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Abstract: This study developed a cell-based spatial optimization model compatible with the 

ArcGIS platform, termed Dynamically Dimensioned Search Landscape Optimization 

Planning model (DDSLOP), for landscape planning. The development of the proposed 

model was based on the Dynamically Dimensioned Search Algorithm, which can efficiently 

find an optimal global solution within the massive solution space inherent to multi-dimensional 

analysis. Therefore, the DDSLOP model can reveal landscape pattern scenarios suited to 

specific managerial purposes at a cellular level. To evaluate the DDSLOP model, we applied 

it to a landscape planning initiative that focused on the conservation of three bird species in 

the National Taiwan University Highland Experimental Farm (NTU-HEF). We compared 

the proposed model with the Land-Use Pattern Optimization-library (LUPOlib), which was 

used in the optimization of landscapes at a patch level. The results of the comparison 

revealed that our fine scale optimization method has better flexibility, and can therefore form 

landscape structures, which, overall, provides not only better individual habitats for the 

target species, but also landscape patterns that foster high habitat connectivity, both 

important aspects of conservation efforts. 
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1. Introduction 

Spatial optimization methods have been used to investigate spatially explicit problems in a wide range 

of different fields, including: urban planning [1,2], habitat reconstruction [3–6], wildlife reserve 

selection [7,8], etc. Spatial optimization methods are popular because they can provide insights into the 

implications of landscape designs [9]. As such, many landscape optimizations have been used by 

decision makers, providing them with additional options to spatial problems at various scales within the 

cell-patch-class-landscape hierarchy. For example, the habitat reconstruction problems, which focus on 

the configuration and composition of suitable patches for mammals, can be analyzed at a patch level.  

On the other hand, the fine scale heterogeneity of small habitat islands within agricultural landscapes, 

which might be suitable for certain species such as edge-preferring bird species [10–12] or insect  

species [13,14], could be explored at the cellular scale. Therefore, the scale at which the land-use  

allocation problems are explored significantly influence the effectiveness and/or appropriateness of spatial 

optimization models. 

Spatial optimization problems analyzed at finer scales may run into restrictions because of increasing 

resolution. The solution space increases exponentially as the scale of specific analysis decreases over the 

landscape-to-cell continuum. In other words, the size of solution space represented by KN rises rapidly 

while the number of planning units N increases under a certain number of land use options K [15]. 

Although a wide range of heuristic-based methods have been developed and widely used to overcome, 

or at least lower, the computational restrictions imposed by massive solution spaces [9], very little 

comparative research has been done on the effectiveness of landscape optimizations at different  

scales. Holzkämper et al. [3] developed a spatial optimization model, termed Land-Use Pattern 

Optimization-library (LUPOlib) for which the model units corresponded to patch types in a landscape. 

This was done in order to both decrease the computational effort in the optimization process and also to 

avoid unrealistic land-use patterns. Nevertheless, it is unclear whether or not a patch topology approach 

is optimal for all environments and species, particularly because finer landscape modifications are less 

likely at such a coarse resolution. Meaning that the creation of small habitat islands, which serve as 

stepping stones for some species, narrow wildlife corridors, and the consideration of fine scale habitat 

edge dynamics, etc. may be missed during patch-level optimization. 

The Dynamically Dimensioned Search (DDS) algorithm [16] is a novel heuristic method, which can 

be used to find a good global solution by progressively fine tuning a solution from a global scale to an 

increasingly more localized scale through a series of searches with a pre-specified maximum number of 

iterations. In so doing, the algorithm incorporates both diversification and intensification mechanisms [17] 

in a computationally cost effective manner. To discover the differences of spatial optimizations at 

different scales, we developed a practical land-use allocation model based on DDS, termed Dynamically 

Dimensioned Search Landscape Optimization Planning model (DDSLOP), which can effectively deal 

with complex landscape planning problems with huge solution spaces, i.e., finer resolutions, or a greater 

number of land-use types. The DDSLOP model provides a method of landscape pattern optimization 
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tailored in accordance to specific criteria at a cellular level. In order to both better capture the needs of 

the species in question and incorporate the gradient concept of landscape structure [18], a moving 

window analysis embedded in the DDSLOP model estimated habitat suitability across the study area 

based on different local landscape metrics (i.e., patterns of sub-landscapes). The optimization process 

then optimized the landscape structure in reference to the resultant habitat suitability. We used the 

proposed model to optimize the National Taiwan University Highland Experimental Farm (NTU-HEF) 

in accordance to the preferences and conservation of three bird species. The optimized landscape patterns 

formed from cell-level DDSLOP were then compared with those generated by patch-level based 

LUPOlib landscape patterns. The comparison was done in terms of each resultant average Habitat 

Suitability Index (HSI) for representing overall habitat suitability of the species in question. As suspected 

the proposed model efficiently searched an optimum from a massive solution space to render landscape 

patterns at a finer resolution promoting higher overall HSIs. Consequently, the proposed model has the 

potential to deal with spatial optimization at a finer scale. 

2. Methods and Materials 

2.1. Dynamically Dimensioned Search Land-Use Optimization Planning Tool (DDSLOP Tool) 

DDS is designed for the efficient search of a good global solution for optimization problems,  

which simultaneously deal with multiple control variables and their resultant massive solution  

spaces [16,19,20]. DDS searches the solution globally by adjusting most of the control variables at  

the outset of the model, then becomes progressively more localized by gradually decreasing the number 

of control variables as the iteration number approaches the maximum number of pre-defined iterations [16]. 

This mechanism implies that the DDS algorithm has the ability to escape from the local optima and, 

consequently, enhances the quality of the global solution through the incorporation of both diversification 

and intensification processes [17]. 

Based on this key feature of DDS, the DDSLOP model stochastically modifies most of the cells within 

the target landscape from the original land-use types (control variables) to other land-use types at the 

beginning of the optimization process (Figure 1). As the iteration count increases, however, the DDSLOP 

model only modifies those cells, which contribute to relatively lower evaluated suitability of habitat 

(criteria) for the species in question. In this way, a general reformation of the landscape ensues, resulting 

in a good habitat structure for the target species. Furthermore, a user-friendly interface compatible with 

the ArcGIS platform is provided for planners and researchers (see Supplementary 1). 

Due to the complexity of spatial optimization problems, the proposed DDSLOP model has a double 

loop iteration process, which optimizes not only the composition of different land-use types (first loop), 

but also the spatial configuration of land-use types (second loop), throughout a given landscape.  

A series of outer optimization processes progressively modify the overall ratios of different land-use 

types (composition of the landscape) while iterative inner optimizations then modify the spatial 

configuration of the landscape based on the habitat suitability of selected cells, the new overall ratios of 

land-use types, as well as the ratio of land-use types of selected cells if restrictions on final land-use type 

ratios are predefined (Figure 2). In other words, each of the resultant outer iteration land-use type ratios 

then undergoes a certain number of inner iterations, which modified the spatial pattern of land-use types. 
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Since the objective is to modify the overall landscape in such a way as to maximize the suitability of 

habitat for the specific target species in question based on modifications to landscape structure, the 

fitness function is given as:  

}{max mean
M

inner HSIf
i

  (1)

}{max inner
p

outer ff
t
  (2)

where finner represents the inner fitness evaluated based on the resultant average habitat suitability index; 
HSImean. iM


 represents the spatial configuration of land-use types at count i of inner iterations. While, 

fouter denotes the outer fitness and tp


 represents the ratios of land-use types at outer iteration count t. 

Figure 1. Dynamically dimensioned search process: The number of selected control 

variables decreases gradually while the number of iterations increases in the optimization 

process. These cells are stochastically selected from a target landscape for modification; 

therefore, the DDSLOP can dynamically scale down the search to find a good global solution 

throughout consecutive iterations. 

 

In order to evaluate the inner fitness based on habitat suitability of the target species, we used logistic 

regression to construct habitat suitability models for each species [3,4,6]. The habitat suitability models 

were used for estimating the probability of target species occurrence under updated DDSLOP outputs. 

The model is:  
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where,    1,0, yxMhsi  represents the index of habitat suitability at location (x, y) in a candidate 

landscape Mx,y. Cells represents the total number of cell grids in the landscape. β0 is the intercept of  

the habitat suitability model. βk is the coefficient of each driving factor dfk(x, y) at location (x, y) in  

the landscape. 
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Figure 2. Inner optimization process of the DDSLOP model (Step 5): To promote efficiency 

of the optimization process, cells with lower habitat suitability are given higher priority for 

both selection and subsequent exchange, which means that places with higher suitability for 

the target species have overall lower probabilities of being modified. Based on the updated 

overall ratios of land-use types selected during the given outer iteration, DDSLOP allocates 

randomly ranked land-use types to habitat suitability ranked cells during each inner iteration. 

In the example below, the lawn-green land-use type is stochastically chosen to carry the highest 

rank in the first inner iteration, and is therefore chosen to replace cells with lowest suitability. 

 

In order to evaluate the effects of spatial patterns on specific species, four types of landscape metrics 

were considered, including: class area (cal), largest patch index (lpi), sum of edge lengths between two 

land-use types (esl,k), and patch cohesion (cohl) of specific land-use types (see Supplementary 2). The 

habitat suitability model used each of these metrics as factors contributing to habitability at a territorial 

scale for each species [3,6], based on presence data correlated with current landscape metrics. A moving 

window analysis, based on a radius that correlates to the territorial range of the target species [3,6] about 

each cell, was used to evaluate the landscape metrics and corresponding habitat suitability indexes of 

each cell. The steps of the DDSLOP model are as follows (modified from [16]) (see Supplementary 3 

for the flowchart of the steps):  

Step 1. Define DDS inputs: 

 Define maximum iteration count tmax for outer fitness function evaluations. 

 Define maximum iteration count imax for inner fitness function evaluations. 
 Define initial solution of outer control variable (composition)  Dppp ,...,10 


 and inner control 

variable (configuration)  nmMMMM ,2,11,10 ,....,,


, which denotes the spatial composition and 

configuration, respectively, of the original-unmodified landscape. Where Mm,n represents the  

land-use type at location (m, n). 
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Step 2. Set the counter of outer iteration t = 1, and evaluate fitness (mean habitat suitability) at initial 
solution  0pfouter


 with respect to the original landscape:  

 Current best fitness    00 Mfpff innerouter
best

outer

  . 

 Current best solution 0ppbest    and 0MM best


  for outer and inner optimization, respectively. 

Step 3. Stochastically place j variables (land-use type ratios) from bestp


(current optimal composition) 

into the {N} set, which will undergo modifications in step 4:  

 Calculate the proportion of land-use type ratios, which will be selected for modification, based on 
a function of current iteration count:   )ln(/ln1 maxttS outer

t  . 

 For d = 1, …, D, move pd from bestp


 to {N} until j control variables have been selected, (j ˂ D) 
based on the outer

tS . 

 If {N} is empty, randomly place one element from bestp


 into it. 

Step 4. In order to get new candidate new
tp
 , perturb the selected control variables (land-use ratios),  

(pd, d = 1, …, j) in {N}. The perturbation of each variable (land-use ratio) corresponds in intensity 

proportional to a random sample taken from a standard normal distribution n(0,1), reflecting at bounds 

of control variables if necessary:  

  1,0npp d
Best
d

New
d  , where  Min

d
Max
dd pp   . 

Step 5. Set the counter of inner iteration to i = 1 and perturb the spatial configuration of the landscape 
best

i MM


  given the new proportions of the exchangeable land-use types new
tp
 . 

 Stochastically select k elements from iM


 (current best land use raster data set) and place these 

into a pool ia


. For each iteration, the proportion of selected cells corresponds to the function of 

current iteration count   )ln(/ln1 maxiiS inner
i  . 

 Rank selected cells in accordance to their relative hsi(Mx,y) at (x,y). 
 Preferentially select cells in hsi(Mx,y) ascending order (lower values first) and place into , 

the proportion of selected cells for each iteration is equivalent to the inner
iS  function (Figure 2). 

 Exchange the land-use type of each element in ia


. 

 Rank the selected land-use types randomly for land-use reallocation. 
 Cells in  are chosen for exchange in hsi(Mx,y) ascending order (lower values first) with land-

use types in descending order (highest ranked land-use types exchange first) (Figure 2). 

 Acquire new
iM


 by updating iM


 with their corresponding ia


. 

 Evaluate inner fitness and update current best solution if necessary:  

 If    best
inner

new
iinner MfMf


 , update new

i
best MM


 . 

 The size of the habitat suitability moving window (territory range) for each target species in 

this study was 1 ha. It calculated the habitat suitability of each cell. 

 Update inner iteration count i = i + 1 and check stop criterion. The maximum inner iteration count 

imax was equal to 200 for each of the outer iterations in this study. 

 If i = imax, stop.    best
inner

new
touter Mfpf

  . 

ia


ia
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 Else repeat Step 5. 

Step 6. Evaluate outer fitness and update current best solution if necessary:  

 If    best
outer

new
touter pfpf

  , update best solution new
t

best pp
  . 

Step 7. Update iteration count t = t + 1 and check stop criterion. The maximum inner iteration count 

tmax was equal to 1000 for each case in this study. Therefore, for each case, the DDSLOP model 

conducted 200,000 evaluations of fitness. 

2.2. Land-Use Pattern Optimization-Library (LUPOlib) 

In order to compare landscape pattern optimization at different scales for the target species, we also 

applied the land-use pattern optimization model LUPOlib [3,4,6] to identify preferred land-use pattern 

(i.e., habitat structures) at a patch level. The LUPOlib model is a genetic algorithm-based optimization 

model. The control variables modified by the LUPOlib model were also defined as both the configuration 

and the composition of different patches in a landscape [6] (Figure 3). The objective was to maximize 

the habitat suitability of the targeted species. Therefore, the function used for evaluating fitness was 

identical to that of DDSLOP, Formula (1). We applied the LUPOlib model to optimize the land-use 

pattern using the following steps [3,6]:  

Step 1 A population of 100 candidate solutions of the landscape pattern was randomly generated.  

A candidate solution is represented using a chromosome in the GA. A chromosome indicates 

a vector of the spatial configuration of a landscape (Figure 2). 

Step 2 The fitness (objective score) of each candidate landscape pattern was evaluated based on  

the resultant average habitat suitability index HSImean, which was itself based on a roaming 

window analysis of landscape metrics. 

Step 3 Improvement between iterations (i.e., GA-generations) towards an optimal solution was 

achieved by two genetic operators, the crossover and mutation (Figure 2). The crossover and 

mutation operator carried on exchanges of patches in the landscape based crossover and 

mutation rates of 0.5 and 0.01, respectively. 

Step 4 The iteration stopped when it sought the best solution of 1500 iterations, or while the  

deviation between the 300 previous generations with the current generation was less than 

0.01% (such that the convergence ratio equals 0.9999). Steps 2 and 3 were repeated until the 

criteria were reached. 

2.3. Study Site and Data Description 

The National Taiwan University Highland Experimental Farm (NTU-HEF) (24°05′N, 121°10′E, 

altitude 2100 m.a.s.l., size 42.68 ha) was established for academic and educational purposes in 

horticulture and agriculture. In order to find optimal land-use patterns for bird conservation at a cellular 

scale, we included: land coverage, the distribution of birds, and geographic data (distance variables) at 

a 10 × 10 m (Figure 4) resolution. This data was provided by earlier field surveys using a territory mapping 

method [6,21] from 2005 to 2007 (see Supplementary 4). Additionally, to take species’ territorial ranges 

into consideration, the study area was extended 50 m outward from the boundary of NTU-HEF [6].  
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In the total 61.61 ha area, about 36.13% was covered by pristine forest. Other land-use types include: 

buildings, orchards, croplands, conifer plantations, broadleaf plantations, and manmade water bodies. 

From this description, we can see that the landscape has been markedly influence by human activities. 

Figure 3. Crossover and mutation operator in the GA-based LUPOlib model (modified  

from [3,4,6]): Spatial pattern of a landscape is coded as a vector of the spatial pattern (i.e., a 

GA genome) based on the patch topology. The crossover operator leads an exchange of 

selected elements for corresponding elements in another genome. The mutation operator 

leads to modifications of selected elements to randomly generated land-use types. In the 

example, land-use type 1 (for red patches) is not exchangeable. On the other hand, land-use 

types 2, 3, and 4 (for yellow, lawngreen, and purple patches) are exchangeable. 

 

Figure 4. The spatial pattern of NTU-HEF and distributions of each target species (modified from [6]). 
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We chose three species, the Green-backed Tit (Parus monticolus insperatus) (endemic subspecies), 

Taiwan Yuhina (Yuhina brunneiceps) (endemic species) and Vinous-throated Parrotbill (Paradoxornis 

webbianus bulomachus) (endemic species) for conservation scenarios. The presence data included  

138 occurrence points of the Green-backed Tit, 1614 occurrence points of the Taiwan Yuhina and  

210 occurrence points of the Vinous-throated Parrotbill (Figure 4). 

We applied the two optimization models to each species (case 1 = the Green-backed Tit,  

case 2 = the Taiwan Yuhina, and case 3 = the Vinous-throated Parrotbill) not only to evaluate the 

proposed model, but also in order to explore the advantages of landscape optimization at both cellular 

and patch levels. Due to existing land-use policies, which take both species conservation and economic 

self-sustainability into consideration, certain constraints were placed on the models. For NTU-HEF, 

land-use types including orchard, cropland, conifer plantation and broadleaf plantation were replaceable; 

however, the added restraint that 72.5% of the total area of both orchards and croplands need to be 

maintained for financial purposes was imposed upon the models [6]. Accordingly, 117 patches consisted 

of 2085 cells were exchangeable in the spatial optimization processes. 

3. Results 

3.1. Optimal Landscapes Resulted from the DDSLOP and LUPOlib Model 

For case 1 to 3, all the results of the DDSLOP and LUPOlib model were compared in order to evaluate 

landscape optimization for conservation at different scales. In terms of habitat suitability, the DDSLOP 

model, which modified the spatial patterns at a cellular level, outperformed LUPOlib, which was 

working at a patch level (Table 1). 

Table 1. Comparison of habitat suitability for each study case. 

Habitat 

Suitability 

Case 1  

the Green-Backed Tit 

Case 2  

the Taiwan Yuhina 

Case 3  

the Vinous-Throated Parrotbill 

Current 

Landscape 
DDSLOP LUPOlib 

Current 

Landscape 
DDSLOP LUPOlib 

Current 

Landscape 
DDSLOP LUPOlib 

Average a 0.0282 0.0829 0.0432 b 0.2147 0.3668 0.3630 0.0397 0.0789 0.0613 

Min 0.0013 0.0014 0.0026 0.0006 0.0006 0.0006 0.0002 0.0005 0.0005 

25% 0.0105 0.0315 0.0190 0.1014 0.1781 0.1652 0.0106 0.0223 0.0190 

50% 0.0193 0.0650 0.0312 0.2072 0.3725 0.3532 0.0321 0.0582 0.0445 

75% 0.0336 0.1139 0.0521 0.3137 0.5367 0.5527 0.0553 0.1193 0.0825 

Max 0.1601 0.5071 0.1601 0.7389 0.8774 0.8641 0.3392 0.4866 0.4512 

a The average habitat suitability was used as the objective score throughout the spatial optimization processes;  
b The results are from [6]. 

For the Green-backed Tit, the DDSLOP model greatly improved the suitability of habitat when 

compared to both the current landscape pattern and the LUPOlib model, especially in the southern and 

eastern parts of NTU-HEF (Figure 5e); as can be seen, the LUPOlib model only slightly increased the 

suitability value over the same areas (Figure 5f). The DDSLOP model modified orchards to croplands 

and created edges between conifer plantations and croplands (Figure 5b). However, a contrasting spatial 



Sustainability 2014, 6 9148 

 

 

composition was instructed by the LUPOlib model, in which the area of cropland and conifer plantation 

decreased (Supplementary 5). 

Figure 5. Comparison of model outputs for case 1. (a) Distribution of the Green-backed Tit 

over the current landscape; (d) Habitat suitability of current landscape pattern; The landscape 

optimization and corresponding habitat suitability resulting from the DDSLOP (b,e) and 

LUPOlib model (c,f) the result is from [6]). 

 

For the Taiwan Yuhina, both of the DDSLOP and LUPOlib model improved the suitability of the 

habitat over most of the study area (Figure 6e,f). Nevertheless, the two model outputs differed in both 

spatial composition (Supplementary 5) and configuration. The DDSLOP created a mosaic landscape of 

croplands, confer plantations, and orchards (Figure 6b). LUPOlib, on the other hand, converted much of 

the landscape to broadleaf plantations (Figure 6c). 
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Figure 6. Comparison of model outputs for case 2. (a) Distribution of the Taiwan Yuhina 

over the current landscape; (d) Habitat suitability of current landscape pattern; The landscape 

optimization and corresponding habitat suitability resulting from the DDSLOP (b,e) and 

LUPOlib model (c,f). 

 

For the Vinous-throated Parrotbill, the DDSLOP performed better, particularly in the south-eastern 

part of the study area (Figure 7e), compared to that of the LUPOlib model (Figue 7f). Although both 

models yielded similar landscape compositions (Supplementary 5), the DDSLOP model once again 

created more of a mosaic pattern throughout the landscape. This is particularly apparent in the  

south-eastern part of NTU-HEF where the conifer plantations were fragmented and embedded within 

the orchards. 
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Figure 7. Comparison of model outputs for case 3. (a) Distribution of the Vinous-throated 

Parrotbill over the current landscape; (d) Habitat suitability of current landscape pattern;  

The landscape optimization and corresponding habitat suitability resulting from the 

DDSLOP (b,e) and LUPOlib model (c,f). 

 

3.2. Preferred Habitat Structures of Target Species 

In addition to the use of the habitat suitability model for Green-backed Tit on the current landscape 

from Lin et al. [6], we created habitat suitability models for the other two species based on 

presence/absence data and spatially correlated landscape metrics. In order to compare the fitness of 

different optimizations, forward stepwise logistic regressions were completed using the Statistical 

Package for the Social Sciences (SPSS Inc., IL, USA). All the driving factors are listed in Supplementary 6. 

The results showed that each of the habitat suitability models have AUC values that exceed or are equal 

to 0.7 (Table 2; for ROC curves see Supplementary 6). The beta value results showed the positive or 

negative effects of specific landscape metrics (i.e., the driving factors of each habitat suitability model) 

on habitat suitability (Table 2). For the Green-backed Tit, the results revealed that it preferred not only 
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pristine forests (caforest) [6] but also edges between conifer plantations and croplands (escropland, conifer). 

For the Taiwan Yuhina, both broadleaf and conifer plantations (cabroadleaf and caconifer) were preferred. 

Likewise, the edges between conifer plantations and croplands (escropland, conifer) were their favored 

habitats. For the Vinous-throated Parrotbill three types of landscape metrics correlated with presence 

data. These included area of pristine forest (caforest), edge length between pristine forest and orchard  

(esforest, orchard), and edge length between orchard and conifer plantations (esorchard, conifer). 

Table 2. Habitat suitability models for target species. 

Drivers 
Green-Backed Tit Taiwan Yuhina 

Vinous-Throated 

Parrotbill 

Beta Exp(B) a Beta Exp(B) Beta Exp(B) 

Landscape metrics: 

Sum of edge length between building and  

cropland (esbuildind, cropland) 
−0.105 0.900 −0.003 0.997 −0.115 0.891 

Sum of edge length between building and  

orchard (esbuildind, orchard) 
- - - - −0.141 0.868 

Sum of edge length between pristine forest and 

cropland (esforest, cropland) 
−0.089 0.915 - - 0.103 1.108 

Sum of edge length between pristine forest and 

orchard (esforest, orchard) 
- - - - 0.079 1.082 

Sum of edge length between cropland and  

conifer plantation (esorchard, conifer) 
0.14 1.150 0.062 1.064 - - 

Sum of edge length between cropland and  

broadleaf plantation (escropland, broadleaf) 
- - −0.066 0.936 - - 

Sum of edge length between orchard and  

conifer plantation (esorchard, conifer) 
- - - - 0.07 1.073 

Cohesion of conifer plantation (cohconifer) - - −0.006 0.994 - - 

Cohesion of broadleaf plantation (cohbroadleaf) - - - - −0.03 0.970 

Large patch index (lpi) - - −0.016 0.984 - - 

Class area of pristine forest (caforest) 2.305 10.024 2.465 11.763 2.501 12.195 

Class area of conifer plantation (caconifer) −3.575 0.028 3.719 41.223 - - 

Class area of broadleaf plantation (cabroadleaf) - - 4.796 121.025 - - 

Distance variables: 

Distance to building - - - - - - 

Distance to road −0.028 0.97 −0.058 0.944 - - 

Constant −3.521 −0.783 −4.542 

Area Under the Curve of ROC (AUC) 0.75 0.70 0.78 
a The Exp(B) values indicated the changes in odds upon one unit change of the independent variable. 

3.3. Performance of the DDSLOP and LUPOlib Model 

The Model performance was plotted against iterations using a base 10 logarithmic scale for the  

x-axis (Figure 8). In each case, the performance graphs indicated that the cell-based DDSLOP model 

converged on a better solution in comparison to the solution delivered by the patch-level LUPOlib model 

(Table 1). In total the DDSLOP model conducted 200,000 evaluations of fitness within 1000 iterations 
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(outer iteration) for seeking a globally optimal solution from a solution space of 42085 (4 land-use types 

were allocable for each of 2085 cells). Conversely, the iteration number conducted by the LUPOlib 

model varied due to its predefined stop criteria. Despite a far smaller solution space of only 4117 at patch 

level (four land-use types for 117 individual patches), the total number of iterations required by the 

LUPOlib model to reach a solution did not, by any means, reflect the magnitude of difference between 

solution spaces. This finding suggests that the DDSLOP model has the ability to reach solutions in a 

more computationally efficient manner. 

Figure 8. The performance graphs of the DDSLOP and LUPOlib model. (a) Case 1 (the 

Green-backed Tit); (b) Case 2 (the Taiwan Yuhina); (c) Case 3 (the Vinous-throated 

Parrotbill). The iteration number on the x-axis represents the count of outer iteration for 

DDSLOP and total iterations for LUPOlib. Please note, for the DDSLOP model each of the 

outer iteration was followed by 200 inner iterations. 

(a) (b) (c) 

In case 1, the DDSLOP model improved fitness rapidly at the beginning and then converged on a 

globally optimal solution (Figure 8a). However, the fitness of the LUPOlib model grew gradually from 

the initial value (current landscape) and converged on an optimum, which ensured the stop criteria after 

68,600 evaluations of fitness. In case 2, both DDSLOP and LUPOlib models increased fitness rapidly at 

the beginning and converged on similar closing values of fitness (Figure 8b). The LUPOlib model’s stop 

criteria restricted the model to 150,300 evaluations of fitness. In case 3, the DDSLOP model displayed 

steep improvement at the outset and ultimately converged on a better solution compared with the 

LUPOlib model, which conducted 121,900 evaluations of the fitness (Figure 8c). 

4. Discussions 

4.1. Comparison of Optimal Landscape Planning Using the DDSLOP Model and LUPOlib Model 

Spatial optimization conducted at a cellular level delivers a finer perspective for coping with the 

conservational needs of target species. Here, we demonstrated that the DDSLOP model can deliver better 
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habitat structure results in a computationally cost effective manner, which is important when dealing 

with the huge solution space of cellular level optimization. Landscape structures with higher suitability 

were attained due to the fact that the DDSLOP model can efficiently create more diversified land-use 

patterns, which provided better habitats for edge preferring species, as well as plenty of stepping-stones 

for the target species. The DDSLOP model was not only able to identify the necessary land-use types in 

key patches, but also created more diverse features within or between patches in order to provide an 

optimal habitat structure. In contrast, the results from the LUPOlib model reveal that a patch-level 

optimum of habitat reconstruction may be restricted to a given spatial structure with fixed patch shapes 

and lengths of boundaries between patches. For instance, for the Green-backed Tit (case 1) or the 

Vinous-throated Parrotbill (case 3), the observed flat improvement of habitat suitability could be 

attributable to the limitation of simply increasing the preferred boundary, such as the edges between 

conifer plantations and croplands. It is possible that this flaw could be an intrinsic feature of patch-level 

spatial optimization. Consequently, land cover that was identified as less favorable to specific species 

was simply converted to types that were either more favorable or relatively neutral to the species. This 

is clearly demonstrated by the increase of orchards and broadleaf plantations, which were relatively 

neutral for the Green-backed Tit, using the LUPOlib model (see Figure 5c). While this type of coarse 

manipulation may be a suitable solution for core loving species, it is not suitable for all landscape 

planning scenarios or species. What is instead needed in many situations is a model that can restructure 

the overall habitat, creating favorable landscape structures for target species within other land-use 

patches. Moreover, even for species that are not edge-preferring, such as the Taiwan Yuhina (case 2), 

the DDSLOP model captured more of the replaceable space and created preferred structures by 

relocating less preferable patches jointly (i.e., the orchards in between buildings) or by moving these 

patches to the fringes. Therefore, it seems evident that the DDSLOP model can efficiently seek better 

overall solutions whereas a patch-level model often tends to merely convert less favorable land-use 

patches to more favorable or neutral land-use patches. 

4.2. Spatial Patterns Resultant from the DDSLOP Model 

The determination of specific habitat type ratios and their spatial configuration is required in many 

conservation strategies for the reconstruction of landscapes [5,22]. In many cases, the configuration of 

habitat structure should be considered at a finer scale, particularly in terms of both composition and 

functional connectivity for ecological integrity [23]. Although the resultant spatial pattern from the 

DDSLOP model appears more fragmented for the edge-preferring species, the overall connectivity of 

suitable habitats did not, by any means, decrease. The concentration of higher habitat suitability sites  

in specific areas may be an artifact of the moving window analysis in the spatial optimization  

process [3,4,6], since the suitability of neighboring cells within a species’ territory (i.e., sub-landscape) 

will be promoted simultaneously while a better pattern of the sub-landscape is reorganized. The results 

reveal that isolated land-use types (i.e., plantations) within other land-use types could also provide 

suitable habitats for different species. For instance, isolated habitats become more valuable as they function 

as stepping stones, which make up larger proportions of pristine forests [24]. In other situations, habitat 

structures with isolated trees or artificial perches may increase bird visitation as well as consequent 

dispersion of seeds in degraded habitats [24,25]. Accordingly, habitat islands can in many instances have 



Sustainability 2014, 6 9154 

 

 

high conservational value in landscape reconstruction projects, even though they appear fragmented and 

isolated [12]. In this study we considered each of the target species separately. While our analysis 

indicates that landscape structural preferences of specific species may conflict in some cases, the results 

also reveal matching preferences for other species (see Supplementary 7); suggesting that in an actual 

conservation initiative, multiple species may be grouped together in accordance to their individual 

landscape structure preferences. In so doing a given landscape can be partitioned into distinct areas 

which cater to the needs of specific groups of species. Furthermore, trade-offs between habitat suitability 

of different species which have specific habitat preferences [3,6] should be considered in future studies. 

4.3. Conservation Actions for Landscape Management Using the DDSLOP Model 

The DDSLOP model provides land-use projects with visualizations of optimal landscape configurations 

based on specific criteria. In this study, we focused on the restructuring of our study area in reference to 

habitat suitability for specific species. The models created are not only informative for landscape 

management, but also identify high suitability hot spot habitat areas. This demonstrates that the proposed 

DDSLOP model provides a quantitative method to measure the effects of landscape reconfiguration  

on different points of interest. Furthermore, the DDSLOP model provides a robust multi-action  

planning [15,26] platform by simultaneously reallocating various replaceable land-use types according 

to predefined criteria. This is in stark contrast to single-action planning, such as simple re-vegetation at 

a landscape scale [5]. While a number of excellent studies have assessed the influence of landscape 

configuration on bird diversity in restoration practices [27–29], these studies have generally focused on an 

individual restoration site rather than on the effects of the land-use configuration in terms of the overall 

landscape. With the help of the DDSLOP model the results of such studies can be analyzed and applied 

from the context of total landscape structure. This means that the DDSLOP model has the potential to 

be a real asset in many landscape management initiatives such as those designed to increase habitat 

diversity and suitability for different species, including the restructuring of parks and or cityscapes, the 

re-vegetation of clear cut lands, the design of artificial wetland areas, etc. Nevertheless, in most cases it 

is a complicated task to fragment a landscape in accordance to a specific species’ needs. Therefore, we 

suggest that the modification can initially center on sub-landscapes within hot spot areas. The spatial 

prioritization can be carried out in reference to habitat suitability as a surrogate of conservation  

costs [6], in this way, priorities and consequent sub-landscape modifications can be comprehensively 

considered within a given area. Of course, the restructuring of landscapes needs to take many other 

factors into consideration as well, such as socio-political constraints, etc., as such, DDSLOP 

visualizations may not always be directly applicable, but could serve as valuable references for planners. 

4.4. Evaluation of the DDSLOP Model 

The DDSLOP model provides good global solutions (as opposed to a globally optimal solution) [16] 

based on the DDS algorithm. The DDS algorithm is an appropriate optimizer suited for problems with 

huge solution spaces, as it progressively searches the potentialities by narrowing the solutions based on 

a user-specified number of fitness iteration. In the process, it incorporates both diversification and 

intensification. However, for a multi-action planning problem, an extraordinarily huge solution space 

resulted in many useless searches during the diversification process. In order to improve the efficiency 
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of the diversified search, the DDSLOP model has made DDS more suitable for a greater number of 

problems by incorporating additional criteria. In this case, the preferential modification of chosen cells 

with lower habitat suitability for exchanges. In other words, the cells that contribute to lower suitability 

take priority over others during the adjustment process. This modification successfully increases the 

efficiency of the search, as evident by a steep gradient of the increased fitness, particularly at the outset 

of the model. Furthermore, the DDSLOP model has the ability to jump out of the local optimum via the 

combination of the diversification and subsequent intensification mechanisms. However, the complexity 

of solution space increases with the number of planning units. As the solution space increases the task 

of finding a global optimum becomes difficult. 

In this study, the DDSLOP and the LUPOlib models were compared at different resolutions. We have 

not provided conclusive evidence that the DDS algorithm performs better than a GA algorithm in an 

equivalent spatial optimization problem. Mathematically, the two models solved different optimization 

problems with different complexities in terms of solution spaces. Furthermore, the two models carried 

out different strategies in which the DDSLOP searched for an optimal solution by visiting individual 

points globally at the outset, then moving onto more localized points during consecutive iterations, 

whereas the LUPOlib drove a multi-point search in order to discover different points of interest during 

consecutive iterations. However, this study revealed that the DDSLOP model has the ability to efficiently 

solve spatial optimization problems, which have massive solution spaces in relatively fewer iterations. 

In addition, this study demonstrated that the habitat structure optimized at a cellular level may be more 

suitable for certain species than patch-level optimizations. Finally, since the DDSLOP model has less 

complex stop criteria, simply set the maximum number of inner and outer iterations, we feel as though 

it provides not only a more user-friendly interface, but also a more standardized solution searching 

process. As such, though we have not provided definitive evidence of DDSLOPs superiority in spatial 

optimization, we have rather indicated, quite conclusively, the applicability of DDSLOP as an efficient 

landscape optimization package suitable for massive solution spaces. 

Different species respond to the landscape structure in different ways. In particular, the varying mobility 

and home ranges of different species means that they experience the landscape at different scales. Most 

species, however, only directly interact with a small portion of the overall landscape [18,30]. As such, rather 

than considering the entire landscape structure of a given study area, the DDSLOP model uses a moving 

window analysis to take the range of specific target species into consideration. In this way, the suitability 

of habitat within a specified neighborhood around each cell (i.e., territory or home range of a species) is 

identified and incorporated into the optimization process. As always, the accuracy of survey data of 

specific species plays a big part in the quality of habitat suitability models, and should be of key concern 

for users wishing to use the DDSLOP model. In the context of this study, we have high confidence in the 

presence/absence survey data, which covered the entire study area and was conducted over a three-year 

period (see Supplementary 4). Based on the presence-absence data, the results indicated that the habitat 

suitability models are fairly reliable, with AUC values that are equal to or exceed 0.7 [3,31,32]. However, 

for the Green-backed Tit and the Vinous-throated Parrotbill, the values of average habitat suitability 

were obviously lower than the habitat suitability of Taiwan Yuhina. This is mainly due to the small 

number of their presence data compared to that of Taiwan Yuhina. Besides the different number of 

presence data, the size of moving window also influences the estimated habitat suitability because it 

decides the habitat composition/configuration to a presence point. In addition, we found that both the 
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Green-backed Tit and the Taiwan Yuhina share common habitat structure preferences, which differ from 

those of the Vinous-throated Parrotbill (Supplementary 7). In order to deal with discrepancies between 

species habitat preferences, we suggest the incorporation of all target species’ needs into the same spatial 

optimization problem, i.e., multi-objective analysis in which the habitat suitability should be normalized 

in the optimization process to equalize the importance of all species [5], and therefore the varying relative 

conservational importance of different species can be considered in such initiatives. 

5. Conclusions 

This study developed a novel spatial optimization model that provides a computationally cost 

effective approach for landscape planning. The proposed DDSLOP model delivers a practical  

method for habitat structure optimization at finer resolutions. The case studies conducted indicate the 

effectiveness of our proposed model in providing good habitat structures for landscape management. As 

such, the results provide new insights into fine scale spatial optimization, which is becoming increasingly 

more important when considering appropriate solutions to conflicts between urban sprawl and habitat 

restoration. As always the willingness of landowners to implement land use changes is crucial in the 

application of landscape planning initiatives. Therefore, we are planning to analyze the trade-offs at a 

regional scale by integrating the suitability of urban development into the DDSLOP model in future studies. 
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Supplementary materials can be accessed at: http://www.mdpi.com/2071-1050/6/12/9139/s1. 
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