observe that for the scenarios SSP2–4.5 and SSP5–8.5, A. desmanthum,
despite suffering losses in the estimation of future scenarios, still presented the highest total
area of suitability for the studied periods when compared to the other species (C. micranta,
C. racemosa, C. oblongifolia, and V. guianensis).

The estimated area of the species was 4,102,344 km2 for the intermediate scenario,
SSP2–4.5, for the period of 2021–2040; however, the species has presented a reduction of
33,844 km2, which is equivalent to 1% of the niche area in the base period. It continued to
have the largest area in comparison to the other species. For the period of 2041–2060, the
reduced area was 2%. The estimates for the scenario SSP5–8.5 infer that the area losses of
the species were more significant for the worst-case scenario, it was observed that there
was a reduction of 48,862 km2 in the period 2021–2040, approximately 1% of the estimated
area for the base period, and 2,446,345 km2 for the period 2041–2060, approximately 41%
(Table 2; Figure 3).

The niche areas of the species C. micrantha and C. oblongifolia tend to increase in both
scenarios for the period 2021–2040 in the Brazilian Amazon. The species C. micrantha
presented an increase of 7% for the scenario SSP2–4.5 and 5% for the scenario SSP5–8.5,
according to the base scenario, although, for the period 2041–2060, it was estimated that
the species suffered a loss of 1% from its area under the scenario SSP2–4.5 and 3% in the
scenario SSP5–8.5. These results revealed that species C. micrantha showed the lowest area
variation for the studied scenarios of emission of GHGs, demonstrating that it was the most



Sustainability 2024, 16, 3458 8 of 15

resilient among the species analyzed. C. micranta is known in the Amazon due to the fact
that its seeds easily germinate and survive in open areas.

Although the species C. oblongifolia presents an increase of 12% and 9% in the scenarios
SSP2–4.5 and SSP5–8.5, respectively, for the period 2021–2040, it presents a loss of 19% from
the environmental suitability area for the period 2041–2060 under the scenario SSP5–8.5.
This is a significant difference compared to the estimated area to the scenario SSP2–4.5,
where an expansion of 11% under the area for the period 2041–2060 was foreseen (Figure 4).
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The estimated niche of C. racemosa in the Brazilian Amazon under the intermediate
scenario (SSP2–4.5) predicts a loss of approximately 549,816 km2 by 2040, the equivalent
of 13% of the estimated area in the base period. By 2060, the area lost is expected to be
around 1,204,119 km2 (29%), more than double the area previously predicted. In the worst-
case scenario, SSP5–8.5 predicts a reduction of 16% in the suitability area for the species
occurrence from 2021 to 2060 and 62% between 2041 and 2060. The species C. racemosa
was demonstrated to be more sensitive to environmental conditions under different GHG
emission scenarios; the prediction indicates that the loss for the scenario SSP5–8.5 was 33%
higher than the prediction for intermediate scenario for the period 2041–2060 (Figure 4).

We estimated the loss of niche area for the species V. guianensis for the intermediate
scenario (SSP2–4.5) and worst-case scenario (SSP5–8.5) during both periods analyzed.
Under the pessimistic scenario, the reduction in the niche area was more significant than
the estimated areas in the intermediate scenario. V. guianensis species showed 7% and 37%
loss for the periods 2021–2040 and 2041–2060, respectively. For the intermediate scenario,
the reduction was estimated at 4% and 13% for the same period, respectively (Figure 4).

The SSP5–8.5 scenario showed that species suffered more expressive losses than SSP2–4
(Figure 4). The SSP2–4.5 scenario predicts a moderate increase in GHG emissions, even
after adopting climate change mitigation policies. For the SSP5–8.5 scenario, the emissions
were considered higher and less sustainable when compared to other scenarios. The world
is heading towards the SSP5–8.5 scenario, which predicts an increase in temperature of
1.9 ◦C to 3.0 ◦C by 2060 [33] due to the continuous increase in CO2 emissions caused mainly
by the burning of fossil fuels, deforestation, and industrial processes. In the study of Urena
lobata L., the results of ecological modeling showed the extinction of the species by 2070 for
the most pessimistic scenario (SSP5–8.5) [49].

There is variability in emissions between the Eastern and Western Amazon regions. In
the case of the Eastern region, there is a significant reduction in the occurrence area of the
species A. desmanthum, C. racemosa, C. oblongifolia, and V. guianensis (Figure 4). This is an
area that coincides with the “area of deforestation”, where there has also been an expansion
of agriculture and livestock farming. Higher rates of GHG emissions contribute to global
warming and its associated effects, such as rising temperatures, changes in rainfall patterns,
and extreme climate events [50].

The migration of forest species from the Eastern Amazon to other regions has been
observed as a response to climate change, mainly due to increasing temperatures and
changes in rainfall patterns [49]. These changes could lead to a decrease in water availability
in some areas, affecting the survival of plants, animals, and insects that migrate and are
part of the maintenance ecosystem. The loss of Amazon species caused by climate change
and deforestation by 2050 has been reported at 30% and 47%, considering SSP1–2.6 and
SSP5–8.5, respectively, and the Eastern Amazon is reported as the most affected in the
analysis [51]. The most vulnerable areas to environmental losses are those located in Pará
(Brazil), where there is a high level of deforestation, an increase in temperature, and a trend
for precipitation reduction.

Although forest species are known as resilient, in recent years, there has been a
significant increase in the occurrence of extreme climatic events in shorter periods, such as
long-term droughts and extreme rainfall, making it necessary for these species to adapt
quickly in order to survive. Some individuals have specific genetic characteristics that may
limit their ability to adapt quickly to changes. Considering natural selection within natural
plant populations, climate change may act as a selective agent, reducing their genetic
diversity, gene flow, and ability to adapt to extreme events [52].

After the 2005 drought, some forests in the Amazon decreased, and this reduction
was observed mainly in areas that presented the highest water deficits, as registered in
the south of the Amazon [53]. When adaptive responses have not been noticed, such as
phenological changes, the species may become locally extinct or migrate to other regions
looking for the most favorable environment to develop. This pattern can be observed in the
niche distribution of the species A. desmanthum, C. racemosa, C. oblongifolia, and V. guianensis.
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The Western Amazon has relatively more preserved forest cover and less deforestation
than the Eastern Amazon. GHG emissions tend to be relatively lower in this region,
increasing the possibility of other species migrating in order to find an ecosystem in
favor of their perpetuation. The areas of the Western Amazon are recommended for in
situ conservation, through conservation units, because they are suitable habitats for the
perpetuation of the species and because in situ conservation is more cost-effective than ex
situ conservation.

Climate changes may cause a reduction in the species distribution of this study, plus a
decrease of genetic variability of populations, and consequently may increase the inbreed-
ing within each species. The effects of inbreeding and inadequate effective population
size hinder the adaptation of forest species [16], making them more vulnerable to extreme
climate changes and habitat fragmentation [54].

In addition to the studies carried out that address bioclimatic variables with the
geospatial distribution of plants, experimental studies can be conducted under controlled
conditions to clarify how rising temperatures can affect the optimal conditions necessary for
the growth and survival of specific plant species. Such research should include monitoring,
at different temperatures, for the same species, pollen production, pollination, fruiting,
growth, and mortality of plant populations, as well as the evaluation of physiological
responses, such as photosynthesis and transpiration rates [49].

Based on the prediction of reduction areas of several forest species in the Amazon
for future scenarios, it is relevant to the development of genetic conservation to carry out
studies that may simulate the extreme conditions of climate change, namely germination
tests using higher temperatures, plantings in dry conditions, and mutation experiments in
the lab in order to study genetic variability, aiming to find resilient mutants in response
to extreme conditions [16]. Field planting of selected individuals for adverse conditions,
anticipating climate change, and introducing the most resilient individuals will reduce the
risk of extinction and allow continuity in the species evolution process.

Considering the economic and ecological importance of the species A. desmanthum, C.
micranta, C. racemosa, C. oblongifolia, and V. guianensis, this study suggests the characteriza-
tion of their genetic resources in order to make management and conservation strategies
more efficient. Molecular marker studies, which intend to evaluate the magnitude and
distribution of the genetic variability of populations in different areas over a long period,
will allow us to infer how climate change will affect this distribution.

The species populations in the Eastern Amazon will be the most affected by climate
change. In order not to lose genetic variability, current conservation should prioritize the
conservation of the most affected population in the region, particularly those in the arc of
deforestation, which are most vulnerable. The recommendation for the conservation of
forest species is that it should be carried out in situ, once it comes to gene flow, which is
crucial to the continuity of genetic variability [55]. Moreover, due to the fact that the Eastern
Amazon presents areas of difficult climatic suitability in the future, it would be prudent
to collect seeds and pollen from species in these sites of low climatic suitability in order
to also carry out ex situ conservation of the genetic resources of threatened populations.
This study suggests adopting cryopreservation strategies to initiate the seed conservation
of these forest species.

Addressing the impacts of climate change on the distribution of forest species in the
Brazilian Amazon requires an approach that involves multidisciplinary studies and actions,
including robust conservation measures, sustainable land management, and global actions
to mitigate climate change.

3.5. Accumulated Deforestation in Potential Areas of Species Occurrence

Analyses of the accumulated deforestation up to the year 2022, over 14 years, showed
a reduction of 112,977 km2, 56,478 km2, 114,396 km2, 65,961 km2, and 68,564 km for A.
desmanthum, C. micranta, C. racemosa, C. oblongifolia, and V. guianensis, respectively, according
to the base period, from PRODES data (Figure 5). The species are considered vulnerable to
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exploitation and commercialization due to the good quality of the wood, and there are no
records of commercial plantation areas. They are slow-growing and large species, for which
reproduction is difficult; seed production is low in quantity or quality, and the matrices are
in places that are difficult to access for collecting seeds [11].
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Deforestation is the principal cause of the temperature increases. When the forests are
cleared, part of the carbon fixation in their biomass is released into the atmosphere, which
increases their concentration and contributes to the temperature increase. Furthermore, due
to climatic factors, deforestation promotes forest fragmentation, leading to populational
isolation and genetic diversity reduction [52,56].

The deforestation registered in 2013 was responsible for a decline of 7% in estimated
occurrence areas of Amazon tree species, and it will achieve a rise of 19–33% by 2050,
considering the projected deforestation analyses [49]. It is recommended to adopt con-
servation strategies to reduce deforestation, recover degraded areas, promote the proper
management of natural resources, and protect hotspots for biodiversity. In addition, envi-
ronmental awareness and education programs are important, with the aim of involving
local communities in the conservation and valuation of ecosystem services offered by the
Amazon rainforest.

3.6. Model Evaluation

The values of the used metrics were AUC > 0.96, TSS > 0.84, and Sorensen > 0.92
(Table 3). The developed consensus models, combined with five algorithms, were con-
sidered as fitted metrics in their evaluation: AUC = 0.995 ± 0.001, TSS = 0.961 ± 0.016,
Sorensen = 0.980 ± 0.008 for the species A. desmanthum; AUC = 0.965± 0.019, TSS = 0.847 ± 0.053,
Sorensen = 0.927 ± 0.024 for the species C. micrantha; AUC = 0.989 ± 0.007, TSS = 0.932 ± 0.029,
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Sorensen = 0.966 ± 0.014 for the species C. racemosa; AUC = 0.986 ± 0.009, TSS = 0.916 ± 0.055,
Sorensen = 0.956± 0.031 for the species C. oblongifolia; and AUC = 0.981± 0.018, TSS = 0.906 ± 0.090,
Sorensen = 0.951 ± 0.050 for the species V. guianensis.

Table 3. Results of the metrics Area Under the Curve (AUC), True Skill Statistic (TSS), and Sorensen
Index generated from the use of the consensus model using the algorithms Random Forest (RDF),
Boosted Regression Trees (BRT), Support Vector Machine (SVM), Bayesian Gaussian Process (GAU),
and Maximum Entropy Default (MXD), based on the analysis of the algorithms available in the
package ENMTML, for the species A. desmanthum, C. micranta, C. racemosa, C. oblongifolia, and
V. guianensis.

Species AUC TSS Sorensen

A. desmanthum 0.995 ± 0.001 0.961 ± 0.016 0.980 ± 0.008
C. micranta 0.965 ± 0.019 0.847 ± 0.053 0.927 ± 0.024
C. racemosa 0.989 ± 0.007 0.932 ± 0.029 0.966 ± 0.014
C. oblongifolia 0.986 ± 0.009 0.916 ± 0.055 0.956 ± 0.031
V. guianensis 0.981 ± 0.018 0.906 ± 0.090 0.951 ± 0.050

From the results obtained, it could be seen that all the models presented had favor-
able fit results with values over 0.7 for all the evaluation metrics [41,42], and this can be
confirmed from the observed standard deviation values.

4. Conclusions

The occurrence points of the species A. desmanthum, C. micranta, C. racemosa, C. oblongi-
folia, and V. guianensis are in countries that compose the International Amazon, but their
widely concentrated distribution is in the phytogeographic domain of the Brazilian Amazon.

The spatial reduction of the occurrence points of the species A. desmanthum, C. micranta,
C. racemosa, C. oblongifolia, and V. guianensis recommended for data analysis aimed to avoid
model bias by reducing the aggregation of points in easy access without exclusion of areas
representative of the natural occurrence of these species, thus showing the efficiency of
reducing points with overlap or very close proximity.

C. micrantha reveals itself to be more resilient to climate change, presenting less
variation in area in the different scenarios of GHG emissions in comparison to the species
A. desmanthum, C. micranta, C. racemosa, C. oblongifolia, and V. guianensis, while C. racemosa
showed itself to be the most sensitive to the most significant niche area losses.

The habitat reduction for the species A. desmanthum, C. micranta, C. racemosa, C. ob-
longifolia, and V. guianensis occurs mainly in the Eastern Amazon, in the region named
the “arc of deforestation”, considering the periods of 2021–2040 and 2041–2060 based on
the scenarios SSP2–4.5 and SSP5–8.5. For the scenario SSP5–8.5 (2041–2060), it has been
observed that the suitability areas extend toward Eastern Amazonia, even for the resilient
C. micranta, which has also been maintained in the Eastern Amazon area.

Analysis of the species shows that the Western Amazon has a greater climatic suitabil-
ity area for the conservation of A. desmanthum, C. micrantha, C. racemosa, C. oblongifolia, and
V. guianensis.

The losses in areas with environmental suitability for species occurrence in the
SSP5–8.5 scenario, considering high rates of greenhouse gas (GHG) emissions, are more
significant when compared to the losses in other scenarios.
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