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Abstract: In this paper, we compare the properties of the traditional additive-based data 

envelopment analysis (hereafter, referred to as DEA) models and propose two generalized 

DEA models, i.e., the big M additive-based DEA (hereafter, referred to as BMA) model and 

the big M additive-based super-efficiency DEA (hereafter, referred to as BMAS) model, to 

evaluate the performance of the biomass power plants in China in 2012. The virtues of the new 

models are two-fold: one is that they inherited the properties of the traditional additive-based 

DEA models and derived more new additive-based DEA forms; the other is that they can rank 

the efficient decision making units (hereafter, referred to as DMUs). Therefore, the new models 

have great potential to be applied in sustainable energy project evaluation. Then, we applied 

the two new DEA models to evaluate the performance of the biomass power plants in  

China and find that the efficiency of biomass power plants in the northern part of China  

is higher than that in the southern part of China. The only three efficient biomass power  

plants are all in the northern part of China. Furthermore, based on the results of the 

Wilcoxon-Mann-Whitney rank-sum test and the Kolmogorov-Smirnov test, there is a great 

technology gap between the biomass power plants in the northern part of China and those in 

the southern part of China. 
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1. Introduction 

As a developing country with a huge population, China is always relatively short of energy storage. 

Now, with the rapid development of the economy, along with industrialization and urbanization, the 

energy consumption of China will increase to four billion Mtce, and the gap between energy production 

and consumption will reach half of the total energy volume. Meanwhile, China is still one of the few 

countries that rely on fossil energy, which has caused severe environmental problems. The energy shortage 

and defective infrastructure now is pushing China to seek out and develop substitution energies. 

Being the one and only material and easily-stored renewable energy, biomass power generation is 

getting more and more attention globally. Till the end of 2012, the installation capacity of biomass power 

in the U.S. had exceeded 10,000 megawatts, and the capacity now has been planned to account for 50% 

of their total energy production. Furthermore, Germany aims to use biomass power to meet 16% of the 

whole country’s electricity demand, 10% of the heating demand and 15% of electric vehicle (hereafter 

referred to as EV) power. 

According to the publicized the International Energy Agency (IEA) data in 2012, China has abundant 

biomass resources with a productivity of about five billion tons per year, and this amount ranks only 

next to fossil resource. Hence, China can develop biomass power. However, compared with the 

development of hydro, nuclear, wind and solar power, biomass power in China had not fully started until 

the implementation of the Renewable Energy Act in 2006. Now, the installation capacity has increased 

by 30% each year, and according to the Long-Term Renewable Energy Development Plan, in 2020, the 

expected biomass power installation capacity will be 30 GW. With the industrial plan and policy 

incentives, biomass power in China has entered the track of high-speed development. 

Under this situation, if enough data can be collected and used to evaluate the industry efficiency 

quantitatively, then the assessment can provide a basis for decision making and suggest industrial or 

policy measurements to improve efficiency, which, in return, will accelerate the industrialization of 

biomass power in China and keep the development leading in the optimal direction. 

2. Literature Review and Emerged Concerns 

Developed countries in Europe and the U.S. started their research on biomass power in the 1970s, 

and the early research commonly focused on the energy conversion technology. With the subsequent 

development of the biomass power industry, the studies and concerns shifted to the generating cost and 

industry efficiency. Hooper had come up with countermeasures from the view of investment for the 

development of the biomass power generation industry. In the research, technology needed to be 

advanced, and it was the best choice to industrialize and commercialize [1]. Biomass power took off late 

in China, and the studies about biomass generating technology were summed up and learned. Hence, the 

domestic research began with focusing on the economy and industry efficiency.  

After the implementation of the Renewable Energy Act, the biomass power in China entered a phase 

with high-speed in industrial growth. It created profitability for the biomass power generation in China 

and encouraged researchers to perform comprehensive assessment methods to study the industry 

efficiency, not only to calculate the technical efficiency, but also to evaluate the scale and overall 

efficiency. Along this track, Christoph and Perrels used scenario analysis and an input-output model and 
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studied the relationship between biomass power and CO2 emissions [2]. Klevas and Denis used DEA to 

analyze the technical efficiency of some common renewable technologies, including biomass  

technology [3,4]. Based on their methods, Peng Zhou in China meliorated the DEA model and made it 

suitable for overall efficiency assessment [5]. DEA methods showed their advantage in evaluating the 

efficiency of the biomass power generation industry, and domestic scholars started to apply them to 

China’s own data. Zhao chose SWOT to analyze the industry state of the biomass power generation of 

China and thought that the advantage lied in the increasing electricity demand and changing electricity 

price, yet, the industry was sensitive to local policy and the local industrial environment [6]. Kautto also 

compared the regional and national biomass power plan, finding that if the regional plan can cooperate 

with national development better, the whole biomass industry efficiency would take a step toward a 

higher level [7]. In all, the regional or local situation indeed impacts the industry efficiency of biomass 

power generation. 

As for China, with multiple geographical features and an unbalanced economy, the regional 

difference is distinct, and the regional effect easily influences the biomass industry assessment; hence, 

the region needs to be considered as a key factor when performing an industry efficiency evaluation. 

Other than that, when Ramon used Multi-criteria data envelopment analysis model (MCDEA) to assess 

the efficiencies of 13 projects located in different areas, some weights of the indexes were zero [8], which 

made the index lose the ability to contribute to the assessment and led to the inaccuracy of the efficiency 

ranking. Li et al. used a unified efficiency DEA model to evaluate the performance of 24 power companies 

in China [9]. 

In terms of methodology, DEA is widely used in evaluating the performance of biomass power generation 

plants. DEA, first proposed by Charnes et al. in 1978, is a methodology for evaluating and measuring 

the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce 

multiple outputs [10]. Subsequent to that pioneering study, the research work has been mainly focused 

on constructing different DEA models to compensate for the disadvantage of traditional DEA models, 

e.g., the additive model [11], slack-based model [12,13], cross-efficiency model [14] and assurance 

region model [15] have been proposed to solve a variety of problems [16]. 

Till now, there have still been two problems concerning the application of DEA models: one is that the 

traditional models are unable to deal with negative or nil data, and the other is that they cannot rank the 

efficient DMUs. Based on this, this paper presents two new models, the big M additive-based DEA (BMA) 

model and big M additive-based super-efficiency DEA (BMAS) model, to solve this problem. In 

addition, we apply the new DEA models to evaluate the performance of biomass generation plants in 

China and give the relevant policies based on the result of the model. 

3. Industrial Characteristics of Biomass Power Generation in China 

3.1. Conservative Rising Development Tendency 

Since 2006, the biomass power generation industry has made huge progress. According to Zhao et al. [17], 

from 2008 to 2012, the installation capacity increased from 315 megawatts to 850 megawatts and the 

investment increased from 5.543 billion to 12.779 billion dollars; both of these two indicators’ average 

growth rate per annum reached above 20%, which is shown in Figure 1. 
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Figure 1. Industry scale and investment tendency chart of biomass power generation in China. 

 

The average growth rate per annum of installation capacity and investment were both high during  

the recent past five years, but they were reducing each year, which showed that in China, the biomass 

power generation scale keeps growing, but the growth rate is sinking. On the one hand, this fits the 

growth law; on the other hand, this shows that China is developing biomass power with a positive, but 

conservative attitude. 

According to “the 12th Five-Year Plan” and Long-Term Renewable Energy Development Plan, the 

Chinese government plans to develop the installation capacity of biomass power to 13 GW and invest 

over 90 billion RMB to achieve this goal. 

3.2. Simple Impacts from the Industry Chain 

In China, the industry chain of biomass power generation is simple. The up-stream companies are 

fuel suppliers and device manufactures, while the down-stream one is the power-grid company. Because 

the fuel cost accounts for almost 60% of the whole biomass power generation cost in China, the impact 

from the up-stream is the fuel cost. According to the IEA estimate (shown in Table 1), the potential 

biomass resource is abandoned; therefore, the fuel cost will not change dramatically in the near future. 

Table 1. Potential biomass resource estimates in China (108 Mtce). 

Year  2010 2020 2030 2050 

Biomass resource type 

Present biomass resource 2.8 2.8 2.8 2.8 
Newly-added organic waste 0.6 1.7 2.2 2.7 
Present woodland growth 0.05 0.3 0.7 1.37 
New ground marginal product 0.05 0.3 1 2 

Total potential 3.5 5.1 6.7 8.9 

As for the down-stream company, because China now practices a “full amount buy in” policy for 

renewable energy and biomass power does not account for a large proportion, the electricity demand 

fluctuation has little impact on the biomass power generation industry, and the main impact is reflected 
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by the feed-in price. According to the regulation “Agriculture and Forestry Biomass Price Policy”  

from the National Development and Reform Commission of China (NDRC), the feed-in price is set to 

0.75 RMB per KWh (including the tax) for the new biomass project, which has not obtained its investor 

through biding. 

3.3. Distinct Regional Difference 

It is distinctive that the biomass power generation industry in China has a regional feature. This is 

partly because different regions have different types of biomass resources, and this is also due to the 

production characteristic of different biomass resources. For example, straw burning biomass power 

generation plants have been built in the south of China, because that area is rich in crop resources; while 

in the east of China, the city area produces lots of municipal waste and so garbage power plants are built.  

Now, China’s biomass power capacity is mainly located in eastern China and then ranks from  

mid-south, northeast, north, southwest to northwest China. Till the end of 2012, the biomass power 

installation capacity distributed in the above area is shown in Figure 2. This proportion will not change 

in the following years and so neither does the investment distribution. 

Figure 2. Biomass power distribution in China till 2012. 

 

4. Methodology 

Suppose there are n units being evaluated (in short, DMUs); each DMU has m inputs and s outputs. 

X denotes the m × n input indicator matrix, while Y denotes the s × n output indicator matrix. That is to 

say, xij denotes the i-th input indicator of the j-th DMU, while yrj denotes the r-th output indicator of the 

j-th DMU. Finally, Xj denotes the input vector of the j-th DMU, while Yj denotes the output vector of the 

j-th DMU. 
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4.1. Drawbacks of Traditional DEA Models 

The CCR model [10] and BCC model [18] are the two main traditional DEA models. Compared to 

the CCR model, the BCC model takes into account the factors of returns to scale; thus, here, the BCC 

model is selected to show the drawbacks of classical DEA models when facing negative and nil data. 

The BCC linear program (LP) model and its dual model can be illustrated as follows: 
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here, ω and μ denote the weight vectors of the inputs and outputs, respectively, and “st.” denotes “subject 

to”. Traditional DEA models supposed that each DMU’s value is positive, which demonstrating that they 

are powerless when facing negative and nil data. 

Lins et al. pointed out that, “In order to use the above amounts in the DEA it was necessary to alter 

the variables so as to avoid negative or nil values. To do so, all the cells in each column with negative 

or nil values were added to the lowest value in this column, with the addition of one unit” [19]. It is 

noted that, since the traditional DEA model does not have the translation invariance property, the method 

used by Lins et al. is not correct when facing negative and nil data. 

4.2. Additive-Based DEA Models 

In order to solve the negative data problem, many new DEA models were proposed, most of which 

were characterized as additive-based models, because of the translation invariance property of the 

additive model. The translation invariance, as is pointed out by Lovell and Pastor, is critical when the 

data contain zero or negative values and must be translated prior to analysis with available software 

packages [20]. The first additive-based DEA model, named the constant weighted additive model 

(CWA-DEA), was proposed by Pastor in 1994. It shared the translation invariance property with the 

original additive model, while neither of them was unit invariant [20]. In order to obtain a model that 

shared both the translation invariance and unit invariance properties, Lovell and Pastor in 1995 proposed the 

normalized weighted additive model (NWA-DEA), which was a great step forward in the history of 

additive-based DEA models [20]. They used the sample standard deviations of the output variables and 

the input variables, respectively, to replace the constant weight in the CWA-DEA model, and they pointed 



Sustainability 2014, 6 8726 

 

 

out that any first order dispersion measures can also be used to normalize the input excess and output 

slack variables. Apart from the translation invariance and unit invariance properties, three other 

important properties were proposed by Cooper et al. to testify to the quality of the additive-based DEA 

models [21]. Furthermore, based on the five properties, Cooper et al., 1999, and Cooper et al., 2011, 

extended the NWA-DEA model and proposed the famous RAM and BAM models [21,22]. The five 

properties were: 

(P1) The optima is between 0 and 1; 

(P2) The optima is 0 when DMUo is fully inefficient, while the optima is 1 when DMUo is fully 

efficient; 

(P3) The optima is well defined and unit invariant; 

(P4) The optima is strongly monotonic; 

(P5) The optima is translation invariant. 

According to Cooper et al., 1999, the “strong monotonicity” property is described as follows: 

holding all other inputs and outputs constant, an increase in any of its inputs will increase the 

inefficiency score for an inefficient DMUo. The same is true for a decrease in any of its outputs [21]. 

Table 2 describes whether current DEA models satisfy these five properties. According to Lovell 

and Pastor, 1994, the CCR model and the normalized weighted CCR model were not translation 

invariant, while the BCC model and the normalized BCC model are translation invariant in a limited 

sense, being invariant with respect to the translation of inputs or outputs, but not both. The radial 

component of the efficiency measure obtained from the BCC model and the CCR model is unit 

invariant, but the slack component is not [20]. The additive model can only measure the inefficiencies 

of the DMUs, and the optima are not between 0 and 1. With respect to P4, it is obvious that only the 

RAM model satisfied the strongly monotonic property, while the others are all monotonic. 

Table 2. Comparisons of traditional DEA models on the five properties. 

Model P1 P2 P3 P4 P5 

CCR Yes Yes Partially Units Invariance Monotonic NO 

Normalized weighted CCR Yes Yes Units Invariance Monotonic NO 

BCC Yes Yes Partially Units Invariance Monotonic 
Partially Translation 

Invariance 

Normalized weighted BCC Yes Yes Units Invariance Monotonic 
Partially Translation 

Invariance 

Additive model No No No Monotonic Yes 

Normalized weighted 

Additive Model 
No No Units Invariance Monotonic Yes 

SBM Yes Yes Yes Monotonic Yes 

RAM Yes Yes Yes Strongly Monotonic Yes 

BAM Yes Yes Yes Monotonic Yes 
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4.3. Generalized Additive-Based DEA Model-BMA Model 

Based on the previous research, we proposed a generalized additive-based DEA model,  

which was called the big M additive-based DEA model. We here not only show that the previous 

additive-based DEA models were the particular form of the big M additive-based DEA model, but 

also show that other different forms of additive-based models can be derived from the big M 

additive-based DEA model. 

Consider the following model: 
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here, Ω denotes the sample space, Ψ(Ω) and Φ(Ω) are non-zero mappings from the sample space to   

with homogeneous properties, i.e., θΦ(Ω) = Φ(θΩ), θΨ(Ω) = Ψ(θΩ), θ ϵ  , and big M is a large real 

number. The following theorem motivates the proposition of the homogeneity property of the mappings 

Ψ(Ω) and Φ(Ω). 

Theorem 1: (Lovell and Pastor [20]) In an additive DEA model, scaling an input (output) by 

multiplying it by a constant α > 0 is equivalent to leaving the input (output) unscaled and multiplying 

the corresponding input excess (output slack) variable in the objective function by the same constant. 

Therefore, Model (3) is unit invariant if and only if Ψ(Ω) and Φ(Ω) satisfy the homogeneity property. 

In this sense, the additive-based DEA models mentioned above are only the particular form of the big M 

additive-based DEA model. Obviously, Model (3) can be transformed into the additive model, if we set 

Ψ(Ω) = 1, Φ(Ω) = 1 and M = 1. It can be transformed into the normalized weighted additive model when 

we set Ψ(Ω)r = σr, Φ(Ω)i = σi and M = 1. Here, σr, σi denote the sample standard deviation of the r-th 

output variable and the i-th input variable. It can be transformed into the SBM model when we set Ψ(Ω)r 

= s·yro, Φ(Ω)i = m·xio and M = 1. It can be transformed into the RAM model when we set Ψ(Ω)r = R+ 
r , 

Φ(Ω)i = R− 
i  and M = (m + s), where i i iR x x    with max{ , 1,..., }i ijx x j n  , min{ , 1,..., }i ijx x j n   

and r r rR y y    with max{ , 1,..., }r rjy y j n  , min{ , 1,..., }r rjy y j n  . It can be transformed into the 

BAM model when we set Ψ(Ω)r = U+ 
ro, Φ(Ω) = L− 

io and M = (m + s), where io io iL x x    and ro r roU y y   . 

Moreover, it is obvious that the mappings Ψ(Ω) and Φ(Ω) control the unit invariance property, i.e., 

property (P2) and M control the properties of (P1), (P2) and (P4).  
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Furthermore, we can get various additive-based DEA models when we set different types of Ψ(Ω), 

Φ(Ω) and M. We listed several types of Ψ(Ω), Φ(Ω) and M as follows: 

Case 1: p, q order geometric moment. 
1

1

( ) = ( ) , 1,...,
n

p p
rj

j

y p


    , and 
1

1

( ) = ( ) , 1,...,
n

q q
ij

j

x q


    .  

It is noted that Ψ(Ω) = max{yrj, j = 1, …, n} and Φ(Ω) = max{xij, j = 1, …, n} when p,q = ∞. 
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where ,i rx y  denote the mean value of the i-th input and the r-th output, respectively. 

Then, we researched whether the generalized additive-based DEA model satisfies the five properties 
mentioned above. 

Theorem 2: (P1) The optimum of Model (3) is between 0 and 1 only when M is big enough. 
Proof: Since whatever Ψ(Ω) and Φ(Ω) are, we could always find an M big enough, such that 
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Theorem 3: (P2) The optimum of Model (3) is 1 when DMUo is fully efficient, while the optimum of 
Model (3) is not 0 when DMUo is fully inefficient. 

Proof: It is obvious that s− 
i , s+ 

r  are all equal to zero when DMUo is fully efficient; thus, the optimum 

is one. However, when DMUo is fully inefficient, the optimum varies when different M are chosen.  
Theorem 4: (P3) The optimum of Model (3) is well defined and unit invariant. 
Proof: Based on Theorem 1, it is obvious that Model (3) is unit invariant if and only if Ψ(Ω) and Φ(Ω) 

satisfy the homogeneity property. Moreover, since Ψ(Ω) and Φ(Ω) are non-zero mappings, Model (3) is 
well defined. 

With respect to (P4) and (P5), it is obvious that the optima of Model (3) is not necessarily 
monotonic (the proof is similar to that of (P4’) in Cooper et al., 2011, and the optimum is not 
monotonic when we simply choose Ψ(Ω) = xi.), and it satisfies the translation invariance property. 

4.4. BMAS Model 

Since classical DEA models can only recognize the efficiency of each unit, when there are many 
efficient DMUs, they cannot be ranked. Classic super-efficiency DEA models can effectively solve 
the problem of ranking effective decision making units, but they cannot deal with the negative and 
nil data problem. Based on this, this paper presents the BMAS model to solve these problems. 

Consider the model below: 
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The difference between the BMA model and BMAS model is only in the construction of the 

production possibility set. The BMAS model excludes the DMU evaluated from the production 

possibility set and only considers the new production possibility set constructed by the remaining DMUs. 

Then, we could evaluate this DMU based on the new production possibility set. 

Thus, when the DMU being evaluated is efficient in the original DEA model, it would be outside of 

the new production possibility set which is constructed by the remaining DMUs. As a result, s− 
i , s+ 

r  would 

be less than zero, so that the value of the objective function would be greater than one. In addition, since 

the distance between DMUs and the frontier varies from different DMUs, the efficiency would be 

measured by these distances. If the distance is short, the efficiency is relatively low, while if the distance 

is long, the efficiency is relatively high. Figure 1 shows that the production possibility set of the original 

DEA models (BCC) is the district constructed by EBACF, while the new production possibility set of 

the super-efficiency DEA models is the district constructed by EBCF. With respect to A, Figure 3 shows 

that s− 
i , s+ 

r  are less than zero. 

Figure 3. The improvement of inefficient DMU on the production possibility set. 
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5. Empirical Analysis 

5.1. Efficiency Analysis 

In China, the efficiency of biomass power plants can be seen as the efficiency of the entire biomass 

generation industry. We employ the methodology in Section 4 to evaluate the efficiency of biomass power 

plants in China. The data consist of 11 biomass power plants in 2012 (it is noted that in China, most 

biomass power plants’ data are classified information and are unavailable to the public; therefore, we here 

only obtained the data of 11 biomass power plants by making surveys). The input variables selected are: 

greenhouse gases emission, investment costs, operation and maintenance costs. The output variables 

selected are: potential job creation and potential distributed power generation. Here, greenhouse gas 

emissions were calculated based on the documents of the Methods and Guidelines of Calculating the 

Greenhouse Gases Emissions of Chinese Power Plants. Data of investment costs, operation and 

maintenance costs were obtained from the financial statements of each biomass power plant. Potential 

job creation means the maximum amount of people who are willing to work at this biomass power plant, 

and these data were obtained by surveys to the 11 biomass power plants. Potential distributed power 

generation means the maximum power generated by this biomass power plant per year (or, in other 

words, power generation capacity (it is noted that the power generation capacity is not equal to the 

electric power production, and it is better to use the power generation capacity to evaluate the biomass 

power plants). Table 3 provides the description statistics of these 11 biomass power plants. We can see 

that the minimum value of operation and maintenance costs and the mean value of green gases emission 

are negative. 

Table 3. Description statistics of the inputs and outputs of 11 biomass power plants in China. 

Inputs/Outputs Unit Average Std Max Min 

Greenhouse Gas Emissions (I) tCO2/GWh −203.961 542.0662 600 −1223 
O&M + CC Costs (I) RMB/MWh 14.69 25.4917 62.53 −26.52
Investment Costs (I) RMB/MWh 38.15727 18.70269 76 14.96 

Potential Job Creation (O) Job/TWh 7811.348 11,466.02 35,347.69 1.88 
Potential Distributed Power Generation (O) GWH/year 54,870.36 35,121.65 133,296 6833 

Here, we set Ψ(Ω)r = σr, Φ(Ω)i = σi and M equal to 1, and the BMA model was transformed as the 

normalized weighted additive-based model, which is proposed by Lovell and Pastor [20]. In order to 

compare the results of the BMA model with those of the traditional DEA models, we use the BCC model, 

the BMA model and the BMAS model to evaluate the performance of the biomass power plants in China. 

Table 4 shows the result of the efficiencies obtained by the BCC model, the BMA model (normalized 

weighted additive-based model) and the BMAS model. The second column of Table 4 gives the 

efficiency of each biomass power plant, which is obtained from the BCC model, while the third column 

of Table 4 gives the efficiency of each biomass power plant, which is obtained by the BMA model. In 

comparison, the efficient biomass power plants whose efficiencies are equal to one are altered when 

using the BMA model. In specific, there are 10 efficient biomass power plants when using the BCC 

model to evaluate the performance of the 11 biomass power plants, and there are only three efficient 

power plants when using the BMA model, i.e., Jilin Changling, Neimeng Zhaoxin and Jinlin 
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Gongzhuling. The main reason here is that the traditional DEA model does not have the translation 

invariance property; consequently, it will draw the wrong conclusion if all of the same indicators of the 

decision-making units increase a constant at the same time. It is noted that the function of the BMA 

model is to find out the efficient DMUs when facing the negative and nil data problem. However, the 

efficiency value of each DMU does not make any sense; it is altered when the value of the constant M 

alters. Meanwhile, since three DMUs’ efficiency reaches one, it is necessary to use the BMAS model to 

rank these efficient DMUs. The fourth column of Table 4 illustrates the super efficiency of the three 

efficient DMUs, which are Jilin Changling, Neimeng Zhaoxin and Jinlin Gongzhuling. From the fourth 

column of Table 4, it could be seen that the super efficiency of Jinlin Gongzhuling is the highest, which 

is 1.033233, while Neimeng Zhaoxin, with a super efficiency of 1.012733, comes in at second place, 

and Jilin Changling, with a super efficiency of 1.010540, in third place. Thus, these efficient DMUs, 

whose efficiencies are equal to one, could be ranked through their super efficiency. The fifth column of 

Table 4 illustrates the ranking order of each biomass power plant based on the BCC model, while the 

sixth column of Table 4 illustrates the ranking order of each biomass power plant given by the BMA 

model and the BMAS DEA model. In comparison, it could be found that the ranking order of most 

biomass power plants changes. 

Table 4. Efficiency and ranking of each biomass power plant. 

Biomass Power 

Plants 

BCC 

Efficiency 

BMA 

Efficiency 

BMAS 

Efficiency 

BCC 

Rank 

BMA 

Rank 
Location 

Shangdong Pingyuan 1.00 0.882389  7 9 South 

Hebei Wuqiao 1.00 0.984928  9 8 North 

Hebei Yuanshi 1.00 0.981673  10 10 North 

Anhui Shouxian 1.00 0.859524  11 11 South 

Jilin Changling 1.00 1.000000 1.010540 6 3 North 

Neimeng Zhaoxin 1.00 1.000000 1.012733 3 2 North 

Hengshui Taida 1.00 0.988927  2 5 North 

Jilin Gongzhuling 1.00 1.000000 1.033233 1 1 North 

Dongping Guangyuan 1.00 0.887661  5 6 South 

Shandong Pingquan 1.00 0.886453  8 7 South 

Jiangxi Ganxian 0.331 0.888768  4 4 South 

5.2. Group Analysis 

Based on the distinct regional difference in Section 3.3, we found that the biomass power generation 

industry in China has a regional distribution feature, i.e., China’s biomass power capacity is mainly 

distributed in eastern China and then ranks from mid-south, northeast, north, southwest to northwest China. 

Therefore, it is necessary to analyze the regional differences of efficiency. Generally speaking, the investment 

in the biomass power generation industry of the southern part of China is much higher than that of the 

northern part. Therefore, is it true that the efficiencies of the southern part are significantly higher than 

those of the northern part? 

Assumption: The efficiencies of the biomass power plants in the southern part of China are higher 

than those in the northern part of China. 
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In terms of location, from Table 5 we can see that there are five biomass power plants in the south 

part of China and six biomass power plants in the north part of China. In terms of the mean value, the 

efficiency of the northern group is 0.9923, a little higher than that of the southern group, indicating that, 

on average, the performance of the biomass power plants in the northern part of China is better than 

those in the southern part of China. In terms of the standard deviation, the value of the northern part is 

lower than that of the southern part, indicating that there is a great efficiency gap among the performance 

of biomass power plants in the southern part of China. It is noted that the maximum value of the 

efficiency in the southern part is 0.9888, indicating that the three efficient biomass power plants are all 

in the northern part of China. 

Table 5. Description statistics of the efficiency between the northern group and southern group. 

Group Mean Std Max Min 

North 0.9923 0.0079 1.0000 0.9814 
South 0.8009 0.0421 0.8888 0.7595 

Furthermore, we conduct the Wilcoxon-Mann-Whitney rank-sum test and the Kolmogorov-Smirnov 

(here after referred to as K-S) test to determine the significant differences in the efficiencies between the 

north and south group. Figure 4 shows the distribution kernel density of the two groups, and Table 6 

shows the results of the test. In terms of the Wilcoxon-Mann-Whitney rank-sum test, all null hypotheses 

are rejected at the 1% level, indicating that the rank differences in the efficiencies between the two 

groups are significant and provide support for the technological heterogeneity of the two groups. In terms 

of the Kolmogorov–Smirnov test, all null hypotheses are rejected at the 1% level, indicating that kernel 

density distribution differences exist in the efficiencies between the two groups. 

Figure 4. Distribution kernel density of the two group’s efficiencies. 

Table 6. The Mann–Whitney rank-sum test and the Kolmogorov–Smirnov test. 

Variable Mann–Whitney U Prob K-S Prob 

efficiency 15 0.006 1.651 0.009 
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From the analysis above, it is obvious that although the biomass power capacity in the southern part of 

China is much larger than that in the northern part, the efficiency of the northern part is significantly higher 

than that of the southern part. The main reason is that in the southern part, the government invested more 

resources (such as capital, manpower, and so on) in order to get more returns. However, the biomass power 

industry in China is still in the early stage, and the technology and management level are relatively lower 

than that of the developed countries. Therefore, there exists a large number of redundant capital 

investments. Therefore, the efficiencies of the southern part of China are relatively lower than those of the 

northern part of China. As for policy makers, they should be sensitive to the differences between the two 

regions. Moreover, biomass power plants should pay more attention to improving their technology level 

and management level when making massive investments. Finally, in order to improve the efficiencies of 

the southern part of China, policy makers should provide more incentives to the biomass power plants in 

the southern part of the China, so as to catch up with those in the northern part of China and promote the 

entire biomass generation industry. 

6. Conclusions 

In this paper, we have compared the properties of the existing additive-based DEA models and 

proposed two generalized additive-based models, i.e., the BMA model and the BMAS model, to evaluate 

the performance of the biomass power plants in China in 2012. Compared to the traditional DEA models, 

there are two virtues of the new models that we proposed: one is that they inherited the properties of the 

traditional additive-based DEA models and derived more new additive-based DEA forms; the other is 

that they can rank the efficient DMUs. Then, we applied the two new DEA models to the evaluation of 

the biomass power plants in China. The conclusions are three-folds: first, the BMA and the BMAS model 

have great potential to be applied in sustainable energy project evaluation; second, the efficiency of 

biomass power plants in the northern part of China is higher than that in the southern part of China (the 

only three efficient biomass power plants are all in the northern part of China); finally, based on the 

results of the Wilcoxon–Mann–Whitney rank-sum test and the Kolmogorov–Smirnov test, there is a 

great technology gap between the biomass power plants in the northern part of China and those in the 

southern part of China. Based on the results of the model, policy makers should provide more incentives 

to the biomass power plants in the southern part of the China, so as to catch up with those in the northern 

part of China and promote the entire biomass generation industry. 
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