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Abstract: A neoclassical growth model is examined with a special mound-shaped 

production function. Continuous time scales are assumed and a complete steady state and 

stability analysis is presented. Fixed delay is then assumed and it is shown how the 

asymptotic stability of the steady state is lost if the delay reaches a certain threshold, where 

Hopf bifurcation occurs. In the case of continuously distriubuted delays, we show that with 

small average delays stability is preserved, then lost at a threshold, then it is regained if the 

average delay becomes sufficiently large. The occurence of Hopf bifurcation is shown at 

both critical values.  

Keywords: neoclassical growth model; fixed time delay; Hopf bifurcation  

 

1. Introduction 

The examination of economic growth models is one of the most frequently discussed issues in 

mathematical economics. Day [1,2] has investigated a neoclassical growth model, and a productivity 

and population growth model and showed the emergence of complex behavior even under simple 

economic structure. His models were based on discrete time scales and a mound-shaped production 

function that represented the negative effect of pollution resulting from increasing capital. It was 

demonstrated by numerical computations that these models could generate cyclic and even chaotic 
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behavior. Following Day’s pioneering works, a lot of effort has been given to the understanding of 

complex economic dynamics. Day [3], Puu [4] and Bischi et al. [5] present the earlier contributions of 

this field. A large number of studies assumed discrete time scales. Li and Yorke [6] have introduced 

the “period-three condition” to detect chaos, which has many applications in first-order nonlinear 

difference equations. The papers collected by Rosser [7] offer many applications. Only a few studies 

are devoted to the case of continuous time scales, since there is no general criterion to detect chaos and 

the system must have at least three dimensions. 

In this paper, we will examine an extension of the neoclassical growth model, which can be traced 

back to the early works of Solow [8] and Swan [9]. The neoclassical growth model is constructed with 

the two (usually implicitly mentioned) assumptions; one is the full-employment of labor and capital 

and the other is instantaneous adjustment in the output market. Thus, it is suitable for describing the 

long-run behavior of the economy. Due to the well-behaved production function, the steady state of the 

model is usually asymptotically stable. However, it is often observed in reality that growth path 

exhibits persistent fluctuations. The neoclassical model could be the good point of departure to show 

how such persistent behavior can emerge when nonlinearities and a production lag are present. 

Matsumoto and Szidarovszky [10] attempt to fill the gap and have introduced a neoclassical model 

with a mound-shaped production function that was assumed to be a Cobb-Douglas type function of the 

form
ba xAxxF )(1=)(   with 𝑥 being the capital per unit labor. Although they show emergence of 

erratic fluctuations in the capital accumulation process, the production function is restrictive in the 

sense that it is defined only in the unit interval. This paper modifies this drawback, considers another 

type of mound-shaped production function and will examine the stability of the steady state with and 

without time delays in the continuous-time framework. Two kinds of delays will be discussed, fixed 

and continuously distributed (continuously hereafter) delays. We keep the relatively simple model of 

Matsumoto and Szidarovszky [10] in order to be able to compare the results and to illustrate that 

complex dynamics can be generated under simple economic assumptions with both function types. 

This paper develops as follows. First the mathematical model is formulated without time delays, 

and complete steady state and stability analysis is presented. Then, models with fixed delays and then 

with continuous delays are introduced and complete stability analysis is given. The last section 

concludes the paper. 

2. The Mathematical Model 

Matsumoto and Szidarovszky [10] have introduced a special growth model of the form 

)())((=)( txtxsFtx   

where x  is the capital per labor, s  and   are positive parameters where (0,1)s  is the average 

propensity to save and  sn =  with   being the depreciation ratio of capital and n  the growth rate 

of labor. In applying the Cobb-Douglas type function 
ba xAxxF )(1=)(   the value of x  has to be 

normalized into the )1,0(  interval. In this paper we will assume that  

,=)( xexxF  
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which is a mound-shaped function in which x  can take any positive value. This function has zero 

value at ,0x converges to zero as ,x increases for  /x  and decreases for ,/x  so it has 

its maximum at ./= x  The drawbacks of the neoclassical production function that ignores natural 

resource or energy are partly remedied in our function. 𝛿 of the exponential term reflecting a strength 

of a “negative effect” caused by increasing concentration of capital. The value of 𝛿 is exogenously 

given, however, can be thought to be determined by a damaging degree of natural environment or 

energy resources. With the modified function, the mathematical model becomes 
)()()(=)( txetxtxtx  
 (1) 

where ,,     and  s= are positive parameters. The number of steady states and their locations 

depend on the specific values of the model parameters. We will consider three different cases: 

1=1,<   and 1> . We can give the following interpretation for the value of the parameter γ of the 

production function; γ can be thought as a proxy for measuring returns to scale of the production 

function. Indeed, when x is small (i.e., the exponential term is close to unity), output increases more 

than unity, exactly unity and less than unity if γ > 1, γ = 1 and γ < 1, respectively. Let now )(xf  

denote the right hand side of equation (1). If 0,=(0)x  then the identically zero function is a solution 

which case is not interesting from the economic point of view and is eliminated from further 

considerations 

Case I. 

Assume first that 1.<  The steady states are the solutions of 0.=)(xf  Notice that 0,=(0)f  so 

zero is a steady state. )(xf  converges to   as .x  Since  

xx' exexxf     1=)(  

)(xf '
 converges to   as x  tends to zero with positive values. Hence )(xf  increases for small values 

of 0.>x The steady state equation 0=)(xf  can be written as  

0=)( 1 xexx      (2) 

so the positive steady state is the unique solution of equation 

xex    =1
 (3) 

The left hand side is zero at 0=x  and strictly increasing, furthermore, converges to   as x  tends to 

infinity. The right hand side is 0>  at 0,=x  strictly decreases and converges to zero as .x  

Hence there is a unique solution 0>x  of (3) ,  and 0>)(xf  if xx <  and 0<)(xf  as .> xx These 

relations imply that if ,<(0) xx  then )(tx  increases and converges to ,x  and if ,>(0) xx  then )(tx  

decreases and converges to .x  If xx =(0) , then )(tx  remains x  for all 0.>x  Thus x  is globally 

asymptotically stable. 
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Case II. 

Assume next that 1.=  Then the steady state equation has the form  

0=)( xex    (4) 

so zero is a steady state and there is a unique root of the second factor, 






ln

1
=x  (5) 

If ,   then the value of )(xf  is negative for all 0>x . Therefore )(tx  is decreasing and converges 

to zero with arbitrary 0.>(0)x If ,>   then 0,>x  furthermore 0>)(xf  as xx < , and 0<)(xf  as 

.> xx  If ,<(0) xx  then )(tx  increases and if ,>(0) xx then x  decreases and converges to ,x  and if 

,=(0) xx  then )(tx  remains x  for all 0>t . Hence x  is globally asymptotically stable. 

Case III. 

Consider finally the case of 1.>  The steady state equation has now the form 

0=)( 1 xexx    (6) 

so zero is a steady state again, and any other steady state is the solution of equation  

0==)( 1 xexxg    (7) 

Notice that  




=)(lim=(0) xgg
x

 

and  

xx' exexxg     121)(=)(  

)1(= 2 xex x   
 

Therefore )(xg  has its global maximum at  



 1
=ˆ


x  (8) 

increases for xx ˆ<  and decreases for .ˆ> xx  Now we have three sub-cases. 

(i) if 0,<)ˆ(xg  then there is no positive steady state and with arbitrary 0,>(0)x  )(tx  decreases and 

converges to zero. 

(ii) if 0,<)ˆ(xg  then xx ˆ=  is the unique positive steady state and 𝑓 𝑥 < 0 for all xx <0 . If 

xx <(0) , then )(tx  decreases and converges to 0, and if 𝑥 0 > 𝑥  then )(tx decreases again and now 

converges to x . If ,=(0) xx  then xtx =)(  for all 0.>t  

(iii) If 0,>)ˆ(xg  then equation (7) has two positive solutions, xx ˆ<1  and .ˆ>2 xx  Relation (6) 

implies that 0<)(xf  as 1< xx  or ,> 2xx  and 0>)(xf  if .<< 21 xxx  Therefore if ,<(0) 1xx  then 
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)(tx  decreases and converges to zero, if ,<(0)< 21 xxx  then )(tx  increases and converges to ,2x  if 

,>(0) 2xx  then )(tx  decreases and converges to .2x  That is, 1x  is locally unstable and 2x  is locally 

asymptotically stable. If 1=(0) xx  or ,=(0) 2xx  then )(tx  remains at that steady state level for all 0.>t   

3. Model with Fixed Delay  

The fixed delay 0>T  is assumed in the second term of the right hand side of equation (1), so we 

have the following equation: 

))(()(=)( Ttxhtxtx   (9) 

where 

xexxh  =)(  (10) 

The local asymptotic behavior of the trajectory can be examined by linearization. Let x  be a positive 

steady state. Then the linearized equation has the form 

)()()(=)( Ttxxhtxtx '     

where )(tx  is the deviation of )(tx  from the steady state level. Looking for the solution in the usual 

form ,=)( uetx t
  we have  

uexhueue Tt'tt )()(=     

which gives the characteristic equation 

T' exh   )(=  

or 

)(=)( xhe 'T   (11) 

Lemma 1 Assume that .<)( xh' Then x  is locally asymptotically stable.  

Proof. Assume that Re 0 . Then  

   

and since  

)()(=  ImiTReTT eee  

)])([sin)]([cos(= )(  ImTiImTe ReT   

clearly  
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1Te  

Therefore  

  <)(and)( xhe 'T   

implying that   cannot be an eigenvalue. Q.E.D. 

Notice that  

)(=)( 1 xexxh x'   
 (12) 

and at the steady state  

xex x   =
 

implying that  

  =1 xex 
 

Therefore  

)(=)( xxh'    (13) 

so the characteristic equation (11) can be rewritten as  

)(=)( xe T     

We also mention that the condition of Lemma 1 can be rewritten as  

1<x   

or equivalently 







 1
<<

1 
x  (14) 

In the special case of 1,=  this condition has the form  







2
<ln

1
<0  

which is equivalent to relation  

2<< e  

In order to give a complete stability analysis, we have to find the possible stability switches. 

Substituting any stability switch,  i=  with 0>  into equation (11) yields 

 TiTxhi '  sincos)(=   (15) 
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Separating the real and imaginary parts gives two equations,  

 =sin)( Txh'
 (16) 

and 

 =cos)( Txh'
 (17) 

Adding the squares of these equations gives 

222 =)(  xh'
 

so  

1)(= 2  x  (18) 

In order to have solution we have to assume now that  

1>x   (19) 

that is, (14) is violated with strict inequalities. Concerning this assumption, we can give the following 

interpretation. Let F(x) be y. Then  

 
𝑥

𝑦

𝑑𝑦

𝑑𝑥
 =  𝛾 − 𝛿𝑥  

So this means that the absolute value of the elasticity of output with respect to capital is larger than 

unity. From (16) we have that if 0,>)(xh'
 then 

)()( = nn TT   with 

0for 2
)(

sin2
1

= 1)( 






















 

 nn
xh

T
'

n 





 (20) 

and if if 0,<)(xh'
 then 

)()( = nn TT   with 

0for2
)(

sin
1

= 1)( 






















 

 nn
xh

T
'

n 





 (21) 

and by (13) and (19),  

>)(xh'  

so )(xh'
 cannot be zero. 

By selecting T  as the bifurcation parameter and implicitly differentiating the characteristic equation 

with respect to ,T  we have  
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))((=

)()(=



 





T

Texh

'

'T''

 

implying that 

.
)(1

)(
=










T

'
 

If ,=  i  then  






iTT

i'





)(1
=

2

 

with real part 

0>
)()(1

=
22

2






TT
Re '


 

Therefore if a steady state is unstable with 0,=T  then it remains unstable for all 0,>T  and if a steady 

state is asymptotically stable at 0,=T  then this stability is lost at (0)= TT  and cannot be regained later. 

That is, if the steady state is unstable without delay, then it remains unstable with any delay of positive 

length. If the steady state is asymptotically stable without delay, then it remains asymptotically stable 

until the delay reaches a certain threshold, and then becomes unstable and the stability cannot be 

regained later.  

Taking, 25,=1,=   1=  and 1= , we give an illustrative numerical example in Figure 1. The 

critical value x   is denoted by  

2.22ln1= 












cz  

Introducing the notation xz  = transforms the 
(0)

T  curve to 



























 







z

z

z
T

1
sin

1

1
=

2

1

2

(0) 


 

and then the corresponding critical value of the delay is 

1.03
1

sin
1

1
=

2

1

2




























 






c

c

c

c
z

z

z
T 


 

In Figure 1(A), the steady state is locally asymptotically stable in the dark-gray region with 1> z  due 

to Lemma 1. It is also locally asymptotically stable in the light-gray region, which is under the critical 
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curve 
(0)= TT  and it is unstable in the white region above the curve. Setting czz =  and increasing T  

along the vertical dotted line in Figure 1(A), we can see that the steady state loses stability at cTT = . 

Further increasing T , as observed in Figure 1(B), generates complex dynamics through a quasi period-

doubling bifurcation in which T  increases from 0.05cT  to 8.5  with an increment of 0.01  and the 

local maximum and minimum of the corresponding trajectory are plotted against each value of T .  

Figure 1. Dynamics with α = 1, β = 25, γ = 1 and δ = 1. 

  

(A) Region Division (B) Bifurcation Diagram 

4. Model with Continuously Distributed Delay 

Assuming continuously distributed delays in the second term of equation (1) gives the following 

Volterra-type integro-differential equation: 

dssxhmTsttxtx

t

))((),,()(=)(
0

   (22) 

where 0>T  is a positive parameter, the average delay and 0m  is an integer. The kernel function 

has the form  
































1.if)(
!

1

0,=if
1

=),,(
)(1

mest
T

m

m

me
T

mTst

T

stm

m

m

T

st

  

If ,0=m then the most current value has the highest weight, which is then decreasing exponentially. If 
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,1m  then the most current value has zero weight which is then increasing until ,= Tst  and is 

decreasing exponentially afterwards. As m increases, the weighting function becomes more peaked 

around Tst = and as ,m  it converges to the Dirac delta function centered at .= Tst  If 

,0T  then it also converges to the Dirac delta function. 

A similar model is investigated by Fanti and Manfredi [11] where 2m is selected and the stability 

of the system with a cubic characteristic polynomial is examined based on the Routh-Hurwitz criterion. 

Stamova and Stamov [12] consider a generalized Solow model with endegenous labor growth and 

impulsive perturbations. Their stability analysis is based on the Lyapunov-Razumikhin sufficient 

stability conditions, which is a different approach than ours. 

Linearizing equation (22), we have  

dssxmTstxhtxtx

t

' )(),,()()(=)(
0

     

where )(tx  is the deviation of )(tx  from the steady state level .x  We are looking for the solution in 

the usual exponential form  

uetx t
 =)(  

then simple substitution shows that  

udsemTstxhueue s

t

'tt   ),,()(=
0

   

Notice that by introducing the length of the delay as the new variable stS =  in the integral, we  

see that 

tS

t

s

t

dSeemTSdsemTst   

  ),,(=),,(
00

 

and by letting ,t  we have the characteristic equation  

1)(

1)(=













m

'

q

T
xh


  

with  









1.if

0,=if1

=

mm

m

q  

This equation can be rewritten as 
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  )(=)(=1

1)(

xxh
q

T '

m




 











 (23) 

Then similarly to the case of fixed delay we can prove the following result: 

Lemma 2 Assume that .<)( xh'  Then x  is locally asymptotically stable.  

Proof. Assume that 0.Re  Then  

11and 
q

T
  

therefore  




 <)(and1)(

1

xh
q

T '

m













 

implying that   cannot be a solution of equation (23). Q.E.D. 

It is well known that the Routh-Hurwitz stability theorem provides necessary and sufficient 

conditions for all roots of a polynomial equation with real coefficients to have negative real parts. It is 

also known that it is difficult to locate the eigenvalues with analytic methods in general. However in 

some special cases, analytic results are still possible to obtain, as it will be next demonstrated. 

Case I. 0=T   

Assume first that 0,=T  which reduces equation (22) with delays to equation (1) without 

delays. The asymptotic properties of this equation were already discussed earlier. 

Case II. 0>T  and 0=m   

Assume next that 0>T  and 0=m , when the kernel function becomes exponentially declining. 

Then characteristic equation (23) becomes quadratic, 

)(=))(1( xT    

or 

0=)(1)(12 xTT    (24) 

If 1,  then all coefficients are positive with a positive steady state, which is locally asymptotically 

stable. Assume next that 1> . If  



 1
=


x  

then the constant term is zero indicating that one eigenvalue is zero and the other is negative. So x  is 

marginally stable in the linearized model, so no conclusion can be drawn about its asymptotical 

behavior in the nonlinear model. If ,1)/(<  x  then x  is unstable and if ,1)/(>  x  then x  is 

locally asymptotically stable. 

Case III. 0>T  and 1=m   

Assume now that 0>T  and 1,=m  when the shape of the kernel function takes a bell-shaped form. 

Then we have a cubic characteristic polynomial: 
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)(=))(1( 2 xT    

or 

0=)(1)2(1)(2 2223 xTTTT    (25) 

If 1,  then all coefficients are positive at a positive steady state. If 1,>  then we can consider three 

cases. If  



 1
=


x  

then zero is an eigenvalue and the other two eigenvalues have negative real parts implying that x  in 

the linearized system is marginally stable. Therefore no conclusion can be drawn about the stability of 

x  in the nonlinear system. If ,1)/(<  x  then the constant term is negative, so x  is unstable. If 

,1)/(>  x  then all coefficient of (25) are positive. In this case and when 1 the Routh-Hurwitz 

criterion implies that the real parts of the eigenvalues are negative if and only if  

)(1>)2)(1(2 22 xTTTT    

which can be reduced to a quadratic inequality in T : 

0>2)(42 22  xTT   (26) 

For the sake of simplicity, we re-introduce the notation .= xz    If 0,z  then this inequality holds 

implying the asymptotical stability of the steady state. So we can assume that 0.<z The discriminant 

of the left hand side of inequality (26) is  

8)(= zzD  

If 8,< z  then 0,>D  so the left hand side of (26) has two roots 

4

16)(4)(4
=

2

1,2

 zz
T  (27) 

which are positive and .< 21

 TT  Notice that 
2

21 1/= TT  and (26) holds if and only if 


1< TT  or 



2> TT  when x  is locally asymptotically stable. If ,<< 21

 TTT  then (26) is violated, so x  is unstable. 

If 8,= z  then 0=D  and there are equal roots 



1
=

4

4
== 21

z
TT


  

so if ,1/T  then x  is locally asymptotically stable. 

If 0<<8 z , then 0<D , so (26) holds and x  is asymptotically stable. The instability region is 

shown in Figure 2(A) where z  is the horizontal axis and T  is the vertical axis. If we start with a very 

small value of T  with any given 8,< z  then x  is asymptotically stable. If we gradually increase ,T  

then x  remains asymptotically stable until it reaches the critical value ,1

T  when the steady state 
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becomes unstable. It remains unstable until 


2T  when stability is regained, and x  remains 

asymptotically stable for all .> 2

TT   

If the steady state is unstable without delay, then it remains unstable with continuous delay with any 

T and m. If it is asymptotically stable without delay, then either it remains asymptotically stable with 

all T and m, or loses stability at a certain value of the average delay T and stability is regained with an 

even larger value of T and the steady state remains asymptotically stable afterwards. In such cases 

small and large average delays lead to asymptotically stable steady states. 

We will next show that at the critical values


1T  and ,2

T  Hopf bifurcation occurs giving the 

possibility of the birth of limit cycles. We select T  as the bifurcation parameter. At the critical values 

(26) is satisfied with equality, so  

2

2 )2)(1(2
=)(1

T

TTT
x





  

and the characteristic equation (25) can be rewritten as  

2

2
2223 )2)(1(2

)2(1)(2
T

TTT
TTTT





  

 )2(1
2

= 22 TT
T

T



 







 
  

showing that there is a negative eigenvalue 

T

T





2
=1  

and a pair of pure complex eigenvalues  




 i
T

T
i 


 =

21
=

21,2  

Consider   as a function of the bifurcation parameter T  and differentiate implicitly equation (25) to have 

)2(1)(223

2)2(22
=

222

23

TTTT

TT

dT

d








 

By simple calculation we can see that at ,=  i  

)(2)2(1

)()(1
=

)2(1)(223

2)2(22
=

2

32

222

23

TTiT

TiT

TTTiT

iTTi

dT

d















 

 

with real part 
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2222

222

)(2)2(1

)(1
=

)(





TTT

T

dT

Red




 

Since ,1/= 2

21 TT  at 


1= TT  the value of dTRed )/(   changes from negative to positive showing the 

loss of stability, and if ,= 2

TT  then dTRed )/(   changes from positive to negative indicating that 

stability is regained. Since at both critical values 0,)/( dTRed   at both values Hopf bifurcation 

occurs giving the possibility of the birth of limit cycles. 

We perform numerical simulations to illustrate the results obtained above. In Figure 2(A), the 

steady state is locally asymptotically stable in the dark-gray region with 1> z  due to Lemma 2. It is 

also locally asymptotically stable in the light gray region and unstable in the white region when 

1.< z The appearance and disappearance of a limit cycle can be observed in Figure 2(B) where we 

take 1= , ,= 13e  1=  and 1=  implying 12,= z   

3.73232=and0.26832= 21   TT  

Under these specifications, the Volterra-type integro-differential equation (22) can be written as a 3D 

system of differential equations, 

 

 )()(
1

=)(

)()(
1

=)(

)()(=)( )(

tytx
T

ty

txty
T

tx

etxtxtx

ee

texe





 





 

 

where 

dssxest
T

tx T

stt

e )()(
1

=)(

2

0












  

and 

dssxe
T

ty T

stt

)(
1

=)(
0




  

When T  increases from 0.11 T  to 0.32 
T  with an increment of 0.01 , the steady state loses stability 

at point A  and regains stability at point .B In Figure 2(B), the local maximum and local minimum of a 

trajectory generated by the 3D system are depicted against each value of T  indicating the birth of a 

limit cycle for .<< 21

 TTT  
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Figure 2. Dynamics with T > 0 and m = 1. 

  

(A) Region Division (B) Bifurcation Diagram 

The cases of 2m  result in fourth or larger degree polynomial equations. The stability of the 

steady states can be examined similarly, but the mathematical details become much more complicated. 

It can be mathematically confirmed that as ,m  equation (23) converges to the characteristic 

equation (11) of the model with fixed delay. In particular, if ,m  then expression  































m

T

m

T

m

T
mm


11=1

1)(

 

converges to .Te  For larger values of ,m  dynamics generated by the differential equation with 

continuously distributed time delay is similar to dynamics generated by the differential equation with 

fixed time delay. 

5. Conclusions  

In this paper, a special neoclassical growth model was introduced and examined. A mound-shaped 

production function for capital growth was assumed in the dynamic equation. Zero is always a steady 

state, and depending on model parameters there is either no positive steady state, or one, or two 

positive steady states. A complete steady state analysis was followed by the derivation of stability 

conditions. By introducing fixed delay we demonstrated that stability can be lost at a certain value of 

the delay and the equilibrium remains unstable afterwards. In the case of continuously distributed 

delays it has been shown how stability can be lost at a certain value of the average delay and by further 

increasing the average delay it can be regained. At the critical values, Hopf bifurcation occurs giving 

the possibility of the birth of limit cycles. In our further study, more complex kernel functions will be 

considered and their effect on the asymptotic behavior of the steady state will be examined.  

It is now well-known that any discrete-time dynamic model can generate complex dynamics 

involving chaos. However, in an aggregate model like the neoclassical growth model, it is natural to 
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treat economic phenomena as continuous since the variables to be examined are the outcomes of a 

great number of decisions taken by different agents at different points of time. This is the main reason 

why this paper considers the neoclassical growth model in the continuous-time framework. Implication 

of the analysis is the following. Coexistence of nonlinearity and delay in production can be a source of 

persistent fluctuations in the capital-labor ration.  
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