
 1

Architecture for Integrated and Dynamic Data Analysis (AIDA)
Server Guide

Summary

The Architecture for Integrated and Dynamic Data Analysis (AIDA) application has two
components, namely a user client and a server. The server, described in this documentation,
prepares data for analysis by the client. The intent of this document is to provide a general
overview of how the server accomplishes its main tasks. Although all object classes will
not be described in this document, the document will discuss important classes that allow
AIDA's Server to properly function in order to produce a searchable output. Specific details
on objects within the server can be found in /Server/docs.

 2

Table of Contents

Summary...1

1. Introduction...3

2. Architecture...3

3. Collection Reading..4

4. Document Analysis...5

 4.1. GATE..5

 4.2. Data for GATE Processing Resources..8

5. Mapping Between UIMA and GATE..9

 5.1. Input and Output Mapping..9

 5.2. Custom Mapping..10

6. Document Consumption...10

7. Scoring..11

8. Creating the Cache..12

9. Index Post-processing...13

10. Running the Cache Creator...14

11. Appendix...15

 3

1. Introduction
The Architecture for Integrated and Dynamic Data Analysis (AIDA) application has two
components, namely a user client and a network server. The client allows analysts to work
with the system. The server prepares data for analysis by the client. This document
describes the server component of the AIDA application. The server is responsible for
retrieving documents; parsing and analyzing them; and producing the cache used by the
AIDA Client. More particularly, the server reads data from sources such as newspapers
(e.g., the New York Times) and Really Simple Syndication (RSS) service feeds; extracts
their content; identifies keywords in that content; indexes the content; and then writes the
indexed content and keywords to the cache for later analysis.

2. Architecture
The server takes a component-based approach to this process where each component
handles a different aspect (i.e., reading, keyword extraction, etc.). These components are
tied together and run using the Unstructured Information Management Architecture or
UIMA (http://incubator.apache.org/uima/index.html). The UIMA documentation should be
read in conjunction with this document.

UIMA enables applications to be decomposed into components, for example “language
identification“ → “language specific segmentation” → “sentence boundary detection” →
“entity detection” (person/place names, etc.). Each component implements interfaces
defined by the framework and provides self-describing metadata via XML descriptor files.
The framework manages these components and the data flow between them. Components
are written in Java or C++; the data that flows between components is designed for
efficient mapping between these languages.

UIMA itself doesn’t provide concrete components but rather enables a wide variety of
components to be run together in a structured fashion. UIMA also provides a key-value pair
parameter system for setting and retrieving component parameters. In a typical
UIMA application, each document passes through reading, analysis and consumption
phases. A final step then generates the cache itself. The phases are as follows:

1. In the reading phase, the document is parsed and its content is extracted. The document
is also tagged with additional metadata such as its location (URL), author (if available),
title and publication date.
2. In the analysis phase, the document content is analyzed using a UIMA analysis engine
that wraps GATE (General Architecture for Text Engineering)
(http://gate.ac.uk/), tagging relevant keywords: diseases, sanctioned entities, and so forth.
3. In the consumption phase, the document is “consumed” into a Lucene
(http://lucene.apache.org) index for term (i.e., word and phrase) indexing.
4. Once all the documents have been processed, the cache is generated from the
Lucene index.

The first two phases annotate the documents with particular tags. When a document is
read, metadata tags are added that apply to the entire document. In the second phase,
particular words or phrases are tagged, identifying the word or phrase as a keyword. For
example, any mention of sunflower or helianthus will be tagged as Sunflower. These tags

 4

are represented as UIMA types and in the code itself as Java objects. In the third phase the
document is indexed. Once all the documents are processed, the index itself is processed to
become the cache. Figure 1 shows the overall document workflow.

Figure 1. Workflow.

3. Collection Reading
Collection reading is performed by the anl.aida.reader.AIDACompositeReader class, which
applies (i.e., extends in Java) an UIMA collection reader that delegates the actual reading
of documents to classes that implement an anl.aida.reader.AIDAComponentReader
interface. The AIDACompositeReader reads the component classes to use and instantiates
those classes during initialization (Figure 2). The AIDACompositeReader passes itself to
each component's initialize method and any UIMA-style parameters set on it can be
retrieved by the component.

The readers iterate over an index file that describes what they should be reading (see
/Server/scenarios/data/dailygate_index.txt for an example and other text files in the same
directory). The index file has the following format:

“timestamp:::url:::title:::author”.

The “:::” is the delimiter between the timestamp and other fields. The timestamp is a long
value that can be used in a java.util.Date constructor to create a Date. The author field is
optional. The classes StandardIndexLineParser and IndexIterator (in anl.aida.util) are used
to parse individual lines and iterate through entire indices. The index files are generated by
Java classes that are given set dates to find relevant files (e.g., see
anl.aida.reader.local.DailyGateIndexMaker.java and other similar IndexMaker classes in
anl.aida.reader and anl.aida.reader.local). These classes parse websites or archival data to
create a cache or parse RSS feeds to create a live cache. The
AbstractAIDAComponentReader (which the individual AIDAComponentReaders extend)
works with index files and does much of the iteration on the index file references.
Subclasses need only do the actual reading of the link (Figure 2). See
anl.aida.reader.local.DailyGateReader.java for an example.

 5

Figure 2. Reader architecture UML class diagram.

4. Document Analysis
Once the document has been retrieved and its content identified, the document is
passed to the analysis component. Document analysis is performed by UIMA analysis
engines. AIDA uses an analysis engine, the Gate Annotator, that will run a GATE
application and translate back and forth between UIMA and GATE annotation tags.

4.1. GATE
AIDA utilizes GATE (General Architecture for Text Engineering) (http://gate.ac.uk/)
for its Natural Language Processing (NLP). GATE is free and open source (LGPL
License) and has been developed by language engineering researchers at the University
of Sheffield (UK) since 1995. GATE uses Language Resources (LR), Processing Resources
(PR) and Visual Resources (VR) to analyze and annotate textual documents.
GATE comes with an integrated set of such resources known as CREOLE (Collection of
REusable Objects for Language Engineering) which can be used directly or freely
modified as necessary.

Typically GATE PRs are combined into analysis pipelines, known as GATE
Applications. The GATE Applications can take in a document or collections of
documents for analysis. As documents are passed from PR to PR in the GATE
Application, they are annotated with GATE annotations. Some PRs simply add annotations
to previously un-annotated text while other PRs modify existing annotations.

 6

When documents emerge from a GATE Application they will contain the annotations
resulting from the sequence of PRs which operated on them. In AIDA, the un-annotated
document content is passed to GATE which then parses the content and performs keyword
identification and annotation tagging. Below, the GATE Application and the PRs used in
AIDA are described.

Standard LRs in GATE include text, ontologies, and other text corpora. GATE has the
ability to import text with the following formats: plain text, HTML, SGML, XML, RTF,
Email, PDF, and Microsoft Word documents. AIDA loads plain text LRs exclusively,
passing a document’s content from the collection reader components to GATE.

GATE includes a default set of PRs, the ANNIE (A Nearly-New Information
Extraction) system. AIDA applies the AnnotationDeletePR, DefaultTokeniser,
SentenceSplitter, DefaultGazetteer, and ANNIETransducer PRs for document annotation.

• AnnotationDeletePR: This PR removes all previous annotations from LRs.

• DefaultTokeniser: This PR is the ANNIE English Tokeniser. A tokeniser splits

text into simple tokens (e.g., numbers, punctuation, words). According to the
GATE documentation:

"[T]he English Tokeniser is a processing resource that comprises a
normal tokeniser and a JAPE transducer ... The transducer has the
role of adapting the generic output of the tokeniser to the
requirements of the English part-of-speech tagger. One such
adaptation is the joining together in one token of constructs like “
’30s”, “ ’Cause”, “ ’em”, “ ’N”, “ ’S”, “ ’s”, “ ’T”, “ ’d”, “ ’ll”, “
’m”, “ ’re”, “ ’til”, “ ’ve”, etc. Another task of the JAPE transducer
is to convert negative constructs like “don’t” from three tokens
(“don”, “ ’ “ and “t”) into two tokens (“do” and “n’t”)..."

• SentenceSplitter: This PR splits the text into sentences, utilizing a gazetteer list of

abbreviations to distinguish end-of-sentence punctuation from other types of
punctuation.

• DefaultGazetteer: This PR annotates text (with “Lookup” annotations) based on

plain text lists of words. An index file (/Server/scenarios/data/gazetteer/lists.def) is
issued to locate the set of lists to be used. The index file lists the file name of the list
(e.g., /Server/scenarios/data/gazatteer/agriculture.lst; see other lists in the same
directory), followed by the “major type” to associate with members of the list and
optionally also a “minor type” to associate with members of the list. Within each
word list file, in addition to simply listing words separated by newline characters,
there is also the ability to include annotation feature specifications with the use of a
GazetteerFeatureSeparator. AIDA uses the GazetteerFeatureSeparator to specify the
canonical names for terms. For example, the lines:

sunflower%cName=Sunflower
helianthus%cName=Sunflower

 7

identify the terms sunflower and helianthus with the canonical name Sunflower,
where the feature separator is the “%” character and the GATE feature name is
“cName.” AIDA reads the gazetteer lists but ignores capitalization so, for example,
terms like Helianthus are annotated properly.

• ANNIETransducer: This PR uses JAPE (a Java Annotation Patterns Engine) rules
to annotate text with entity annotations. With JAPE, patterns over annotations can
be defined and matched in annotated text, allowing for general entity extraction. For
example, the JAPE rule:

Rule: Agriculture
(
{Lookup.majorType == agriculture}
)
:agriculture -->
:agriculture.Agriculture = {kind = "Agriculture",
canonicalName = :agriculture.Lookup.cName, rule =
"Agriculture"}

creates an Agriculture annotation with the “kind” feature equal to “Agriculture,” the
“sub_kind” feature equal to the minorType of the matched Lookup annotation,
and the “canonicalName” feature equal to the cName feature of the matched
Lookup annotation. See the main jape file (/Server/scenarios/data/jape/main.jape),
which references all the jape files (located in the /Server/scenarios/data/jape
directory) used in this step.

In AIDA, the ANNIE PRs are used in the sequence listed here and are saved as a

GATE Application (see /Server/gate_app/application.xgapp) in Figure 3.

 8

Figure 3. AIDA Gate application processing.

Testing of the PRs was done using the GATE VRs. The VRs used to develop the
AIDA capabilities include GAZE (Gazetteer Visual Resource) and the Document Editor
with Annotation Views. For more information on the details of GATE, see the GATE User
Guide (http://gate.ac.uk/sale/tao/split.html).

4.2. Data for GATE Processing Resources
The gazetteer lists and entity extraction rules used by the GATE PRs can be derived
from a number of sources. In the example case study, there are four categories of entities
that AIDA detects via gazetteer lists and JAPE:

1. Urban and Transportation
2. Agriculture
3. Forestry and Grassland
4. Other

These categories were constructed by conducting an initial search on archived newspaper
articles (i.e., articles covering from 2006-2009). These articles produced common terms on
land use topics that added to our initial list of terms. In addition, we apply WordNet's
(http://wordnetweb.princeton.edu/perl/webwn) online search engine, using
anl.wordnet.reader.WordNetReader, that finds synonyms (i.e., synsets) to terms found in
the initial searches. Alternative approaches one can apply are the inclusion of existing
databases and terminology lists for specific fields that can make searches more focused on
topics.

 9

5. Mapping Between UIMA and GATE
AIDA uses an analysis engine, the Gate Annotator, that will run a GATE application and
translate back and forth between UIMA and GATE annotation tags. The descriptor file is
located at /Server/desc/GateDescriptor.xml. The parameters for the GATE annotator can be
found in the parameter section of the appendix.

5.1. Input and Output Mapping
The input and output section describes how annotations should be translated into GATE
and UIMA style annotations. These annotations are added to the document prior to being
processed by the GATE and UIMA applications. Each UIMA element describes how
particular annotations and their features should be mapped to GATE annotation type and
feature maps. The details of the mapping are shown in Table 1.

Table 1. UIMA and GATE mapping.

Attribute Description Required
type_name The name of the UIMA annotation to translate to a GATE annotation. YES

annotation_set The name of the GATE annotation set to add the GATE annotations to.
If not specified then the default set is used. NO

gate_type_name The name of the GATE type to create from the UIMA type_name. YES

Table 2 describes how to apply feature mapping between UIMA and GATE feature

maps.

Table 2. UIMA to GATE input feature mapping.

Attribute Description Required
name The name of the UIMA annotation feature. YES

gate_feature_name The name of the GATE feature. YES

type The type of the feature. Valid values are: string, float, double, long,
int, boolean. YES

In the above description, a GATE annotation of type POS will be created for each

annotation in the current document of type GeniaPOSTag. The value of each POSTag's
“value” feature will be added to the corresponding POS annotation's feature map with a
feature key of “value.” In addition, the annotation is tagged as "updated," insuring that it
will be properly updated on output.

In the above example, a new DTType annotation will be created for each GATE
annotation of type DT. The feature map value for each DT annotation's “confidence”
feature will be set on the corresponding DTType's “conf” feature. In addition, the existing
“GeniaPOSTag” annotations will be updated from their corresponding GATE “POS”
annotations such that the value of the POS annotation's “value” feature will be set on the
corresponding GeniaPOSTag “value” feature. The actual mapping file used in the case
study (/Server/scenarios/data/gate_mapping.xml) is currently relatively simple; all mapping
is done in the "new" tagged section of the xml file. The example file maps the searched

 10

categories tagged in documents by GATE to their UIMA equivalents.

5.2. Custom Mapping
If a one-to-one mapping is not possible between UIMA and GATE annotations then it is
possible to specify a Java class to do the mapping instead, as shown below. The class is
specified in the feature element. Note this type of mapping is not used in the current land
use example shown in the gate_mapping.xml file.

<feature class=“anl.gtou.OrthMatcher”/>

The mapping class must implement anl.aida.ae.gate.FeatureBuilder and contain a
constructor that takes an org.apache.uima.cas.TypeSystem as an argument (see
anl.gtou.OrthMatcher as an example). The implementation of the public void
build(FeatureStructure fs, FeatureMap map) method will then perform the more
complicated mapping. For example, this is done using a GATE feature map value as a
condition upon which to set some particular UIMA feature value.

6. Document Consumption
The consumption phase consists of adding a document’s contents and its annotation tags to
a Lucene index (Lucene’s documentation should be read in conjunction with this
document). An index descriptor file describes how these annotations will become fields in
the Lucene index. By default, the following annotations from the document metadata are
stored in the index.

• Location: The documents location (URL) is stored in a “path” field but not
indexed.

• Author(s): Author’s names, when available, are stored in an “authors” field and
indexed.

• Date: The publishing date of the document is stored in a “timestamp” field and
 indexed.
• Title: The title of the document is stored in a “title” field and indexed.

The contents of a document are also indexed but not stored. Consequently, every

document can be searched but its content is only available via its location property. The
IndexDescriptor file in UIMA describes how any additional UIMA annotations, such as the
keywords tagged by the GATE annotator, are to be indexed. The current Lucene indexing
file used in the case study discussed is included in the server component
(/Server/scenarios/data/lucene_mapping.xml). The following format from this file is shown
below.

<fields>

 <field name="agriculture" boost="1.0" keywordSet="Agriculture">

<feature>anl.aida.types.Agriculture:canonicalName</feature>
 </field>

 11

</fields>

The field and feature elements are explained in Table 3.

Table 3. UIMA to GATE document consumption mapping.
Attribute Description Required

name The name of the Lucene field to create YES
boost A boost value for the created field NO

keywordSet Marks this field as containing keywords. The contents of this field will
become keywords in the named set NO

Multiple field elements can be specified. The boost value (if used) relates to term

scoring, which is explained more below; in short boosting a field makes the occurrence of
the terms in the boosted field more important relative to terms in other fields.

The feature element describes what annotation features should be stored in the field.
The UIMA feature specification format is used here: everything to left of the “:” is an
annotation type and everything to the right is the feature name. In the above example, the
annotation type (i.e., Java class) is “anl.aida.types.Agriculture” and the feature is
“canonicalName.” Using the above example, for each indexed document, the
anl.aida.lucene.LuceneConsumer class will create an indexed but not stored Lucene field
called “agriculture” and populate it with the value of the canonicalName feature for each
"Agriculture" annotation in the current document. In addition, the contents of this field over
all the documents will become the keywords in the "Agriculture" keyword set. The
resulting Lucene index will thus map keywords and terms to documents and allow the
relative scoring of terms in the documents.

7. Scoring

The anl.aida.ae.lucene.TermScorer class provides term scoring. It implements tf-idf scoring
together with Lucene's normalization. This score value is used to rate the relative
importance of a term in a document. The full formula is:

Std = TFtd ∗ IDFt ∗Nd

where S is the tf-idf score of a term (t) in a document (d), TF is the term’s frequency, IDF
is the inverse document frequency, and N enables a normalization factor or boost value of d
to affect S regardless of d’s length. TF is evaluated by:

TFtd =
nt
wi

i
∑

with the number of instances (n) of t divided by the sum total of all term (w) occurrences in
a document. The final coefficient used for the tf-idf score, IDF, is defined as:

 12

)
|1}:{|

||log(1
+∈

+=
dtd
DIDFt

where D is the total number of documents and d represents each document containing the
term (t). The IDF value, in essence, provides a higher score for more rare terms. The tf-idf
score is calculated for each term in each document. These scores can then be used in the
client in the creation of semantic maps. The LuceneConsumer configuration parameters
can be found in the appendix.

8. Creating the Cache
The final phase is the actual creation of the cache used by the AIDA Client. Cache creation
occurs after the LuceneConsumer has consumed all the documents. The cache is then
created from the resulting Lucene index. The cache consists of two parts:

1. The Lucene index itself. This allows the client to do a google-like search of the
 cache for relevant documents.

2. A collection of ScoredTermCollection (STC) files: STC files encompass the
 duration of the entire cache and additional files for the individual time slices
 within the cache. The STC files are further explained below.

The cache is created from the Lucene index. In the cache, an STC file that covers the

cache's date range is created as well as STC files for specified time slices within the overall
range. Currently, the time slices are produced by an anl.aida.util.DateRangeProducer class.
A DateRangeProducer takes a start date and the total number of days to produce ranges for
a range length (in days). It produces ranges that represent sliding windows within the
range, specified by start + total days. For example, if the start date is 03/01/09, the total
number of days is 31, and the range (or interval) is 7 days then the producer will produce
the following ranges:

• 3/01/09 - 3/08/09,
• 3/02/09 - 3/09/09,
• 3/03/09 - 3/10/09,
• …,
• 3/24/09 - 3/31/09.

These ranges can then be used to create the individual STC files that make up a cache.

Unfortunately, it’s not possible to filter documents by date and insure that the term
frequencies and document counts pertain only to those documents in the filtered set.
Consequently, the process of creating a cache requires filtering documents out of the main
full index and creating smaller temporary sub-indices.

The anl.aida.ae.lucene.CacheCreator is used to create the cache itself. The cache for the
example scenario will be written to the scenarios directory (i.e.,
/Server/scenarios/data/cache) when the server is executed. The cache takes a Lucene
IndexReader, DateRangeProducer, and a term filter. The IndexReader should point to the
full Lucene index. The DateRangeProducer is used to produce the STC files for the time
slices and the filter can be used to filter out terms when creating the STC files. The other

 13

relevant piece used by the CacheCreator is an anl.aida.ae.lucene.ReaderProducer. This
produces a Reader that is used to read a document's contents when creating the sub-indices.
The CacheCreator creates a directory that includes all the STC files for the cache, a copy of
the Lucene index in an “index” subdirectory, and a cache.xml file that describes the cache.
Example contents from a cache.xml file are shown below.

<cache lucene_index="index">
 <range>
 <start>1235887200205</start>

 <length>245</length>
 <interval>7</interval>

 </range>

<cache_items>

 <cache_item>stc_090301_091101.bin</cache_item>

</carche items>
 <keywords>

 <keyword_set name="Agriculture">
 <keyword>
 <term>vegetables</term>
 <label>Vegetables</label>
 </keyword>

 </keyword_set>

</keywords>

</cache>

The index attribute is the path to the cache's Lucene index and the cache_item elements
are paths to STC files. The range element specifies the cache's range and time slice
interval. Note that an STC file contains its date range timestamp within its title as well. The
keywords element contains the keyword sets that have been generated by the cache creator
and the LuceneConsumer. These keywords are generated from the Lucene fields that have
been marked as keywords in the index descriptor file. The term corresponds to the
“commonName” in the feature and the “label” to the “canonicalName”.

9. Index Post-processing
The STC files are the result of doing some post processing of the Lucene index: calculating
tf/idf scores and generating additional statistics. These files are time-stamped with a date
range and provide the client with the data for that date range (see
anl.aida.core.ScoredTermsCollection, and anl.aida.ae.lucene.STCCreator for code details).
ScoredTermsCollection can be created with a filter, limiting the terms that become part of
the cache. The current binary file format for an STC file is shown below.

2 long integers: the collection’s date range (start - end)

 14

1 standard integer: the number of documents in the cache

1 standard integer : the number of terms in the cache

for each document:
1 string: the doc title
1 string: the doc URL

for each term:
1 string: the term text
1 standard integer: the number of documents the term is in
1 standard integer: the max frequency of the term
1 standard integer: the min frequency of the term
1 floating point number stored as a standard integer1: maximum score
1 floating point number stored as a standard integer1: minimum score

From here until the end of the doc, there are a series of quadruple
standard integers, one for each term doc frequency and score:

1 standard integer: the term index
1 standard integer: the doc index
1 standard integer: the term frequency in that doc
1 floating point number stored as a standard integer1: the score

STC files can be read with anl.aida.core.STCReader and written with
anl.aida.core.STCWriter.

10. Running the Cache Creator
The actual cache is created using the create_cache.sh or create_cache.bat scripts in the
server component (/Server/cache_cache.sh and /Server/create_cache.bat). These scripts
execute the anl.aida.CPERunner class, which in turn runs a UIMA Collection Processing
Engine (CPE). This CPE is defined in /Client/config/sample_cpe.xml. When executing the
scripts, all the phases and code described previously are run. The
/Client/scenarios/data/server.properties file contains the configuration parameters for the
CPE. This file, essentially, serves as the required inputs and file references that configure
the phases described. The current file is set to execute a search on the Iowa sub-scenario,
covering the dates of 03/01/09-11/01/09 with six local newspapers read and parsed.
Additional comments in that file describe each configuration property. The end result of the
CPE is a new cache created in the directory mentioned earlier (see /Server/cache_Iowa and
/Server/cache_Nebraska for existing scenario output). Standard output and runtime errors
are logged to the console and the uima.log file.

1 The storage encoding uses the "floatToIntBits" function.

 15

Appendix

Applied Reader Files and Indices Folder

Reader classes=anl.aida.reader.local
Newspaper index files produced=/Server/scenarios/data/

Required User Input for AIDA Server

	
Required	 input=/Server/scenarios/data/server.properties	 	

Gate Annotator Parameters

Parameter Key Description Constant Default Value

anl.aida.ae.gate.GateAnnotator.GateAppFile
the location
of the .gapp
file to run

GateAnnotator.GATE_APP_FILE /Server/gate_app/application.xgapp

anl.aida.ae.gate.GateAnnotator.MappingFile

the file that
describes

the
mapping

GATE and
UIMA

annotations

GateAnnotator.MAPPING_FILE /Server/scenarios/data/gate_mapping.xml

anl.aida.ae.gate.GateAnnotator.GateHome
GATE's

home
directory

GateAnnotator.GATE_HOME /Server//gate_app

anl.aida.ae.gate.GateAnnotator.GateLogProps
gate's log4j
properties

file
GateAnnotator.GATE_LOG_PROPS /Server/gate_app/log4j.properties

 16

Lucene Consumer Parameters (see anl.aida.ae.lucene.LuceneConsumer)

Parameter Key Description Constant* Default Value

anl.aida.ae.lucene.IndexDescriptor

xml file which
specifies which

annotation types /
features to add to

the index as
Lucene

document fields

MAPPING_FILE <N/A>

anl.aida.ae.lucene.IndexDirectory
the path the
lucene index

directory
INDEX_DIR ./indices/uima

anl.aida.ae.lucene.ClearIndex

a boolean
indicating

whether or not
clear the index

during
component

intialization.
Useful for

debugging when
we want to

regenerate index
each time during

testing

CLEAR_INDEX true

anl.aida.ae.lucene.CachedContentDir

directory where
temporary

content can be
put when

creating the
cache

CACHED_CONTENT_DIR /Server/cached_content

anl.aida.ae.lucene.OutputDir
directory where
the cache will be

created
CACHE_OUTPUT_DIR ./cache

anl.aida.ae.lucene.CacheStartDateDate
starting date of

the cache
(yyyymmdd)

CACHE_START_DATE 20090301

anl.aida.ae.lucene.CreateCache

a boolean
indicating

whether or not
the cache should

be created

CREATE_CACHE true

*	 The	 Constant	 value	 refers	 to	 constants	 defined	 in	 the	 class	 LuceneConsumer	 that	 can	
be	 used	 to	 refer	 to	 the	 parameter	 keys	 programmatically.	

