Next Article in Journal
Adaptation Turning Points in River Restoration? The Rhine Salmon Case
Previous Article in Journal
Greening the Ivory Tower: A Review of Educational Research on Sustainability in Post-Secondary Education
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
New Book Received

Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0

MDPI AG, Kandererstrasse 25, CH-4057 Basel, Switzerland
Sustainability 2013, 5(5), 2272-2287; https://doi.org/10.3390/su5052272
Submission received: 16 May 2013 / Accepted: 16 May 2013 / Published: 22 May 2013
The following paragraphs are reproduced from the website of the publisher [1].
In recent years, air pollution has become a major worldwide concern. Air pollutants can affect metabolic activity, impede healthy development, and exhibit carcinogenic and toxic properties in humans. Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. Air Pollution Prevention and Control: Bioreactors and Bioenergy focusses on these biotechnological alternatives looking at both the optimization of bioreactors and the development of cleaner biofuels.
Structured in five parts, the book covers:
  • Fundamentals and microbiological aspects
  • Biofilters, bioscrubbers and other end-of-pipe treatment technologies
  • Specific applications of bioreactors
  • Biofuels production from pollutants and renewable resources (including biogas, biohydrogen, biodiesel and bioethanol) and its environmental impacts
  • Case studies of applications including biotrickling filtration of waste gases, industrial bioscrubbers applied in different industries and biogas upgrading
Air Pollution Prevention and Control: Bioreactors and Bioenergy is the first reference work to give a broad overview of bioprocesses for the mitigation of air pollution. Primarily intended for researchers and students in environmental engineering, biotechnology and applied microbiology, the book will also be of interest to industrial and governmental researchers.

Table of Contents

  • List of Contributors xix
  • Preface xxi
  • I FUNDAMENTALS AND MICROBIOLOGICAL ASPECTS 1
    • 1 Introduction to Air Pollution 3
      Christian Kennes and Maria C. Veiga
      • 1.1 Introduction 3
      • 1.2 Types and sources of air pollutants 3
        • 1.2.1 Particulate matter 5
        • 1.2.2 Carbon monoxide and carbon dioxide 6
        • 1.2.3 Sulphur oxides 7
        • 1.2.4 Nitrogen oxides 7
        • 1.2.5 Volatile organic compounds (VOCs) 9
        • 1.2.6 Odours 10
        • 1.2.7 Ozone 11
        • 1.2.8 Calculating concentrations of gaseous pollutants 11
      • 1.3 Air pollution control technologies 11
        • 1.3.1 Particulate matter 11
        • 1.3.2 Volatile organic and inorganic compounds 12
          • 1.3.2.1 Nonbiological processes 12
          • 1.3.2.2 Bioprocesses 15
        • 1.3.3 Environmentally friendly bioenergy 17
      • 1.4 Conclusions 17
    • References 17
    • 2 Biodegradation and Bioconversion of Volatile Pollutants 19
      Christian Kennes, Haris N. Abubackar and Maria C. Veiga
      • 2.1 Introduction 19
      • 2.2 Biodegradation of volatile compounds 20
        • 2.2.1 Inorganic compounds 20
          • 2.2.1.1 Hydrogen sulphide (H2S) 20
          • 2.2.1.2 Ammonia 20
        • 2.2.2 Organic compounds 21
          • 2.2.2.1 CxHy pollutants 22
          • 2.2.2.2 CxHyOz pollutants 22
          • 2.2.2.3 Organic sulphur compounds 22
          • 2.2.2.4 Halogenated organic compounds 23
      • 2.3 Mass balance calculations 24
      • 2.4 Bioconversion of volatile compounds 25
        • 2.4.1 Carbon monoxide and carbon dioxide 25
        • 2.4.2 Volatile organic compounds (VOCs) 26
      • 2.5 Conclusions 27
    • References 27
    • 3 Identification and Characterization of Microbial Communities in Bioreactors 31
      Luc Malhautier, L. Cabrol, S. Bayle and J.-L. Fanlo
      • 3.1 Introduction 31
      • 3.2 Molecular techniques to characterize the microbial communities in bioreactors 32
        • 3.2.1 Quantification of the community members 32
          • 3.2.1.1 Microscopic direct counts 32
          • 3.2.1.2 Quantitative PCR 33
        • 3.2.2 Assessment of microbial community diversity and structure 34
          • 3.2.2.1 Biochemical methods 34
          • 3.2.2.2 Genetic fingerprinting methods 34
          • 3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices 38
        • 3.2.3 Determination of the microbial community composition 39
          • 3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones 39
          • 3.2.3.2 Fluorescent in situ hybridization (FISH) 39
        • 3.2.4 Techniques linking microbial identity to ecological function 40
          • 3.2.4.1 Stable isotope probing (SIP) 40
          • 3.2.4.2 Microautoradiography combined with FISH (FISH-MAR) 41
        • 3.2.5 Microarray techniques 41
        • 3.2.6 Synthesis 42
      • 3.3 The link of microbial community structure with ecological function in engineered ecosystems 42
        • 3.3.1 Introduction 42
        • 3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors 43
          • 3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state 43
          • 3.3.2.2 Microbial and functional stratification along the biofilter height 45
          • 3.3.2.3 The microbial community structure–ecosystem function relationship 45
        • 3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors 45
        • 3.3.4 Conclusions 47
    • References 47
  • II BIOREACTORS FOR AIR POLLUTION CONTROL 57
    • 4 Biofilters 59
      Eldon R. Rene, Maria C. Veiga and Christian Kennes
      • 4.1 Introduction 59
      • 4.2 Historical perspective of biofilters 59
      • 4.3 Process fundamentals 60
      • 4.4 Operation parameters of biofilters 62
        • 4.4.1 Empty-bed residence time (EBRT) 62
        • 4.4.2 Volumetric loading rate (VLR) 63
        • 4.4.3 Mass loading rate (MLR) 63
        • 4.4.4 Elimination capacity (EC) 63
        • 4.4.5 Removal efficiency (RE) 63
        • 4.4.6 CO2 production rate (PCO2) 63
      • 4.5 Design considerations 64
        • 4.5.1 Reactor sizing 64
        • 4.5.2 Irrigation system 66
        • 4.5.3 Leachate collection and disposal 66
      • 4.6 Start-up of biofilters 68
      • 4.7 Parameters affecting biofilter performance 70
        • 4.7.1 Inlet concentrations and pollutant load 70
        • 4.7.2 Composition of waste gas and interaction patterns 71
        • 4.7.3 Biomass support medium 72
        • 4.7.4 Temperature 75
        • 4.7.5 pH 78
        • 4.7.6 Oxygen availability 79
        • 4.7.7 Nutrient availability 80
        • 4.7.8 Moisture content and relative humidity 81
        • 4.7.9 Polluted gas flow direction 83
        • 4.7.10 Carbon dioxide generation rates 83
        • 4.7.11 Pressure drop 85
      • 4.8 Role of microorganisms and fungal growth in biofilters 87
      • 4.9 Dynamic loading pattern and starvation conditions in biofilters 89
      • 4.10 On-line monitoring and control (intelligent) systems for biofilters 93
        • 4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers 93
        • 4.10.2 On-line proton transfer reaction–mass spectrometry (PTR-MS) 94
        • 4.10.3 Intelligent moisture control systems 94
        • 4.10.4 Differential neural network (DNN) sensor 95
      • 4.11 Mathematical expressions for biofilters 95
      • 4.12 Artificial neural network-based models 97
        • 4.12.1 Back error propagation (BEP) algorithm 97
        • 4.12.2 Important considerations during neural network modelling 99
          • 4.12.2.1 Data selection, division and normalization 99
          • 4.12.2.2 Network parameters 100
          • 4.12.2.3 Sensitivity analysis of input parameters 101
          • 4.12.2.4 Estimating errors in prediction 102
        • 4.12.3 Neural network model development for biofilters and specific examples 103
      • 4.13 Fuzzy logic-based models 105
      • 4.14 Adaptive neuro-fuzzy interference system-based models for biofilters 108
      • 4.15 Conclusions 111
    • References 111
    • 5 Biotrickling Filters 121
      Christian Kennes and Maria C. Veiga
      • 5.1 Introduction 121
      • 5.2 Main characteristics of BTFs 122
        • 5.2.1 General aspects 122
        • 5.2.2 Packing material 123
        • 5.2.3 Biomass and biofilm 126
        • 5.2.4 Trickling phase 126
        • 5.2.5 Gas EBRT 128
        • 5.2.6 Liquid and gas velocities 129
      • 5.3 Pressure drop and clogging 130
        • 5.3.1 Excess biomass accumulation 130
          • 5.3.1.1 Limitation of biomass growth 131
          • 5.3.1.2 Physical and chemical methods 132
          • 5.3.1.3 Biological methods – predation 132
          • 5.3.1.4 Cleaning the packing material outside the reactor 133
        • 5.3.2 Accumulation of solid chemicals 133
      • 5.4 Full-scale applications and scaling up 134
      • 5.5 Conclusions 135
    • References 135
    • 6 Bioscrubbers 139
      Pierre Le Cloirec and Philippe Humeau
      • 6.1 Introduction 139
      • 6.2 General approach of bioscrubbers 140
      • 6.3 Operating conditions 141
        • 6.3.1 Absorption column 142
        • 6.3.2 Biodegradation step – activated sludge reactor 143
      • 6.4 Removing families of pollutants 143
        • 6.4.1 Volatile organic compound (VOC) removal 144
        • 6.4.2 Odor control 146
        • 6.4.3 Sulfur compounds degradation 146
          • 6.4.3.1 Sulfur compounds present in air 146
          • 6.4.3.2 Biogas desulfurization 147
          • 6.4.3.3 Ammonia absorption and bio-oxidation 147
      • 6.5 Treatment of by-products generated by bioscrubbers 148
      • 6.6 Conclusions and trends 148
    • References 149
    • 7 Membrane Bioreactors 155
      Raquel Lebrero, Ra´ ul Mu˜ noz, Amit Kumar and Herman Van Langenhove
      • 7.1 Introduction 155
      • 7.2 Membrane basics 156
        • 7.2.1 Types of membranes 156
          • 7.2.1.1 Porous membranes 157
          • 7.2.1.2 Dense membranes 157
          • 7.2.1.3 Composite membranes 158
        • 7.2.2 Membrane materials 159
        • 7.2.3 Membrane characterization parameters 159
          • 7.2.3.1 Membrane thickness 159
          • 7.2.3.2 Membrane performance: selectivity and permeance 159
        • 7.2.4 Mass transport through the membrane 160
          • 7.2.4.1 Transport in porous membranes 162
          • 7.2.4.2 Transport in homogeneous membranes 162
      • 7.3 Reactor configurations 163
        • 7.3.1 Flat-sheet membranes 164
          • 7.3.1.1 Plate and frame modules 164
          • 7.3.1.2 Spiral-wound modules 164
        • 7.3.2 Tubular configuration membranes 165
          • 7.3.2.1 Tubular modules 165
          • 7.3.2.2 Capillary membrane modules 166
          • 7.3.2.3 Hollow-fiber membrane modules 166
        • 7.3.3 Membrane-based bioreactors 166
      • 7.4 Microbiology 166
      • 7.5 Performance of membrane bioreactors 168
        • 7.5.1 Membrane-based bioreactors 168
        • 7.5.2 Bioreactor operation: influence of the operating parameters 169
      • 7.6 Membrane bioreactor modeling 170
      • 7.7 Applications of membrane bioreactors in biological waste-gas treatment 172
        • 7.7.1 Comparison with other technologies 172
      • 7.8 New applications: CO2–NOx sequestration 173
        • 7.8.1 NOx removal 173
        • 7.8.2 CO2 sequestration 176
      • 7.9 Future needs 177
    • References 178
    • 8 Two-Phase Partitioning Bioreactors 185
      Hala Fam and Andrew J. Daugulis
      • 8.1 Introduction 185
      • 8.2 Features of the sequestering phase – selection criteria 186
      • 8.3 Liquid two-phase partitioning bioreactors (TPPBs) 187
        • 8.3.1 Performance 187
        • 8.3.2 Mass transfer 189
          • 8.3.2.1 Mass transfer pathways and mechanisms 190
          • 8.3.2.2 Substrate uptake mechanisms 191
          • 8.3.2.3 Mass transfer of poorly soluble substrates and oxygen 192
          • 8.3.2.4 Physical parameters affecting Kla 193
        • 8.3.3 Modeling and design elements 194
        • 8.3.4 Limitations and research opportunities 196
      • 8.4 Solids as the partitioning phase 197
        • 8.4.1 Rationale 197
        • 8.4.2 Performance 197
        • 8.4.3 Mass transfer 198
        • 8.4.4 Modeling and design elements 199
        • 8.4.5 Limitations and research opportunities 200
    • References 200
    • 9 Rotating Biological Contactors 207
      R. Ravi, K. Sarayu, S. Sandhya and T. Swaminathan
      • 9.1 Introduction 207
        • 9.1.1 Limitations of conventional gas-phase bioreactors 208
      • 9.2 The rotating biological contactor 209
        • 9.2.1 Modified RBCs for waste-gas treatment 210
          • 9.2.1.1 Generation of humidified VOC stream 210
          • 9.2.1.2 Biofilm development and start-up 211
          • 9.2.1.3 VOC removal studies 212
      • 9.3 Studies on removal of dichloromethane in modified RBCs 213
        • 9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified
        • RBCs) 215
        • 9.3.2 Studies on removal of benzene and xylene in modified RBCs 216
        • 9.3.3 Microbiological studies of biofilms 217
          • 9.3.3.1 Phylogenic analysis 219
    • References 219
    • 10 Innovative Bioreactors and Two-Stage Systems 221
      Eldon R. Rene, Maria C. Veiga and Christian Kennes
      • 10.1 Introduction 221
      • 10.2 Innovative bioreactor configurations 222
        • 10.2.1 Planted biofilter 222
        • 10.2.2 Rotatory-switching biofilter 223
        • 10.2.3 Tubular biofilter 224
        • 10.2.4 Fluidized-bed bioreactor 225
        • 10.2.5 Airlift and bubble column bioreactors 227
        • 10.2.6 Monolith bioreactor 229
        • 10.2.7 Foam emulsion bioreactor 231
        • 10.2.8 Fibrous bed bioreactor 233
        • 10.2.9 Horizontal-flow biofilm reactor 234
      • 10.3 Two-stage systems for waste-gas treatment 235
        • 10.3.1 Adsorption pre-treatment plus bioreactor 235
        • 10.3.2 Bioreactor plus adsorption polishing 237
        • 10.3.3 UV photocatalytic reactor plus bioreactor 237
        • 10.3.4 Bioreactor plus bioreactor 240
      • 10.4 Conclusions 242
    • References 243
  • III BIOPROCESSES FOR SPECIFIC APPLICATIONS 247
    • 11 Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams 249
      Albert Janssen, Pim L.F. van den Bosch, Robert Cornelis van Leerdam, and Marco de Graaff
      • 11.1 Introduction 249
      • 11.2 Toxicity of VOSCs to animals and humans 250
      • 11.3 Biological formation of VOSCs 251
      • 11.4 VOSC-producing and VOSC-emitting industries 252
        • 11.4.1 VOSCs produced from biological processes 252
        • 11.4.2 Chemical processes and industrial applications 252
        • 11.4.3 Oil and gas 253
      • 11.5 Microbial degradation of VOSCs 253
        • 11.5.1 Aerobic degradation 253
        • 11.5.2 Anaerobic degradation 254
        • 11.5.3 Degradation via sulfate reduction 255
        • 11.5.4 Anaerobic degradation of higher thiols 255
        • 11.5.5 Inhibition of microorganisms 256
      • 11.6 Treatment technologies for gas streams containing volatile sulfur compounds 256
        • 11.6.1 Biofilters 256
        • 11.6.2 Bioscrubbers 258
      • 11.7 Operating experience from biological gas treatment systems 261
        • 11.7.1 Shell–Paques process for H2S removal 266
      • 11.8 Future developments 266
    • References 266
    • 12 Bioprocesses for the Removal of Nitrogen Oxides 275
      Yaomin Jin, Lin Guo, Osvaldo D. Frutos, Maria C. Veiga and Christian Kennes
      • 12.1 Introduction 275
      • 12.2 NOx emission at wastewater treatment plants (WWTPs) 276
        • 12.2.1 Nitrification 276
        • 12.2.2 Denitrification 276
        • 12.2.3 Parameters that affect the formation of nitrogen oxides 277
          • 12.2.3.1 DO concentration 277
          • 12.2.3.2 High nitrite concentration 278
          • 12.2.3.3 Cu2+ concentration 278
          • 12.2.3.4 Salinity 278
          • 12.2.3.5 pH effects 278
          • 12.2.3.6 Solids retention time 278
          • 12.2.3.7 Sudden changes in operating parameters 278
          • 12.2.3.8 Low COD/N ratios 279
      • 12.3 Recent developments in bioprocesses for the removal of nitrogen oxides 279
        • 12.3.1 NOx removal 279
          • 12.3.1.1 Rotating drum bioreactor (RDB) 279
          • 12.3.1.2 BioDeNOx 280
          • 12.3.1.3 Hollow-fiber membrane bioreactor (HFMB) 282
          • 12.3.1.4 Photobioreactor 283
          • 12.3.1.5 Integrated system 284
        • 12.3.2 N2O removal 285
          • 12.3.2.1 Bioelectrochemical system 285
          • 12.3.2.2 Biotrickling filter 285
          • 12.3.2.3 Biofilter 286
      • 12.4 Challenges in NOx treatment technologies 287
      • 12.5 Conclusions 288
    • References 288
    • 13 Biogas Upgrading 293
      M. Estefan´ýa L´opez, Eldon R. Rene, Maria C. Veiga and Christian Kennes
      • 13.1 Introduction 293
      • 13.2 Biotechnologies for biogas desulphurization 294
        • 13.2.1 Environmental aspects 294
        • 13.2.2 The natural sulphur cycle and sulphur-oxidizing bacteria 294
        • 13.2.3 Bioreactor configurations for hydrogen sulphide removal at laboratory scale 295
          • 13.2.3.1 Hydrogen sulphide biodegradation under aerobic or oxygen-limited conditions 295
          • 13.2.3.2 Hydrogen sulphide removal under anoxic conditions 302
        • 13.2.4 Case studies of biogas desulphurization in full-scale systems 302
          • 13.2.4.1 THIOPAQ biogas desulphurization process 302
          • 13.2.4.2 BioSulfurex biogas desulphurization process 304
          • 13.2.4.3 BIO-Sulfex biogas desulphurization process 305
      • 13.3 Removal of mercaptans 306
      • 13.4 Removal of ammonia and nitrogen compounds 307
      • 13.5 Removal of carbon dioxide 308
      • 13.6 Removal of siloxanes 309
      • 13.7 Comparison between biological and non-biological methods 311
      • 13.8 Conclusions 311
    • References 315
  • IV ENVIRONMENTALLY FRIENDLY BIOENERGY 319
    • 14 Biogas 321
      Marta Ben, Christian Kennes and Maria C. Veiga
      • 14.1 Introduction 321
      • 14.2 Anaerobic digestion 321
        • 14.2.1 A brief history 321
        • 14.2.2 Overview of the anaerobic digestion process 323
          • 14.2.2.1 Biological process 323
          • 14.2.2.2 Environmental factors affecting anaerobic digestion 323
          • 14.2.2.3 Important parameters in anaerobic digesters 327
      • 14.3 Substrates 328
        • 14.3.1 Agricultural and farming wastes 328
          • 14.3.1.1 Manure 328
          • 14.3.1.2 Agricultural wastes 329
        • 14.3.2 Industrial wastes 329
          • 14.3.2.1 Food processing waste 330
          • 14.3.2.2 Pulp and paper industry 332
        • 14.3.3 Urban wastes 333
          • 14.3.3.1 Food waste 333
        • 14.3.4 Sewage sludge 333
      • 14.4 Biogas 334
        • 14.4.1 Biogas composition 334
        • 14.4.2 Substrate influence on biogas composition 335
      • 14.5 Bioreactors 335
        • 14.5.1 Batch reactors 337
        • 14.5.2 Continuously stirred tank reactor (CSTR) 337
        • 14.5.3 Continuously stirred tank reactor with solids recycle (CSTR/SR) 337
        • 14.5.4 Plug-flow reactor 337
        • 14.5.5 Upflow anaerobic sludge blanket (UASB) 337
        • 14.5.6 Attached film digester 338
        • 14.5.7 Two-phase digester 338
      • 14.6 Environmental impact of biogas 338
      • 14.7 Conclusions 339
    • References 339
    • 15 Biohydrogen 345
      Bikram K. Nayak, Soumya Pandit and Debabrata Das
      • 15.1 Introduction 345
        • 15.1.1 Current status of hydrogen production and present use of hydrogen 346
        • 15.1.2 Biohydrogen from biomass: present status 346
      • 15.2 Environmental impacts of biohydrogen production 346
        • 15.2.1 Air pollution due to conventional hydrocarbon-based fuel combustion 346
        • 15.2.2 Biohydrogen, a zero-carbon fuel as a potential alternative 348
      • 15.3 Properties and production of hydrogen 348
        • 15.3.1 Properties of zero-carbon fuel 348
        • 15.3.2 Biohydrogen production processes 350
          • 15.3.2.1 Biophotolysis of water using algae and cyanobacteria 350
          • 15.3.2.2 Photo-fermentation of organic compounds by photosynthetic bacteria 353
          • 15.3.2.3 Factors involved in the production of biohydrogen using light 354
          • 15.3.2.4 Dark fermentation 356
          • 15.3.2.5 Microbial electrolysis cell (MEC) 359
          • 15.3.2.6 Hybrid systems using dark, photo-fermentations and/or MECs 363
      • 15.4 Potential applications of hydrogen as a zero-carbon fuel 363
        • 15.4.1 Transport sector 363
          • 15.4.1.1 Current status of technology 364
          • 15.4.1.2 Advantages and disadvantages of hydrogen as a transport fuel 365
        • 15.4.2 Fuel cells 366
          • 15.4.2.1 Classifications of fuel cells 366
          • 15.4.2.2 Characteristics of fuel cells 368
          • 15.4.2.3 Current status of technology 369
          • 15.4.2.4 Advantages and disadvantages of hydrogen-based fuel cells 370
      • 15.5 Policies and economics of hydrogen production 371
        • 15.5.1 Economics of biohydrogen production 372
      • 15.6 Issues and barriers 373
      • 15.7 Future prospects 374
      • 15.8 Conclusion 375
    • References 375
    • 16 Catalytic Biodiesel Production 383
      Zhenzhong Wen, Xinhai Yu, Shan-Tung Tu and Jinyue Yan
      • 16.1 Introduction 383
      • 16.2 Trends in biodiesel production 384
        • 16.2.1 Reactors 384
        • 16.2.2 Catalysts 389
          • 16.2.2.1 Solid base catalysts 389
          • 16.2.2.2 Solid acid catalysts 391
          • 16.2.2.3 Enzyme catalysts 393
      • 16.3 Challenges for biodiesel production at industrial scale 393
        • 16.3.1 Economic analysis 393
        • 16.3.2 Ecological considerations 393
      • 16.4 Recommendations 394
      • 16.5 Conclusions 395
    • References 395
    • 17 Microalgal Biodiesel 399
      Hugo Pereira, Helena M. Amaro, Nadpi G. Katkam, Lu´ýsa Barreira, A. Catarina Guedes, Jo˜ao Varela and F. Xavier Malcata
      • 17.1 Introduction 399
      • 17.2 Wild versus modified microalgae 402
      • 17.3 Lipid extraction and purification 404
        • 17.3.1 Mechanical methods 405
        • 17.3.2 Chemical methods 406
      • 17.4 Lipid transesterification 407
        • 17.4.1 Acid-catalyzed transesterification 408
        • 17.4.2 Base-catalyzed transesterification 408
        • 17.4.3 Heterogeneous acid/base-catalyzed transesterification 410
        • 17.4.4 Lipase-catalyzed transesterification 410
        • 17.4.5 Ionic liquid-catalyzed reactions 411
      • 17.5 Economic considerations 412
        • 17.5.1 Competition between microalgal biodiesel and biofuels 412
        • 17.5.2 Main challenges to biodiesel production from microalgae 413
        • 17.5.3 Economics of biodiesel production 414
      • 17.6 Environmental considerations 415
        • 17.6.1 Uptake of carbon dioxide 416
        • 17.6.2 Upgrade of wastewaters 416
        • 17.6.3 Management of microalgal biomass 417
      • 17.7 Final considerations 418
        • 17.7.1 Current state 418
        • 17.7.2 Future perspectives 418
    • References 420
    • 18 Bioethanol 431
      Johan W. van Groenestijn, Haris N. Abubackar, Maria C. Veiga and Christian Kennes
      • 18.1 Introduction 431
      • 18.2 Fermentation of lignocellulosic saccharides to ethanol 432
        • 18.2.1 Raw materials 432
        • 18.2.2 Pretreatment 434
          • 18.2.2.1 Dilute acid 434
          • 18.2.2.2 Liquid hot water 435
          • 18.2.2.3 Concentrated acid 436
          • 18.2.2.4 Steam explosion 436
          • 18.2.2.5 Ammonia fibre expansion (AFEX) 436
          • 18.2.2.6 Wet oxidation 437
          • 18.2.2.7 Ozonolysis 437
          • 18.2.2.8 Alkali 437
          • 18.2.2.9 The Organosolv process 437
          • 18.2.2.10 Lignolytic fungi 438
          • 18.2.2.11 Other 439
        • 18.2.3 Production of inhibitors 439
        • 18.2.4 Hydrolysis 439
        • 18.2.5 Fermentation 440
      • 18.3 Syngas conversion to ethanol – biological route 441
        • 18.3.1 Sources of carbon monoxide 441
          • 18.3.1.1 Biomass gasification for syngas production 441
          • 18.3.1.2 Industrial waste gases 443
        • 18.3.2 The Wood–Ljungdahl pathway involved in the bioconversion of carbon monoxide 445
        • 18.3.3 Parameters affecting the bioconversion of carbon monoxide to ethanol 446
          • 18.3.3.1 Fermentation medium pH and temperature 446
          • 18.3.3.2 Mass transfer limitations 447
          • 18.3.3.3 Fermentation media composition 448
          • 18.3.3.4 Effect of gas composition 449
          • 18.3.3.5 Media redox potential 449
      • 18.4 Demonstration projects 450
      • 18.5 Comparison of conventional fuels and bioethanol (corn, cellulosic, syngas) on air pollution 451
      • 18.6 Key problems and future research needs 455
      • 18.7 Conclusions 456
    • References 456
  • V CASE STUDIES 465
    • 19 Biotrickling Filtration of Waste Gases from the Viscose Industry 467
      Andreas Willers, Christian Dressler and Christian Kennes
      • 19.1 The waste-gas situation in the viscose industry 467
        • 19.1.1 The viscose process 467
        • 19.1.2 Overview of emission points 468
        • 19.1.3 Technical solutions to treat the emissions 469
          • 19.1.3.1 CS2 condensation 469
          • 19.1.3.2 Wet catalytic oxidation 469
          • 19.1.3.3 Regenerative adsorption 470
          • 19.1.3.4 Thermal oxidation 470
          • 19.1.3.5 Scrubbers 470
        • 19.1.4 Potential to use biotrickling filters in the viscose industry 470
      • 19.2 Biological CS2 and H2S oxidation 471
      • 19.3 Case study of biological waste-gas treatment in the casing industry 472
        • 19.3.1 Products from viscose 472
        • 19.3.2 Process flowsheet of fibre-reinforced cellulose casing (FRCC) 473
          • 19.3.2.1 Production of viscose 473
          • 19.3.2.2 Production of fibre-reinforced cellulose casing 473
        • 19.3.3 Alternatives for biotrickling filter configurations 473
        • 19.3.4 Characteristics of the CaseTech plant 475
        • 19.3.5 Description of the BioGat installation 475
        • 19.3.6 Performance of the BioGat process 475
          • 19.3.6.1 Start-up problems 475
          • 19.3.6.2 Reasons for increasing pressure drop 475
          • 19.3.6.3 Tower packing material 479
          • 19.3.6.4 Influence of sulphuric acid on biological degradation 480
          • 19.3.6.5 Removal efficiency 481
      • 19.4 Conclusions 484
    • References 484
    • 20 Biotrickling Filters for Removal of Volatile Organic Compounds from Air in the Coating Sector 485
      Carlos Lafita, F. Javier A´ lvarez-Hornos, Carmen Gabaldo´n, Vicente Mart´ýnez-Soria and Josep-Manuel Penya-Roja
      • 20.1 Introduction 485
      • 20.2 Case study 1: VOC removal in a furniture facility 486
        • 20.2.1 Characterization of the waste-gas sources 486
        • 20.2.2 Design and operation of the system 487
        • 20.2.3 Performance data 488
        • 20.2.4 Economic aspects 490
      • 20.3 Case study 2: VOC removal in a plastic coating facility 491
        • 20.3.1 Characterization of the waste-gas sources 492
        • 20.3.2 Design and operation of the system 492
        • 20.3.3 Performance data 493
        • 20.3.4 Economic aspects 495
    • References 496
    • 21 Industrial Bioscrubbers for the Food and Waste Industries 497
      Pierre Le Cloirec and Philippe Humeau
      • 21.1 Introduction 497
      • 21.2 Food industry emissions 498
        • 21.2.1 Identification and quantification of waste-gas emissions 498
        • 21.2.2 Choice of the technology 499
        • 21.2.3 Design and operating conditions 500
          • 21.2.3.1 Gas–liquid transfer 500
          • 21.2.3.2 Biological regeneration of the washing solution 500
        • 21.2.4 Performance of the system 501
      • 21.3 Bioscrubbing treatment of gaseous emissions from waste composting 502
        • 21.3.1 Waste-gas emissions: nature, concentrations, and flow 503
        • 21.3.2 Choice of the gas treatment process 504
        • 21.3.3 Design and operating conditions 505
        • 21.3.4 Gas collection system 506
        • 21.3.5 Gas treatment system 508
        • 21.3.6 Performance of the overall system 509
      • 21.4 Conclusions and perspectives 510
    • References 511
    • 22 Desulfurization of biogas in biotrickling filters 513
      David Gabriel, Marc A. Deshusses and Xavier Gamisans
      • 22.1 Introduction 513
      • 22.2 Microbiology and stoichiometry of sulfide oxidation 514
        • 22.2.1 Microbiology of sulfide oxidation 514
        • 22.2.2 Stoichiometry of sulfide biological oxidation 515
      • 22.3 Case study background and description of biotrickling filter 517
        • 22.3.1 Site description 517
        • 22.3.2 Biotrickling filter design 517
      • 22.4 Operational aspects of the full-scale biotrickling filter 519
        • 22.4.1 Start-up and biotrickling filter performance 519
        • 22.4.2 Facing operational and design challenges 520
      • 22.5 Economic aspects of desulfurizing biotrickling filters 522
    • References 522
    • 23 Full-Scale Biogas Upgrading 525
      J. Langerak, R. Lems and E.H.M. Dirkse
      • 23.1 Introduction 525
      • 23.2 Case 1: Zalaegerszeg, PWS system with car fuelling station 526
        • 23.2.1 Biogas composition and biomethane requirements at Zalaegerszeg 526
        • 23.2.2 Plant configuration at Zalaegerszeg 526
          • 23.2.2.1 Pre-treatment at Zalaegerszeg 528
          • 23.2.2.2 Upgrading technique at Zalaegerszeg 528
          • 23.2.2.3 Post-treatment at Zalaegerszeg 529
      • 23.3 Case 2: Zwolle, PWS system with gas grid injection 529
        • 23.3.1 Biogas composition and biomethane requirements at Zwolle 531
        • 23.3.2 Plant configuration at Zwolle 531
          • 23.3.2.1 Pre-treatment at Zwolle 532
          • 23.3.2.2 Upgrading technique at Zwolle 532
          • 23.3.2.3 Post-treatment at Zwolle 533
      • 23.4 Case 3: Wijster, PWS system with gas grid injection 534
        • 23.4.1 Biogas composition and biomethane requirements at Wijster 534
        • 23.4.2 Plant configuration at Wijster 534
          • 23.4.2.1 Pre-treatment at Wijster 535
          • 23.4.2.2 Upgrading technique at Wijster 536
          • 23.4.2.3 Post-treatment at Wijster 536
      • 23.5 Case 4: Poundbury, MS system with gas grid injection 536
        • 23.5.1 Biogas composition and biomethane requirements at Poundbury 537
        • 23.5.2 Plant configuration at Poundbury 537
          • 23.5.2.1 Pre-treatment at Poundbury 538
          • 23.5.2.2 Upgrading technique at Poundbury 538
          • 23.5.2.3 Post-treatment at Poundbury 538
      • 23.6 Configuration overview and evaluation 539
      • 23.7 Capital and operational expenses 540
        • 23.7.1 Zalaegerszeg 540
        • 23.7.2 Zwolle 541
        • 23.7.3 Wijster 541
        • 23.7.4 Poundbury 541
        • 23.7.5 Overview table of capital and operating expenses 541
      • 23.8 Conclusions 542
    • References 543
  • Index 545
* Editor’s Note: The brief summary and the contents of the books are reported as provided by the author or the publishers. Authors and publishers are encouraged to send review copies of their recent books of potential interest to readers of Climate to the Publisher (Dr. Shu-Kun Lin, Multidisciplinary Digital Publishing Institute (MDPI), Kandererstrasse 25, CH-4057 Basel, Switzerland. Tel. +41 61 683 77 34; Fax: +41 61 302 89 18, E-mail: [email protected]). Some books will be offered to the scholarly community for the purpose of preparing full-length reviews.

Note

  1. The website for this book is: http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119943310,descCd-description.html/.

Share and Cite

MDPI and ACS Style

Lin, S.-K. Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0. Sustainability 2013, 5, 2272-2287. https://doi.org/10.3390/su5052272

AMA Style

Lin S-K. Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0. Sustainability. 2013; 5(5):2272-2287. https://doi.org/10.3390/su5052272

Chicago/Turabian Style

Lin, Shu-Kun. 2013. "Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0" Sustainability 5, no. 5: 2272-2287. https://doi.org/10.3390/su5052272

Article Metrics

Back to TopTop