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Abstract: Global climate change increases heat loads in urban areas causing health and 

productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas 

are at especial risk due to high population density, already high temperatures, and 

temperature increases due to climate change. Air conditioning is growing rapidly, 

especially in South and South-East Asia due to income growth and the need to protect from 

high heat exposures. Studies have linked increased total hourly electricity use to outdoor 

temperatures and humidity; modeled future predictions when facing additional heat due to 

climate change, related air conditioning with increased street level heat and estimated 

future air conditioning use in major urban areas. However, global and localized studies 

linking climate variables with air conditioning alone are lacking. More research and 

detailed data is needed looking at the effects of increasing air conditioning use, electricity 

consumption, climate change and interactions with the urban heat island effect. Climate 

change mitigation, for example using renewable energy sources, particularly photovoltaic 

electricity generation, to power air conditioning, and other sustainable methods to reduce 

heat exposure are needed to make future urban areas more climate resilient.  
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1. Introduction 

Global climate change will increase outdoor and indoor heat loads, and may harm health and impair 

work productivity for millions of people [1–4]. Air conditioning (AC) is a common technical solution 

to problems of increasing temperatures and includes both temperature and humidity control of the 

indoor air [5].However, growing AC use increases electricity consumption and therefore climate 

change, if the energy source is not renewable, contributes to the urban heat island effect and ambient 

heat exposure. The objective of the paper is to explore these negative feedbacks and sustainability 

aspects of the issue, looking at the current literature on the subject, identifying research gaps and 

suggest a methodology on how to analyze the effects of AC in urban areas. Potential preventative 

approaches are also explored. 

The role of cities in sustainable development has become more prominent due to the growing urban 

population worldwide [6]. Sustainability was first defined over 30 years ago and is widely accepted as 

an important conceptual framework within which to position urban policy and development. The 

underlying tension between the associated aspects of sustainability—environmental, social and 

economic—as well as the wide interpretation of the concept has led to a variety of urban forms being 

described as ―sustainable‖ [6]. As nodes of energy and material consumption, cities are causally linked 

to accelerating global ecological decline and are not by themselves sustainable. At the same time, cities 

and their inhabitants can play a major role in helping to achieve global sustainability [7]. The academic 

study of sustainable development now holds a variety of perspectives and approaches. It includes a number 

of policies and practices grounded from communal agrarian utopianism to large-scale capital-intensive 

consumer market development. Human well-being stands at the center of this analysis of AC use. In 

parts of the world the hottest season already brings daily ambient heat levels beyond the physiological 

limits of the human species, particularly for people carrying out physical work [4]. Climate change will 

create higher heat exposure levels and AC will be needed more and more in highly populated urban 

areas. To find a sustainable way to provide the energy requirements for urban AC is a major challenge. 

2. Physiological Aspects of Heat Exposure and Impacts on Health 

When the ambient temperature reaches or exceeds the human body core temperature of 37 °C, there 

are well-documented physiological effects on the human body [8], posing risks to some organ systems 

and also making it progressively harder to work productively. As the core temperature begins to rise, 

skin blood flow increases and sweating is initiated. Sweating is a powerful way of dissipating heat, 

however; it also puts a strain on the human body, as dehydration will develop if lost liquid is not 

replaced. At body core temperatures beyond 38–39 °C, there is an increased risk of heat exhaustion 

and beyond these temperatures, heat stroke and other heat illnesses can occur. Health consequences 

range from dehydration, injuries, and heat fatigue to kidney failure and death [8]. The body heat 

balance is determined by the surrounding air and radiant temperature, humidity, air movement, 

clothing worn and the metabolic heat generated by human physical activity [8]. Figure 1 outlines the 

pathways for health and physiological effects. When facing increasing heat levels as a consequence of 

climate change, these physiological limits will be more frequently bypassed and options to cool 

physiologically and behaviorally become more difficult, even for acclimatized individuals [4]. 
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Figure 1. Climate change, excessive heat exposure and health consequences. 

 

3. Ambient Heat Exposure Trends and Cooling Demand 

Climate change will lead to changes in ambient temperature, wind speed, humidity, precipitation 

and cloud cover, affecting electricity demand in different ways. The IPCC Fourth Assessment Report 

states that hot days, hot nights and heat waves have become and will become more frequent over most 

land areas. Today, a warming of 0.8 °C has been observed above preindustrial levels [2]. Although, the 

global community has committed itself to holding warming below 2 °C during this century in order to 

prevent ―dangerous‖ climate change; present emission trends put the world plausibly on a path toward 

4 °C warming within the century, and 6 °C for the next century [9]. This translates into unprecedented 

heat waves and long-term heat exposure in many places and therefore a heavy dependence and need 

for indoor cooling systems.  

The negative impacts of increased energy costs for cooling are projected to be concentrated in the 

tropics and subtropics where most of the world’s population resides and where fast growing, dense 

urban areas are commonplace. In many of these areas the maximum temperatures during the hottest 

part of the year are already close to, or above, 40 °C and are expected to increase. The threshold to 

maintain health and daily activities is frequently bypassed in these areas. As a consequence, air 

conditioning is likely to be increasingly used all year around, in both homes and workplaces [4]. At the 

regional scale considerable impacts can be seen, particularly in South and South-East Asia, where 

energy demand for residential air conditioning could increase more than 40 times in 2100 in 

comparison to 2000, with a 7% growth per year on average. This development is without the additional 

impacts of climate change, which might add up to an extra 50% in consumption to this. Most of the 

projected growth in air conditioning is expected to occur in Asia, while the use in Africa will grow 

more slowly [10]. 
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4. Driving Forces behind Current Air Conditioning Trends 

4.1. Greenhouse Gas Emissions 

Climate change mitigation translates into the ―stabilization of greenhouse gas (GHG) concentrations 

in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate 

system‖ [2]. Global mitigation efforts can enhance sustainable development prospects in part by 

reducing the risk of adverse impacts of climate change and also provide co-benefits, such as improved 

health outcomes. On the other hand, despite continuous improvements in energy intensities, global 

energy use and supply are projected to continue to grow. Adaptation and mitigation therefore need to be 

complementary as irrespective of the scale of the mitigation measures that are implemented, adaptation 

measures will still be required due to the inertia in the climate system. The consequence of this inertia 

is that mitigation actions need to be initiated in the short term in order to have medium- and long-term 

benefits and to avoid the technological and institutional ―lock-in‖ of carbon intensive technologies [2].  

In addition, the Global Energy Assessment (2012) identifies that the social choices about cooling 

technology will prove increasingly important in the future. These choices are already causing problems 

in many parts of the world. For example, in Delhi, India, air conditioning accounts for the highest 

consumption of electricity during the hottest months, accounting for 28% of the total monthly 

electricity consumption [11]. This puts a high burden on the electricity distribution system and an 

increasing risk for electricity blackouts. This has the potential for dire consequences, with increased 

high health risks from heat stress especially during heat waves, as energy blackouts, like the one seen 

in India during the summer of 2012 may become commonplace. The India blackout left more than  

600 million people without electricity and was the world’s largest blackout to date [12]. This was 

partly initiated by a weak monsoon that kept temperatures high and triggered an increased use of air 

conditioners and fans [13].  

4.2. The Urban Heat Island Effect 

After centuries of intense urbanization, more than 50% of the world’s population live in cities [14]. 

Irrespective of global climate change, urbanization alters the local intra-urban climate, particularly by 

reducing rainfall and increasing nighttime temperatures [15]. Built-up areas influence the absorption 

and reflection of solar radiation, the ability to store heat, the absorption and emittance of long wave 

radiation, winds and evapo-transpiration (the discharge of liquid water from the earth’s surface to 

become water vapor in the atmosphere). The built environment is also characterised by human 

activities affecting the climate, such as the heating and cooling of buildings, motor traffic and 

industrial production. These activities release heat and moisture and emit air pollution, which affects 

incoming and outgoing heat radiation [16]. The limited number of trees and vegetation in many urban 

areas decreases the capacity to cool the air through evapo-transpiration [3].  

The ―urban heat island effect‖ is a result of the heat absorption in cities and refers to the difference 

in temperatures measured inside and outside the city [17]. The elevated temperatures can increase the 

magnitude and duration of heat waves [16] and cause additional nighttime electricity consumption 

from AC.As the urban and global climate changes, the ability of buildings to continue to provide 

healthy and thermally comfortable environments for inhabitants will be further challenged.  
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AC also directly affects the urban heat island effect. Liu et al. 2011, modeled the effect on a typical 

office building cluster and found that the largest heat island intensity contributed by AC systems can reach 

0.7 °C at midday and the daily average rise is 0.53 °C [18]. Low set-point indoor temperature of the AC 

units can increase the anthropogenic outdoor air temperature rise even further [18]. Hsieh et al. 2007, did a 

study in Taipei City, located in the subtropical zone with hot and humid summers. The penetration of 

AC is higher than 90% in the city. The heat discharged from AC raised the outside temperature by 

between 0.5 and 2 °C during evenings (7 pm to 2 am) [19]. It was also found that the 

materials/geometry of buildings and the elevation/positions of heat emissions modify the local ambient 

climate. A low level location of heat ejection affected the ambient air temperature causing an 

additional electricity consumption of up to 11% compared to an area with a high penetration of 

window-type air conditioners [19]. 

5. Air Conditioning Energy Requirements and Usage Trends 

Currently, it is estimated that the world consumes about 1 trillion kilowatt hours (kWh) of 

electricity for AC annually; more than twice the total energy consumption of Africa for all purposes [20]. 

It is also estimated that the energy for cooling could increase tenfold by 2050 [20]. Modeling results by 

Isaac et al. 2009 [10], show that world energy demand for AC will increase rapidly in the 21st century. 

The increase in the median scenario is from close to 300 TWh in 2000, to about 4000 TWh in 2050 

and more than 10,000 TWh in 2100 [10].This development is mostly driven by income growth and 

perceived need, but also due to increasing temperatures and protection from heat exposure. In contrast, 

energy demand for heating will increase until 2030 and then stabilize. While heating is  

commonly done with natural gas, biomass and fossil fuels, AC depends on electric power and water 

evaporation. The growing use of electricity increases risk for blackouts during summer peak demand 

and heat waves [21].  

Research efforts to reduce the related electricity use involve more efficient AC and coolant gases, 

such as refrigerant-grade propane which minimize electricity use and emissions. However, so far the 

improvements have been dwarfed by rising consumer demand, and technical, financial and social 

barriers [20,22].  

Literature on the subject linking temperature directly to AC use is limited although research has 

identified climate variables being linked with electricity consumption. Studies have statistically 

analyzed demand impacts using changes in heating or cooling degree days from electricity 

consumption and meteorological data [23–27]. These two indicators are used in modeling the 

relationship between the climate and electricity consumption. They measure the sum of the daily 

variation of the temperature below or above a certain threshold; where deviations from the comfort 

zone can be analyzed on both cooler and hotter days. Air temperature is found to be the most 

significant weather variable affecting electricity demand as between an ambient air interval of 15–21 °C, 

it has been found that the electricity load is relatively insensitive to temperature, which defines the  

so-called ―comfort zone‖. Below and above this interval the electricity consumption increases [24]. It 

is also well known that the temperature gradient between the indoor and outdoor temperature greatly 

affects electricity consumption of the AC unit [28], where an increase of up to 10% of electricity is 

observed for every degree change of ambient temperature. Depending on the AC unit-capacity, time 

http://www.sciencedirect.com/science/article/pii/S0301421508005168
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used and cooling area sizes [28]. Electricity loads are also found to be dependent on the time of day 

and previous hour load effects, seasonal and daily weather patterns, weekday versus weekend effects, 

and holidays [28]. 

A simulation of the electricity consumption over the hot month of July in the Pennsylvania-New 

Jersey-Maryland Interconnection (PJM) area of the USA found the impact of a 1.1 °C (2 °F) increase 

in the daily temperature on hourly peak loads resulted in an average demand increase of about 4% [26]. 

In Spain, temperature extremes correspond with yearly peak electricity consumption causing a serious 

problem for the stability and reliability of electricity distribution systems. Greenhouse gas emissions 

(GHGs) resulting from electric power generation have risen sharply in Spain in the last  

12 years and temperature is one of the most important factors affecting the electricity demand of the  

population [27]. For example in Madrid, in the summer of 2008, maximum ―peak consumption‖ was 

observed on 30 June, when the outdoor temperature was 39 °C. Residential AC was observed to 

account for approximately 30% of this maximum ―peak consumption‖ [27].  

In Japan it has been reported that the peak electric power load in the Tokyo region rose by 

approximately 180 MW for each 1 °C rise in air temperature in 2004. On this basis, Ihara et al. 2008, 

studied three business districts in Tokyo, to estimate the electric power consumption according to air 

temperature and humidity. This analysis [25] used data from the Japanese Meteorological Agency’s 

Automated Meteorological Data Acquisition System (AMeDAS) and the electricity company TEPCO. 

TEPCO’s base load (under the condition of 22 °C and 55%RH) is 40,000 MW. The air temperature 

inside the buildings was controlled for comfort. It was found that the base load of about 40 W/m
2
 

started to increase at 21 °C by about 2 W/m
2
 per 1 °C external temperature increase. A linear 

relationship between electric power consumption and external air temperature was calculated using a 

multiple regression analysis. The same relationship was found for humidity. The electricity consumption 

increase during the summer was found to be primarily linked to indoor space cooling [25]. It has to be 

noted that the air temperature relationship with increasing electricity consumption might differ in other 

locations, as it depends on, for example, the type of building and also the set-point temperature of the 

AC unit. On the other hand, the general trend can be assumed to apply to most settings and might even 

be exacerbated due to poor construction and energy efficiency. 

Isaac et al. 2009 [10], projected changes in world energy demand for heating and cooling in the 

residential sector and found the associated global carbon emissions to rise from about 0.8 GtC in 2000 

to about 2.2 GtC in 2100, mainly due to energy use for cooling [10]. Parkpoom et al. 2008 [23], 

modeled the effects of climate change on electricity consumption in Thailand using regression models 

to daily load patterns across each month of the year [23]. Temperature projections from the UK Hadley 

Centre climate model were used in combination with the socioeconomic scenarios from the 

Intergovernmental Panel on Climate Change.  

It was found that mean annual temperatures in Thailand will rise by 1.7 to 3.4 °C by 2080 which 

will significantly increase Thailand’s peak electricity demand, by 1.5%–3% in 2020, 3.7%–8.3% in 

2050 and 6.6%–15.3% in 2080 [23]. This translates to actual estimated energy use increases of several  

100 GW by 2080, depending on the climate change projection. If the increase is limited to 200 GW, 

which fits with IPCC scenario A2 and B2, this climate change impact would approximately amount to 

an additional 100 typical power stations producing 2,000 MW each [23]. 
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Taking these projections into account, the use and cost of AC will increase as a consequence of 

climate change. These trends create additional inequity between low and high income countries as 

―maladaptation‖ will increase electricity and primary energy demand in most tropical and sub-tropical 

countries, while there may be a beneficial effect (less heating needed) in more temperate high income 

countries [11]. Increases in humidity in combination with temperature will increase electricity 

consumption further [25], especially in hot-humid climates. When facing predictions of additional 

global warming of 4 °C [9], the cost of additional electricity will become extraordinary.  

6. Sustainability Analysis Approach  

A life cycle and a systems analysis approach are necessary when looking at the problem and 

possible solutions. Short-term considerations, such as simply installing inefficient types of AC during 

hot summers, are not a sustainable solution [11]. In the long term this development can translate into 

one technology achieving complete market dominance at the expense of the other; referred to as 

technological ―lock-in‖. Already now this can be seen and has also caused an institutional lock-in, as 

the development of technologies both influences and is influenced by the social, economic and cultural 

setting in which they develop. Once this lock-in is achieved, it can prevent the take up of potentially 

superior alternatives [29]. 

In addition, the systems approach emphasizes that individual technologies are not only supported by 

the wider technological system of which they are part, but also by the institutional framework of social 

rules and conventions that reinforces that technological system. These include formal constraints, such 

as legislation, economic aspects, and informal constraints, such as social and behavioral barriers. As 

modern technological systems are deeply embedded in institutional structures, the above factors 

leading to lock-in can interact with and reinforce the drivers and feedbacks [29].  

Figure 2 conceptualizes the issue of space cooling and electricity consumption. It presents a 

significant sustainability issue; where linkages and feedbacks between the uses of AC, climate change 

and the urban heat island effect are prominent [21]. 

One has to consider all the drivers and feedbacks when designing alternatives to AC; one also has to 

take into account that individual technologies are not only supported by the wider technological 

system, but also the institutional framework that reinforces that technological system. Therefore, it is 

important to understand innovation systems and how past technological transitions have occurred. This 

can provide insight into approaches for promoting innovation for greater sustainability [29]. 

7. Urban Sustainability and Preventative Approaches 

Almost 60% of the world’s electricity is consumed in the residential and commercial buildings, 

most for space heating and cooling, making more efficient energy use, as well as sustainable  

energy supply in buildings, critical [11]. In contrast, in developing countries, modern building 

characteristics are dominated by an influence of western architecture, such as glass-dominant 

structures, predominant use of concrete, and incorporation of large windows and flat concrete roofs, 

which leads to large cooling loads. Without electricity, the modern building designed for AC becomes 

a heat trap. This also causes a significant risk for technological lock-in as the building stock is usually 

sustained for many decades. 
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The faith in modern scientific solutions to achieving comfort has side-stepped local knowledge  

in many parts of the world, and cooling comfort is increasingly delegated to technical experts,  

potentially with primarily commercial concerns. AC has therefore become the most common option 

for cooling comfort [30]. 

Figure 2. Examples of the links between the different concepts in urban settings from a 

systems approach. 

 

7.1. Urban Planning and Building Design 

There are numerous contemporary urban planning and building design initiatives directed towards 

sustainability and energy conservation (Table 1). Increasing the size of urban parks and gardens and 

enhancing shading and ventilation channels, will result in a reduction in temperatures in urban areas. 

With appropriate urban planning, the urban heat island effect could be considerably reduced [31]. 

Increasing the albedo of urban surfaces, by incorporating more reflecting surfaces and increasing green 

areas, also reduces local heat [32].  

Table 1. Some technical solutions for heat reduction by urban planners and building designers. 

Outdoors Indoors 

Creation of green and open spaces [33] Thermal capacity of buildings 

Ventilation and air flow Position of buildings 

Enhancement of albedo (reflective surfaces) [11] Control of solar irradiation 

Reduction of anthropogenic heat production Passive cooling 

Shade structures Energy efficiency 

Reduction of anthropogenic pollution Renewable energy  

Evaporative cooling, underground earth pipe cooling and district 

cooling systems [34]. 
Building Insulation 

Personal cooling systems: phase-change material cooling  

vests [35],ventilated clothing, liquid and air cooling garments [8] 
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Applying green roofs is a very good mitigation strategy for the urban heat island and roofs 

constitute about 20%–25% of the urban surface. Green roofs have also been shown to provide thermal 

insulation to buildings [11]. Energy savings vary between 6%–72% depending on the climate zone and 

number of floors affected [11]. Moreover, ―cool roofs‖ are solar reflective roofs that absorb less 

sunlight than conventional roofs. The greater reflectivity is achieved by utilizing a light color of roof 

surface and special highly reflective and emissive materials, which can reflect at least 60% of sunlight 

instead of the 10%–20% reflected by traditional dark-colored roofs, reducing indoor heat [11]. The 

urban-wide conversion into green roofs can give rise to many benefits both on urban and indoor 

cooling, air quality, storm-water management, biodiversity, increase of the life span of the building 

materials, reduce noise pollution and decrease the building energy use, especially during the summer [33]. 

7.2. Solar Electricity for Air Conditioning 

A part of the solution could involve renewable energy to power AC units. Solar energy could be an 

effective method to reduce conventional electricity use and to achieve a reduction of peak electric power 

during hot days. This can be done in two ways; electricity through solar photovoltaic cells (similar to 

conventional systems) or by heat driven sorption systems (liquid desiccant systems) [36]. A major 

advantage of solar energy is that the greatest demand for air conditioning occurs during times of high 

heat and solar radiation and peak photovoltaic power output [37]. As a result, a building fitted with 

solar panels, could power the air conditioning system, even during heat waves, as the output would increase.  

On the other hand, due to issues of storage and limited electricity output during the night (unless 

connected to the grid), the greatest value could be in occupational settings such as factories and offices 

that primarily operate during the day. Photovoltaic power output depends on the area, shading, 

orientation and watt-class of the panel. In a study from Malaysia [38], a hot-humid tropical country, a 

comparison of three different solar module technologies was made: poly-crystalline, mono-crystalline 

and amorphous silicon. Peak solar output in the tropical climate zone is about 800–1000 W/m
2
 on a 

sunny day with about 6 h of direct sunlight. The efficiency of current solar modules ranges between 

10%–20% in conversion capacity. Amorphous silicon solar cells, which are currently the cheapest (and 

therefore most probably the most adopted technology) could be estimated to have a conversion 

efficiency no higher than 10% during intense solar radiation. Overall, 1 m
2
 of solar panels could 

therefore be estimated to have the capacity to produce up to 100 W of electricity at peak solar radiation 

with an average over a 12-hourday of 50 W [38]. 

The solar panel electricity production could be more than enough to power air conditioning for a 

floor area of similar size to the panels, even when facing significant local climate warming. This has 

the advantage of reducing peak load and associated costs, especially in the long term. Nevertheless, 

barriers to the development of ―solar cooling systems‖ exist and are linked to relatively low specific 

power output, lack of incentive schemes and the investment costs. The economic factor is frequently 

the central element for energy choices of companies and individuals [36]. 

7.3. The Importance of FAR and RAR for Solar Energy Cooling Possibilities 

The Floor Area Ratio (FAR) [37] is a measure of the mathematical relationship between the total 

floor size in buildings on a unit of land, and is commonly used to manage urban growth. The FAR is 
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the total building floor area divided by the land area. Thus, a FAR of 2 would indicate that the total 

floor area of buildings on a site is two times the gross land area of the site [39]. A FAR of 1–1.5 is 

usually desirable and common in European cities [40]. In Mumbai, India FAR varies from around  

1.2 to 4.8 in the more central areas [40].Generally, in most large cities of the world, as technology and 

infrastructure improve, the FAR in the city center tends to increase and most cities of the world have a 

policy to increase FAR with time [39], but at the same time put a limit in order to mitigate negative 

population externalities (e.g., congestion). As urban populations increase, climate change progresses 

and air conditioning penetration grows, the future electricity consumption and urban heat islands in 

tropical and sub-tropical areas will increase substantially. From a literature review it was found that 

localized studies and specific studies linking AC with increasing electricity consumption is lacking. 

From this we suggest that together with hourly meteorological and AC electricity consumption and 

penetration data, FAR can be used to estimate and calculate current consumption and future growth in 

electricity consumption due to AC in urban areas. For example, this schematic equation can be used to 

estimate effects of temperature variation. However, it has yet to be explored empirically. 

Air Conditioning Cooling Electricity Need per degree of external Temperature increase (ACCENT):  

ACCENT = f (FAR, CER, STV, DTV, ULA) 

where:  

FAR = FLOOR AREA RATIO 

CER = COOLING ENERGY REQUIRED/m
2
 OF FLOOR AREA 

  STV = SEASONAL TEMPERATURE VARIATION 

  DTV = DAILY TEMPERATURE VARIATION 

  ULA = URBAN LAND AREA 

Another variable of importance for the potential of local solar electricity production to meet the AC 

needs of buildings is the Roof Area Ratio (RAR) of each building. This presents the relationship 

between roof area (where solar PV panels can be placed) and the indoor floor area of the building. As 

mentioned above, a RAR = 1 (e.g., a one-story factory building) could provide the opportunity for a 

sustainable renewable solar electricity supply for AC in the building. 

7.4. Social Aspects 

Social choices about cooling options are increasingly important. For instance, in some countries a very 

large stock of residential, institutional, and commercial buildings are designed to be non-air-conditioned 

while in other countries electric cooling is the norm [11]. In fact, cultural acceptances of air 

conditioning vary widely between countries.  

For example, they are not common in French homes due to factors such as believing air 

conditioners cause illness [20]. Thermal comfort is subjective and a dynamic state based on the 

interaction of people’s metabolism, sensory perceptions, expectations, and acclimatization experiences, 

as well as the human body’s interaction with the environment. A change in perception and behavior 

could therefore influence thermal comfort, which requires awareness. Social changes that could take 

place include accepting higher sweat rates and allow workers to wear lighter clothing [11]. Occupants 

also need to be provided with a greater choice of strategies, including energy feedback and occupancy 
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monitoring systems, in order to adapt buildings to changing climatic conditions. On the other hand, the 

social, material and discursive aspects of AC are globalizing at a rapid pace causing a mental 

dependence on cooling [30]. Social choices and specific behavior will therefore directly affect the 

demand for cooling technology [11].  

8. Conclusions 

Air conditioning as a technical solution to protect urban populations from excessive heat exposure 

creates the challenge of increasing electricity consumption, especially in urban areas. Air conditioning 

use triggers an increase in energy consumption and therefore greenhouse gas emissions, exacerbating 

climate change. In addition, the direct heat rejected from the air conditioning unit, adds to street level 

heat and therefore the urban heat island effect. If not abated, it has the potential to intensify climate 

change, and put extra loads on the future energy supply, especially during heat waves. On the other 

hand, air conditioning does protect inhabitants and workers from heat stress providing cooler spaces, 

which is a necessity when ambient heat levels go beyond what human physiology can cope with.  

A society resilient to climate change would ensure that urban planning and architectural design 

incorporates all relevant approaches to reduce human heat exposures during the hottest part of the year. 

Future research needs to look at the links between meteorological variables and electricity 

consumption for air conditioning, and preventative measures, such as opportunities for renewable 

energy systems.  
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