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Abstract: Storing municipal solid waste (MSW) in landfills is the oldest and still the 
primary waste management strategy in many countries. Russia is the third largest methane 
(CH4) emitter country after USA and China, representing 5% of total global CH4 emissions 
from waste landfilling. Due to high economical growth, the amount of waste generated in 
Russia has risen sharply over the last ten years. However, waste management in Russia is 
mainly based on landfilling. In order to design an optimal MSW utilization system 
considering various aspects related to sustainable MSW management, a linear 
programming model was introduced for this research. The performance of the proposed 
MSW utilization system in the target area has been evaluated in light of energy, economic, 
and environmental (3Es) aspects, such as system net cost, annual energy generated from 
the waste, and the carbon dioxide (CO2) emissions of the system. St. Petersburg city was 
considered as the target area for the present analysis. The results show that the introduction 
of the proposed MSW system with energy recovery from waste along with a high level of 
material recovery has energy, environmental and economic benefits compared to the 
conventional treatment system. This paper emphasizes the importance of introducing waste 
treatment methods as an alternative to landfilling, and to improve recycling activities in 
Russia. 

Keywords: sustainable waste management; municipal solid waste; waste-to-energy; system 
design; optimization; linear programming; Russia; St. Petersburg 
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Nomenclature 

a  : waste availability coefficient (%) 
b  : by-product generated in treatment facility (t/year or GWh/year) 
c  : composted materials 
Ccap  : capital cost of treatment facility (USD/t capacity/day) 
captr  : truck load capacity (t) 
Com  : operation and maintenance cost of treatment facility (USD/t) 
CRF  : capital recovery factor 
Ctr  : transportation cost (USD/t/km) 
d  : round trip distance to treatment facility (km) 
dr  : residue’s round trip distance from treatment facility to landfill (km) 
e  : energy carrier generated from waste 
effcoll  : gas collection efficiency (%) 
emf  : emissions factor for treatment facility (tons of CO2-eq./t) 
emtr  : emissions factor for transportation (tons of CO2-eq./km) 
gasgr  : biogas generation rate (m3/t) 
i  : type of waste material 
j  : type of treatment facility 
k  : type of by-product 
LF  : country location cost factor 
LFGgr  : landfill gas generation rate (m3/t) 
LHV  : lower heating value (MJ/kg) 
LHVgas  : lower heating value for biogas (MJ/m3) 
LHVLFG : lower heating value for landfill gas (MJ/m3) 
LHVRDF : lower heating value for RDF (MJ/t) 
m  : recycled materials 
ncj  : net costs of each treatment facility (USD/year) 
p  : unit price of by-product (USD/t or USD/GWh) 
q  : waste material allocated to treatment facility (t/year) 
fr  : fraction of residue production at treatment facility 
frLFD  : fraction of materials (waste and residues) allocated for landfill disposal 
frWTE  : fraction of waste allocated for energy production 
frWTR  : fraction of waste allocated for recycling 
Tcap  : planned capacity of treatment facility (t/year) 
tcj  : total cost of each treatment facility (USD/year) 
Tot  : treatment facility operation time (day/year) 
ηe,h  : conversion efficiency (electricity, heat; %) 
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1. Introduction 

Generation of municipal solid wastes (MSWs) is closely linked to the population growth process, 
the urbanization rate, change of lifestyle, and an increase in household income [1]. MSW contains 
various types of organic materials that produce a variety of gaseous products, including GHGs, when 
dumped, compacted, and covered in landfills. However, storing MSW in landfills is the oldest and still 
the primary waste management strategy in many countries. Landfills generate methane (CH4) in 
combination with other landfill gases (LFGs) through the natural process of bacterial decomposition of 
organic waste under anaerobic conditions. Given that CH4 is about 21 times a more powerful 
greenhouse gas (GHG) than carbon dioxide (CO2), emissions of LFGs are an important source of 
GHGs. Worldwide CH4 emitted from landfilling of MSW accounted for nearly 750 million tons of 
carbon dioxide equivalent (CO2-eq. )in 2006, and represented over 12% of total CH4 emissions [1,2].  

Russia is the world’s top emitter of CH4 from the waste sector, followed by USA and China, 
representing 37.4 million tons of CO2-eq. or 5% of total global CH4 emissions in 2006 [3]. The 
generation of MSW in Russia tripled during the period 1980 to 2007, and has continued to rise due to 
high economical growth. In 2007, the annual production of MSW per capita in Russia was 440 kg, 
which is approximately half that in Western countries [4]. Currently, landfills are the primary means 
for disposal of MSW in Russia (Table 1).  

Table 1. Composition and treatment methods of MSW in Russia. 

Parameters 
Federal district 

Central Southern North-Western 
Administrative center (city) National average a Moscow a Rostov b St. Petersburg c 
Year 1996 1996 2001 2002 
MSW composition (%) 

    
Paper 20.0–36.0 37.7 25.3 15.6 
Glass 5.0–7.0 3.7 5.8 13.7 
Metals 2.0–3.0 3.8 2.2 4.6 
Plastics 3.0–5.0 5.2 11.6 11.3 
Textile 3.0–6.0 5.4 2.3 3.8 
Rubber and leather 1.5–2.5 0.5 1.0 1.0 
Wood 1.0–4.0 1.9 0.4 0.8 
Organic 20.0–38.0 30.6 45.9 34.9 
Other 10.0–35.5 11.2 5.5 14.3 

Waste generation 
    

Total(Mt/year) 37.5 2.5–3.0 0.35 1.06 
Per capita (kg/year) 252 301 339 232 
Treatment methods (%) 

    
Recycling 1.3 na na na 
Incineration 2.2 na na na 
Landfilling 96.5 >95.0 >90.0 >70.0 

Sources: (a) [11]; (b) [12]; (c) [8]. 
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It is worth noting that due both to the lack of accurate statistics, and also to the existence of 
thousands of unofficial landfill areas, the exact number of landfills in Russia is unknown [5]. A rough 
estimate shows that the area occupied by landfills in Russia is equivalent to eight cities of the size of 
Moscow, or more than 0.8 million hectares; although it does not cover too much space on a 
geographical scale [5-7]. Current waste disposal in Russia is causes many environmental problems in 
Russia and also affects neighboring countries. As an example, the huge amount of solid waste 
generated in the North-Western part of Russia, in St. Petersburg and Leningrad Oblast (region), has 
been identified as the most extensive source of pollution around the Baltic Sea [6]. 

Due to international collaboration and the development of federal and regional MSW management 
programs, there is now a visible trend towards improvement of current waste management practices in 
Russia [6,7]. Development of such projects has increased since Russia’s ratification of the Kyoto 
Protocol in 2005. The shift from waste landfill disposal to alternative treatment methods within 
Russian waste management is expected to have positive impacts on global warming, not only directly by 
decreasing GHG emissions, but also indirectly by saving energy and materials from non-renewable 
resources. However, due to the lack of studies on municipal solid waste management system (MSWMS) 
in Russia, such aspects have not yet been considered. A few evaluating studies addressing waste 
management in Russia have been presented recently [5,8-10]. However, all of these studies considered 
only evaluation of GHG emissions resulting from waste landfilling as an independent operation, and 
have not considered assessment of other waste treatment options. These options are very closely 
interlinked and can influence the central components of the MSWMS, such as waste generation, 
separation, collection, and transportation.  

This study is an effort to design an optimal waste management/utilization system and to assess  
the current waste management practices as one system. This study reports the main outcome of  
the evaluation analysis conducted for St. Petersburg city. As an analysis tool a linear programming  
(LP) model has been formulated to design and to evaluate MSWMS considering various waste 
treatment options. The comparison between the different scenarios has been performed taking into 
account energy, and the economic and environmental aspects, representing the sustainability of the 
proposed MSW utilization system. 

2. Sustainable Waste Management and Waste Management Models 

According to Tchobanoglous and Kreith [13], MSWMS is a complex process because it involves 
many technologies, associated with controlling generation, handling and storage, transportation, 
processing and final disposal of MSW under legal and economically acceptable social guidelines  
that protect the public health, and the environment. The main function of any MSWMS is the treatment 
of waste generated; where in addition, energy and recyclable materials can be recovered as  
by-products. Currently, MSW generated by households and economic activities is seldom used as a 
renewable energy resource. However, utilizing MSW in waste-to-energy (WTE) processes helps to 
mitigate GHG emissions generated from waste treatment by reducing CH4 emissions. It also reduces 
the impact of GHGs as they replace fossil fuels in energy production activities. 

Waste generation and disposal is generally considered as a major indicator of an unsustainable 
society. Based on waste hierarchy, the concept of sustainable waste management handles MSW in an 
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environmentally effective, economically reasonable and socially acceptable way [14]. The waste 
hierarchy represents the order of preference for main options of municipal solid waste management 
(MSWM) and has become a key waste management concept in many European countries [15]. Based 
on environmental merits the waste hierarchy indicates that some strategies/technologies for waste 
handling are more appropriate than others, and could have very different impacts on climate change, 
not only directly by a decrease in (GHG) emissions, but also indirectly by saving energy and materials 
from non-renewable resources [16,17].  

The complexity of a MSWMS can be described by the number of relationships between the 
components in the system. Due to the complexity of MSWMS, computer models should be built as 
supporting tools to explain, control or predict the behavior of these systems, as well as to plan and 
assess waste management [18].Over the past decades, various evaluation techniques have been used to 
analyze MSWMS. These techniques include numerical solving methods, life cycle assessment (LCA), 
life cycle inventory (LCI), material flow analysis (MFA), input-output (IO) tables, and several 
optimization approaches, such as linear programming (LP), mixed integer programming (MIP), and 
dynamic programming (DP) [19-23].The first MSW models, from the period between the 1960s to the 
1970s, were optimization models and mainly dealt with specific aspects of waste management, that 
included the routing of waste vehicle collection and the location of waste transfer stations [24]. Such 
models were limited to analyzing only one time period, one processing option, and a single waste 
generation source; making them unsuitable for long term planning [22,25]. Later, several computer 
models were developed for strategic planning to calculate recovery rates, costs and environmental 
impacts of MSWMS. In addition, there are studies involving technical, economic and environmental 
analysis in order to evaluate the potential energy production from MSW [26-28]. In the past ten years, 
the assessment of integration of WTE applications into existing energy systems has also been included 
in several studies [21,29]. 

MSW model applications highlight how waste can be used as an alternative way to landfilling and 
for reducing GHG emissions. The double role of MSW as a fuel and as a material that can be recycled, 
leads to a broader range of technologies for their treatment. This has given rise to a lot of different 
structures and solutions for MSW treatment systems. 

In order to design the optimal MSWMS, several characteristics of the target area are required along 
with the aspects relating to MSW and its management, such as the annual amount of generated waste, 
waste composition and density, and an existence of treatment technologies. The following aspects may 
also be included: urbanization rate, waste composition, climatic condition, etc. [30]. It needs to be 
mentioned that the presence of a market for by-products, such as recycled materials, compost, and/or 
energy carriers produced from waste is another necessary aspect of the designed MSWMS. To be 
sustainable waste management needs to be appropriate to the local conditions of the target area with 
respect to economic, environmental and social perspectives. Social issues considered within waste 
management may include a variety of factors, such as household size, occupation, income, 
consumption patterns, willingness to separate at source, willingness and ability to pay and public 
acceptance of waste management plans, etc. [31,32]. However, the literature reviewed showed that the 
third aspect of sustainability has received less attention than the economic and environmental issues. 
Given that waste represents an important and easily accessible source of sustainable energy, 
assessment of energy generated from waste could be considered as an additional aspect of sustainable 
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waste management. This study considered the sustainability of MSWMS through energy, economic 
and environment components, namely the 3E’s [33,34]. Such an approach can bring an important 
contribution to the improvement of MSWMS resulting in balances of environmental, economic and 
energy aspects. 

3. Methodology 

3.1. The Proposed MSW Management System 

This study presents a MSW utilization system considering a set of representative waste treatment 
technologies widely applied in many countries. The performance of the proposed waste management 
system is evaluated taking into account the 3E’s aspects. These parameters were chosen as a set of 
criteria characterizing the sustainable MSWMS. A general representation of the proposed system is 
shown in Figure 1. The system considers thermal and non-thermal waste treatment technologies and 
several demand sectors for by-products generated due to waste processing. 

Figure 1. Proposed municipal solid waste management system (MSWMS) considering 
energy recovery. 

 

3.2. Description of the Optimization Model 

This section describes the mathematical formulation of the LP optimization model used in the 
study. In order to determine the lowest cost structure of MSWMS, the model formulated in this study 
used a common LP technique often applied to solve waste management problems. As a specific point, 
incorporation of economic, environmental and energy (3E’s) aspects, as well as the introduction of 
several constraints which emphasize the utilization of waste for energy and recycling purposes are 
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used to evaluate the sustainability of the designed system. Objective functions and model constraints are 
derived taking into consideration economic (total cost, revenue, unit treatment cost, etc.), 
environmental (CO2-eq. emissions), and energy parameters (energy produced from waste). 

The model formulated in this paper has been developed and implemented in GAMS (General 
Algebraic Modeling System), a tool, developed for solving mathematical programming and optimization 
problems [35]. The LP formulation of the optimization model, represented in Figure 2 is described 
below. 

Figure 2. Schematic representation of the optimization model (q:quantity of waste material, 
bp:quantity of by-product). 

 

3.2.1. Objective Function 

The objective function of the model includes minimization of the net cost of the proposed MSW 
utilization system defined as the difference between total cost and revenue, as described in Equations (1) 
and (2). The total cost of the MSW utilization system is calculated from the summation of the costs  
for collection / transportation, and treatment / landfill disposal. Revenue is derived from the selling of 
by-products, such as recyclable materials, compost, and energy generated by WTE facilities. 

( )j j kj k
j j

Min nc Min tc b p= − ⋅∑ ∑  (1)  

( / ( ))
j j jj ij cap j ot om tr j j j

i
tc q C CRF LF T C C d fr dr= ⋅ ⋅ ⋅ + + ⋅ + ⋅∑  (2)  

3.2.2. Features Evaluated by the Model 

The developed model evaluates several aspects of the proposed MSW utilization system. These 
aspects, such as net cost, emissions and energy generated by the system represent the main sustainability 
features of the proposed MSWMS (Equations (3)–(5)). 

(1) System net cost 

j j kj knc tc b p= − ⋅  (3)  

(2) Environmental impact of the system  
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In order to assess emissions (CO2, CH4, and N2O) from waste incineration, as well as emissions 
from other waste treatment technologies, IPCC methodology has been used in the present research [36]. 
According to this methodology, if incineration of waste is used for energy purposes, both fossil and 
biogenetic emissions should be estimated.  

1
2 ( ( ) )ij j ij j j j tr tr

j i j i
CO q emf q d fr dr cap em−= ⋅ + ⋅ + ⋅ ⋅ ⋅∑∑ ∑∑  (4)  

(3) Energy generated by the system 

,( )ij i RDF gr coll LFG gr coll gas e h
i j

En q LHV LHV LFG eff LVH gas eff LVH η= + + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅∑∑  (5)  

3.2.3. Constraints  

The model is subject to the following constraints: 
(1) Mass balance constraints 
All wastes generated in the study area should be transported to treatment plants or disposal site. 

i ij
i j i

q q=∑ ∑∑  (6)  

(2) Maximum capacity constraints 
These constraints consider that planned capacity at each facility should be less than or equal to the 

maximum allowable capacity of the facility. 

jij cap
i

q T≤∑  (7)  

(3) Waste availability constraint 
The waste flow used in the model is subject to the components of each waste material. Because of 

the different characteristics of waste materials, each type of waste should be processed in the suitable 
treatment facilities as shown in Table 2. 

ij ij i
i

q a q≤ ⋅∑  (8)  

(4) Waste utilization constraints 
These constraints represent a relation between total amount of waste generated in the target area and 

amount of waste materials allocated for recycling, composting, and energy production purposes. 

ije WTE i
e j i i

q rf q= ⋅∑∑∑ ∑  (9)  

,
,

ijm c WTR i
m c j i j

q fr q= ⋅∑∑∑ ∑  (10)  

(5) Landfill disposal constraint 
This constraint defines the amount of waste allocated directly to landfill and untreated residues 

coming from other treatment facilities, which are to be transported to a final disposal site. 

,i landfill ij j LF D i
i j i i

q q fr fr q+ ⋅ = ⋅∑ ∑∑ ∑  (11)  
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(6) Non-negativity constraints 
This constraint assures that only positive amounts of waste materials are considered in the solution. 

0ijq ≥  (12)  

Table 2. Sustainability of treatment technologies according to waste composition. 

Treatment facility Waste composition 
Landfill all types of waste 
Incineration all types of waste 
Anaerobic digestion paper, organic waste 
Composting organic waste, paper  
RDF production paper, plastic, wood, rubber and leather 
Material recycling paper, glass, metal, plastic, textile, wood, rubber and leather 

3.3. Scenario Settings 

In order to evaluate the impacts of different waste management options on the MSW utilization 
system, several scenarios were constructed in this study: A baseline or business as usual (BAU) 
scenario and four alternative scenarios are explained below. All scenarios are based on the same input 
data given for the generated amount of waste in the target area. 

3.3.1. BAU Scenario (BAU) 

The BAU scenario represents the existing MSWMS in the target area, and is the baseline upon 
which the results from other scenarios are compared. 

3.3.2. Low cost Scenario (Low cost) 

To achieve the optimal mix of treatment technologies with the minimal net cost of the proposed 
MSW utilization system, this scenario has been designed without considering regulation constraints, 
such as the desired amount of waste for recycling and/or for energy generation. 

3.3.3. Max Energy Recovery Scenario (WTE) 

In this scenario, the amount of waste allocated to energy production is maximized. In order to 
maximize the preference of energy produced from waste, the constraint on promoting the use of MSW 
for energy production is included in the model formulation. 

3.3.4. Recycling Scenario (WTR) 

The MSW utilization system presented in this scenario considers the maximum recycling capability 
of the proposed system. The constraint on the use of MSW for recycling purposes looking forward to 
increasing output of material recycled is considered in the model. 
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3.3.5. WTE&WTR 

In this scenario high priority has been given to the energy generated from waste and the recycling of 
waste materials. Regulation constraints used in the model formulation have been defined as a 
combination of the average maximal value for the amount of waste used for energy production (50%), 
and the average material recycling rates (30%). 

3.4. Study Area and Input Data  

3.4.1. Study Area  

A case study was conducted in the city of St. Petersburg, the third largest city in Europe after 
Moscow and London, and the second largest city in Russia. Also it is known as a major industrial 
center with a population of approximately 4.6 million. St. Petersburg is located on the Neva River at 
the head of the Gulf of Finland on the Baltic Sea and it is often recognized as the most western city in 
Russia (Figure 3). 

Figure 3. Map of the target area: St. Petersburg city, Russia. 

 

 
In recent years the population of St. Petersburg has decreased, however, due to economic growth the 

amount of MSW increased by 20% from 1994 to 2008 [8,37]. Annually, over 1 million tons of MSW is 
generated in St. Petersburg, from which over 70% is directly disposed in five disposal landfill sites 
located around the city [10]. In 2008 the annually collected amount of MSW was about 1.06 million 
tons, of which 25% was generated by commercial, and 75% by residential sectors (Table 3). Only a 
small amount went to the two waste treatment plants near the city. Insufficient waste treatment has 
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been recognized as a problem by city authorities and several Russian environmental agencies and 
NGO’s. The major challenges within waste management in St. Petersburg are long transportation 
distances and improper treatment and storage of waste. Furthermore, the lack of a suitable waste 
utilization system in St. Petersburg causes many problems, such as a huge loss of useful materials, and 
emissions of many dangerous pollutants which have a significant influence on the environment inside 
and outside the city. St. Petersburg is responsible for 20% of the pollution in the Baltic Sea, where the 
MSW generated in the city is one of the main sources of this pollution [6]. 

Table 3. St. Petersburg data (2008). 

Component Data 
Population 4.6 × 106  
Total area 1.35 × 103 km2 
Average temperature 5.3 °C 
Electricity demand 19,919 GWh 
Heat demand 24,893 GWh 
Share in heat demand 

  
Residential sector 58.96% 

 
Industrial sector 4.9% 

 
Transportation sector 0.8% 

 
Commercial sector 23.72% 

 
Other 11.62% 

 
MSW system 

  
Waste generation 1,065,775 t/year 

Sources: [37-41]. 

In order to solve the problems of ineffective waste management in St. Petersburg, the 
administration of the city has developed several environmental measures, such as increasing the 
capacity of the present composting and recycling plants and building several new facilities, such as 
modern landfills and WTE facilities to process all waste generated in the city. Increasing waste 
separation at source is also one of such measures [42]. Given that St. Petersburg has a wide DHS 
network and an electrical grid; energy produced from MSW could be used as an energy source in the 
existing energy system located in the city. 

3.4.2. Input Data 

(1) Waste data 
Generally, any MSW is composed of three groups of materials, such as organic waste (kitchen 

waste, garden waste, etc.), non-recyclable inorganic waste (dust, cinder, ash, etc.), and recyclable 
waste (paper, plastics, glass, metal, etc.). Typical composition of MSW in St. Petersburg and other 
Russian cities is shown in Table 1. It should be noted that organic waste is the main component of 
MSW in St. Petersburg representing more than 30% of the total waste. This study considers the nine 
largest fractions, totaling 98%, of the MSW currently generated in St. Petersburg, which are paper, 
glass, metal, plastic, textile, wood, organic waste, rubber, leather, and others. Current waste statistics 
data in Russia is based on volume measurements. For this reason the total annual amount of waste 
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generated in the target area has been estimated according to the average density of the MSW 232 
kg/m3. Since the data of the composition of the waste material and the heating values for each type of 
MSW generated in the target area was not available, it was estimated using the average data from 
several existing literature sources (Table 4). 

Table 4. Waste related data in St. Petersburg. 

Waste fraction 
Composition 

(%) 
LHV 

(MJ/kg) a 
Carbon 

content (%) b 
Fossil carbon 
content (%) b 

LFG generation 
rate (Nm3/t) c 

Paper (mixed) 15.6 16.65 0.46 0.01 250 
Plastics (mixed) 11.3 32.38 0.75 1.00 0 
Glass 13.7 0.14 0.00 0.00 0 
Metals 4.6 0.69 0.00 0.00 0 
Organic (mixed) 34.9 4.63 0.38 0.00 250 
Textile 3.8 17.35 0.50 0.20 250 
Rubber and leather 1.0 20.24 0.67 0.20 0 
Wood 0.8 18.50 0.50 0.00 35 
Other 14.3 1.00 0.03 1.00 35 
Total /Average 100.0 12.40 0.37 0.27 92 

Sources: (a) [13]; (b) [36]; (c) [25]. 

(2) Treatment methods 
The waste treatment technologies considered include landfilling of all types of waste with LFG 

extraction, incineration of all waste fractions with energy recovery, recycling of all types of waste except 
organic, anaerobic digestion and large scale composting of organic and paper waste (Table 5). The 
anaerobic digestion is assumed to be combined with composting facilities to increase the quality of 
composting product by including the digestate [43]. Each technology is characterized by several specific 
parameters, such as costs (capital investments, operation and maintenance), emissions coefficients, and 
types of generated by-products. The energy produced from incineration, and the biogas produced from 
landfilling and anaerobic digestion, is assumed to be used either for heating and/or for electricity 
generation. Electricity or heat produced from waste treatment processes is assumed to be supplied to 
the existing electrical grid or to the district heating system (DHS). DHS is widely expanding in Russia 
and is currently used to heat most buildings in urban areas and also partially in rural areas. St. 
Petersburg has the oldest and largest DHS network in the world which covers about 6,000 km [44,45]. 

(3) Economic aspects 
By using a combination of data collected for St. Petersburg and data for waste treatment 

technologies adapted from several sources, transportation costs and treatment costs for each treatment 
facility have been calculated. The calculated costs of treatment facilities include the country location 
cost factor that represents the relative cost difference between two geographic locations. No personnel 
costs were considered in the analysis due to lack of available data. The revenue of the system is based 
on the sale of by-products, such as sorted materials, compost and generated energy. The selling prices 
of the by-products are the same as current values in the recycling and energy markets (Table 6). 
Transportation cost and selling prices of by-products were obtained for year 2008. 
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Table 5. Input data of technologies. 

Treatment 
technology 

Capital cost O&M costs Operation time Residue rate 

USD/t USD/t Days/year % 
Incineration 800 0.6 292 20 
Landfilling 200 0.1 360 100 
Composting 250 0.2 292 0.5 
Material recovery 200 0.3 292 10 
RDF 200 0.3 292 15 
Anaerobic digestion 1500 0.5 292 0 
CRF = [i (1 + i) n]/[(1 + i) n − 1]; Operation life = 25 years, Discount rate = 11%;  
Thermal efficiency = 70%; Electrical efficiency = 20%; Heat losses = 15%; Electricity distribution 
losses = 10%; HVRDF = 12 MJ/kg; HVbiogas = 21 MJ/m3; HVLFG = 17.7 MJ/m3; Biogas 
collection efficiency =100%; LFG collection efficiency = 45%; Cost location factor = 1.47 (2007 
year); Sources: [13,25,41,46]. 

Table 6. By-product’s selling price. 

By-product Price Reference 
Heat, USD/MJ 0.0058 (a) 
Electricity, USD/kWh 0.023 (a) 
Compost, USD/t 53.57 (b) 
Paper, USD/t 38.16 (c) 
Plastic, USD/t 204.19 (c) 
Glass, USD/t 45.08 (d) 
Textile, USD/t 38.16 (e) 
Ferrous materials, USD/t 229.01 (f) 
* 1 USD = 25 RUB (2008) 

  
Sources: (a) [40]; (b) [47]; (c) [48]; (d) [49]; (e) [50]; (f) [51] 

(4) Environmental aspects 
This study focuses on emissions directly related to the waste treatment, transportation and energy 

production processes within MSWMS in the target area. The Global Warming Potential (GWP) 
concept that assesses the possible warming effects in relation to CO2 equivalent on the atmosphere 
from the emission of each gas generated has been applied in this analysis. Based on IPCC 
methodology [36] and Tchobanoglous and Kreigh [13], the main GHG pollutants such as CO2, CH4, 
and N2O have been evaluated. 

3.4.3. System Boundaries and Major Assumptions 

In order to obtain the optimal solution, the following assumptions were made in the model. 

- The geographical boundary of St. Petersburg set the limits for the included type of waste 
streams, but there are no limits to location of the processing facilities. 

- Current analysis is limited to the treatment of waste generated during a one year period. Constant 
residue rates have been set for all types of treatment technologies used in the present analysis.  
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- The waste source separation rate of 100% has been set for all types of waste materials. In 
addition, the average value for the recovery factors used for material recovery facilities is 
assumed to be 90% [13]. It needs to be noted, that the value set for recovery factor represents the 
maximum available rate which can be used in this technology. However, decreasing this rate 
may cause an increase of energy produced from MSW or/and increase in final disposal rate. 

- The model assumes the average round trip transportation distance of 40 km and average cost  
of transportation of 2.1 USD/t/km associated with all waste treatment facilities. Waste  
materials accumulated in the collecting places are moved to the treatment and disposal sites 
using 11 tons trucks.  

- Another important assumption of this model is the omission of the scale effect for the waste 
treatment facilities.  

3.5. Sensitivity Analysis 

Currently, the long distance of MSW transportation is pointed out among other things as one of the 
major problem within waste management in Russia [52,53]. In order to study the performance of the 
proposed MSW utilization system, the changes in the distance for waste transportation have been 
conducted as a sensitivity analysis. 

4. Results and Discussion 

4.1. Optimal Solution for Each Scenario 

This section presents the results obtained from the calculation using a LP model, as well as an 
assessment of the 3E’s aspects of the system in each scenario. For each modeling scenario the optimal 
solution representing designed MSWMS is calculated. The calculated results for the value of the 
objective function for the five different scenarios and evaluated aspects of the system are presented in 
Table 7. Figure 4 shows the changes in configuration of the proposed MSWMS. Results can be 
interpreted as follows. 

Table 7. Main outcome from the analysis. 

Component Unit 
Scenario 

BAU Low cost WTE WTR WTE+WTR 
Total system cost M USD/year 111.31 129.76 165.78 131.91 127.92 
Total revenue M USD/year 2.12 51.96 28.17 53.29 43.49 
Net cost M USD/year 109.19 77.80 137.61 78.62 84.43 
Unit treatment cost USD/t 104.45 121.75 155.56 123.77 120.02 

System emissions 
M tons of 
CO2-eq./year 

1.32 0.401 1.16 0.155 0.83 

Energy production GWh/year 0 117.41 1188.25 25.67 266.06 
frWTE % 0 18 100 0.7 50 
frWTR % 11 68 0 85 30 
frLFD % 89 34 60 20 72 
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Figure 4. Changes in system configuration (all scenarios). 

 

In the BAU scenario, it is assumed that there is no introduction of alternative waste treatment 
technologies, except existing low capacity treatment plants and landfills without LFG collection and 
recovery systems. Under this scenario, there is no energy production from waste and GHG emissions 
achieve the maximum value compared to other scenarios considered. Over 70% of waste materials 
generated in the target area are directly allocated to landfill site and the rest is processed in the 
composting and material recovery facilities (Figure 5). However, more than half of the composted 
material finally goes to landfill, due to low quality of the produced compost [8]. The low quality of the 
produced compost results because of the low efficiency of the separation and sorting process and the 
existence of glass, plastics and heavy metal in the final product. The final disposal rate in this scenario 
represents almost 90% of the total MSW generated. 
 

Figure 5. Conventional MSWMS in St. Petersburg. 
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In order to achieve the optimal solution of the MSWMS under Low cost scenario, the majority of 
the waste flow (98%) is allocated between material recovery, composting and landfilling composed 
with LFG recovery systems. These technologies represent a central part of the designed waste 
management system.  

The optimal system representing the best technology mix for the WTE scenario is mainly based on 
incineration and waste landfilling with LFG recovery. This scenario shows the complete utilization of 
waste for energy purposes without material recovery, except metal fractions collected from the ash. 

As an alternative to waste landfilling, maximal recycling capability was introduced in the MSWMS 
designed under the WTR scenario. Waste flow allocated in material recovery and composting facilities 
represents more than 85% of total waste generated in the target area. 

The design of MSWMS, with high priority given to energy produced from waste and material 
recycling is considered in the WTE&WTR scenario. Complete recovery of plastic, glass and metal 
waste, and low capacity composting facilities are introduced in this scenario. In contrast to the other 
designed scenarios, landfill facilities constructed with LFG recovery, represent the main WTE option. 

In addition, the introduction of RDF production facilities in all designed scenarios was found to be 
the most economically feasible choice for treatment of waste materials, such as wood, rubber and 
leather. 

4.2. Performance of the Designed System 

In order to evaluate the sustainability of the designed MSWMS, the 3E’s aspects, represented by net 
cost, energy and emissions generated by the system were evaluated. The BAU scenario representing 
the current MSWMS was used as a baseline for comparison. This scenario presents the minimal 
system cost (111.31 M USD/year) and a low level of revenue (2.12 M USD/year) generated from the 
system due to low recycling ability. As a result, the net cost of the system is high compared to the 
other designed scenarios. Unit treatment cost is equal to 104.45 USD/t. This scenario had the highest 
values of GHG emissions due to the large quota of waste landfilling without LFG recovery systems 
and represents 1.32 M tons of CO2-eq. t/year or 1.23 tons of CO2-eq./t. The cost of the waste 
management system mainly consists of transportation and treatment costs. Transportation cost is equal 
to 88.5 M USD/year or 80% of the total cost for waste management. 

The optimal MSWMS which considers a mix of alternative waste treatment methods is represented 
by the Low cost scenario. This scenario with no limitation on the amount of waste for recycling and  
for energy generation represents the best solution or best scenario in comparison with other designed 
scenarios. The objective function of the best solution has a total value of 77.80 M USD/year or  
72.9 USD/t. The introduction of alternative waste treatment technologies has an effect on the system 
cost and emissions Thus, the system cost and the unit treatment cost increase more than 15% compared 
to the BAU scenario and reaches values equal to 129.76 M USD/year or 121.75 USD/t. Moreover, CO2 
emissions decreased by 70% in this scenario, resulting from the improvement of recycling activities. 

From an energy point of view, the best strategy is the WTE scenario, representing maximal amount 
of energy (1,188.25 GWh/year) produced from waste. Although the WTE scenario considers maximal 
utilization of waste for energy production; it does not show a significant reduction of system emissions 
(1.16 M tons of CO2-eq./year or 1.08 tons of CO2-eq./t). This scenario shows the highest system cost 
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(165.78 M USD/year) and unit treatment cost (155.56 USD/t) with little environmental benefits in 
comparison to the BAU scenario. The energy generated from MSW may substitute fossil fuels  
and reduce GHG emissions resulting from energy activities. Currently, natural gas (with share of  
97%) represents the main fossil fuel resource used for energy generation in the target area. The  
energy produced under the WTE scenario represents 2.5% of the total annually consumed energy  
(44,812 GWh/year) in St. Petersburg. Moreover, replacing the energy generated from fossil fuels 
results in a 3% decrease in GHG emissions resulting from the energy sector. 

A common treatment technology used by all designed scenarios is material recovery, representing the 
major source of income of the proposed system. The WTR scenario with a high level of materials 
recovery shows the highest amount of revenues from the sale of recycled materials equal to 53.29 M 
USD/year. In terms of CO2 emissions, results obtained from this scenario showed that the introduction 
of a high recycling rate ultimately reduces GHG emissions up to 0.15 M tons CO2-eq./year. This result 
was obtained by considering several assumptions related to the waste collection and separation, and 
represents an unrealistic scenario compared with the present situation in St. Petersburg. Currently, the 
selective collection of MSW is not well organized in the target area, however there are several 
programs coordinated by the municipality, and improvement of the source separation of waste is 
expected. In addition, changes in policy, the improvement of the recycling efficiency of treatment 
facilities, and the improvement of households with regard to recycling processes could achieve feasible 
goals. Due to the lack of suitable data associated with the types and composition of waste materials 
generated in St. Petersburg, compensative effects, such as substitution of raw materials, resulting from 
the recovery of waste materials has not been considered in the present analysis.  

The targets set for the WTE&WTR scenario are close to the real targets which can be set in St. 
Petersburg in order to solve the current waste management problem. Figure 6 illustrates waste material 
flow and energy flow of the optimal MSWMS, designed for the WTE&WTR scenario while considering 
the introduction of regulation constraints for waste utilization. More than 60% of total waste generated 
in the target area is allocated to landfilling with a LFG recovery system. The rest of the waste materials 
are allocated between recycling, RDF and composting facilities. The results of this scenario show that 
due to low market price, recycling of waste paper is not an economically favorable option. In this 
scenario, the landfill site plays a significant negative role as a main contributor of GHG emissions 
generated by the designed MSWMS. Based on the assumption that only 45% of LFG produced is 
effectively recovered, the remaining 55% is released into the atmosphere. CO2 emissions generated by 
landfill sites represent over 90% of total emissions (0.83 M tons of CO2-eq./year) produced by the 
system. Compared to other designed scenarios, this scenario represents the minimal system costs 
(127.92 M USD/year) and unit treatment cost (120.02 USD/t). 
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Figure 6. The optimal MSW utilization system (WTE&WTR scenario). (a) Waste material 
flow; (b) Energy flow. 

 
(a) 

 
(b) 

According to the calculation results, transportation costs consume the largest portions of the total 
cost of the proposed MSW utilization system. From the sensitivity analysis of the best scenario (Low 
cost), it can be seen that changes in waste transportation distance have a significant effect on the cost 
of the proposed MSW system (Figure 7). Moreover, it can be concluded from the results that the 
increase of the waste transportation distance will result in a decrease of the system revenue and growth 
of the final disposal rate due to reduction of recycling activity. For example, if the waste transportation 
distance increases by 10 km, the final disposal rate grows sharply by more than double. On the other 
hand, smaller distances for waste transportation, resulted in the growth of the waste recycling rate, and 
a decrease in waste to energy and final disposal rates (Figure 8). 
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Figure 7. Effect of changes in system costs for different transportation distance (Low cost 
scenario). 

 

Figure 8. Changes in system performance for different transportation distance (Low cost 
scenario); frWTR: fraction of waste allocated for recycling; frWTE: fraction of waste allocated 
for energy production; frLFD: fraction of materials (waste and residues) allocated for 
landfill disposal. 
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point of view, the WTR and Low cost scenarios allow the highest revenue from the sale of the by-
products generated from the waste treatment process. Finally, the optimal balance between the amount of 
waste allocated to energy production and recycling can be achieved in the WTE&WTR scenario. The 
achieved results demonstrate that the presence of an LFG recovery system, as a WTE treatment option, 
has a significant influence on the modeling results. As an alternative to landfill, anaerobic digestion 
systems and incineration were not included in the technology mix calculated in the model. One of the 
possible reasons is the high cost compared to other waste treatment technologies. In order to introduce 
such a technology, additional financial instruments or policies have to be implemented, such as landfill 
tax, or carbon tax. Due to the low price of electricity generated from fossil fuels, the results of the 
study show that the energy recovery from waste in the form of electricity is not involved in the optimal 
solution for the designed MSWMS. 

5. Conclusions 

In this research, the municipal solid waste management system in St. Petersburg has been modeled 
while considering the introduction of alternative waste treatment facilities. The model has been solved 
using the GAMS software. 

- This study indicates that an increase of alternative MSW treatment options gives positive energy, 
and economical and environmental benefits compared with the present MSWMS.  

- Recycling of the MSW was the main waste processing option in the model results. Introduction 
of recycling is an appropriate solution to manage the increasing amount of waste generated by 
society. Theoretically the consumers may be motivated to increase the source separation rate of 
MSW if forced to pay for each kg of waste. However, because of a lack of equipped collection 
places for separated waste materials this does not currently seem realistic in St. Petersburg or 
other Russian regions [54]. Another way to involve the population in the waste separation 
process is the introduction of customer benefits, such as introducing low collection and 
transportation fees for completely separated waste. Incentives, such as the introduction of 
financial support to stimulate the development of markets for recovered materials with more 
stable market prices, could also increase recycling rates.  

- Heat generated from waste treatment processes was the most optimal energy carrier according to 
the results of the calculation as it was assumed in this study, the heat generated from waste is 
supplied to DHS because of the existing heat transfer network. However, in Russia however, 
typical district heating distribution for space heating is operational for only part of the year from 
October to April [55]. During the summer period, the heat generated from MSW could be used 
for water heating. This would then bring an additional benefit due to reduction of GHG 
emissions generated from the consumption of fossil fuels. 

- The main limitation of this paper is the quality of input data. The actual optimal solution can be 
reached only with highly detailed data for the target area. The results of the presented model are 
based on some assumptions in the absence of the available data, such as waste composition, 
heating values, and waste transportation distance. This could change with more accurate data. In 
addition, consideration of compensative effects related to material recycling and energy 
production from waste may have a strong influence on the output results of the model. 
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For further research on MSW management in other regions of Russia, the model can be easily 
modified to meet local conditions; however the model accuracy is directly proportional to the set of 
detailed input data. Regional differences, such as climatic conditions, location, urbanization rate, waste 
compositions, transportation distance, and existence of markets for by-products, are an important 
feature of the designed system. In order to design an optimal MSW utilization system in other regions 
of Russia, regional differences must be considered as a major feature of the system. 
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