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Abstract: The goal of this study is to derive water resource vulnerability characteristics  

for South Korea according to individual district populations in a changing climate. The 

definition of water resource vulnerability in this study consists of potential flood damage 

and potential water scarcity. To quantify these vulnerabilities, key factors, or indicators 

affecting vulnerability, are integrated with a technique for order of preference by similarity 

to ideal solution (TOPSIS), which is a multi-criteria decision-making approach to determine 

the optimal alternative by considering both the best and worst solutions. The weight for 

each indicator is determined based on both the Delphi technique and Shannon’s entropy, 

which are employed to reduce the uncertainty in the process of determining the weights. 

The Delphi technique reflects expert opinions, and Shannon’s entropy reflects the uncertainty 

of the performance data. Under A1B climate change scenarios, medium-sized districts 

(200,000–300,000 inhabitants) are the most vulnerable regarding potential flood damage; 

the largest districts (exceeding 500,000 inhabitants) are found to be the most vulnerable with 

respect to potential water scarcity. This result indicates that the local governments of cities 

or districts with more than 200,000 inhabitants should implement better preventative measures 

for water resources. In addition, the Delphi and entropy methods show the same rankings 

for flood vulnerability; however, these approaches produce slightly different rankings 
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regarding water scarcity vulnerability. Therefore, it is suggested that rankings from not 

only subjective but also objective weights should be considered in making a final decision 

to implement specific adaptive measures to climate change. 

Keywords: TOPSIS; Delphi technique; Shannon’s entropy; climate change 

vulnerability; population 

 

1. Introduction 

Ensuring that cities have an adequate supply of water has become increasingly important as human 

populations continue to concentrate in urban areas. The global urban population has increased from 

30% in 1950 to over 50% as of 2010 [1]. A similar trend has been recorded in South Korea, where 

more than 80% of the population now lives in urban areas. The rapidly growing demands of urban areas 

are straining local and regional water supplies, and concerns over urban water scarcity have become 

more prominent in this country. 

Recent reports of water shortages have reflected deeper concerns about the impacts of climate 

change, population growth, and environmental regulations on water supplies [2]. Vörösmarty et al. [3] 

concluded that impending global-scale changes in population and economic development over the next 

25 years will dictate the relationship between water supply and demand to a greater degree than will 

changes in the mean climate. Arnell [4] created an assessment of the ways in which water supply 

companies in England and Wales are adapting to climate change, evaluated in the context of a model 

describing the adaptation process. Medellín-Azuara et al. [5] employed downscaled hydrologic results 

from a dry-warm climate for the year 2085 in an economic-engineering optimization model of California’s 

statewide water supply system at 2050 water demand levels. 

Flood damage issues are also a looming concern for urban areas. Due to the rapid increase in 

impervious area, the peak flow and time to achieve peak flow have become larger and shorter, respectively. 

Therefore, flood damage has grown unexpectedly concurrently with climate change. Extensive research 

on how climate change will affect flood vulnerability has been conducted in recent years to facilitate 

adaption to climate change. For example, Cameron et al. [6] explored the potential to assess the impacts 

of climate change on flood frequency for the gauged upland Wye catchment at Plynlimon, Wales, 

while accounting for uncertainty when modeling rainfall-runoff processes under current conditions. 

Prudhomme et al. [7] implemented appropriate methods that incorporate climate change uncertainty in 

flood risk assessment planning. Kay et al. [8] investigated the uncertainty in the impact of climate 

change on flood frequency in England through the use of continuous river flow simulations. 

Extensive reports and research have demonstrated that the water scarcity phenomenon and flood 

damage issues are related to multiple considerations and constraints. Stewart [9] suggested that the 

goal of any multiple criteria decision making (MCDM) technique should be to provide help and guidance 

to a decision maker in discovering his or her most desired solution to a problem (or that course of 

action which best achieves the decision maker’s long-term goals). Therefore, vulnerability assessment 

is closely related to MCDM problems because it applies a spatial ranking to hazards [10–12]. For 

example, Li et al. [13] proposed a composite method based on variable fuzzy sets and the information 
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diffusion method for disaster risk assessment. Jun et al. [12] developed a framework to quantify flood 

vulnerability in South Korea by considering climate change impacts, and Kim et al. [14] assessed the 

present and future vulnerability of water scarcity to climate change and variability in the South Korean 

provinces using a VIKOR (Visekriterijumska Optimizacija I Kompromisno Resenje) approach. 

Unfortunately, only a few climate change vulnerability studies (e.g., [1,2]) have examined water 

resource vulnerability characteristics in relation to population size even though water resource 

vulnerability, including potential flood damage and potential water scarcity, is closely linked to  

not only climate change but also population growth. Therefore, this study developed vulnerability 

characteristics for flood and water scarcity for six different population size ranges in South Korea. The 

A1B climate change scenario of the Intergovernmental Panel on Climate Change (IPCC) was used, and 

the vulnerabilities were quantified using an MCDM method, which is a technique for order of preference 

by similarity to ideal solution (TOPSIS). In determining the weights for each criterion in the MCDM 

method, the uncertainty of the Delphi weights, acquired through a survey of experts, was reduced by 

comparing with the weights attained from Shannon’s entropy method. 

2. Methods  

2.1. Procedure 

This study consisted of four steps to quantify the vulnerability of flood damage and water scarcity 

in districts within South Korea according to their population sizes (Figure 1). The first step was to 

classify the provinces according to their population sizes so that the vulnerability of flood damage and 

water scarcity could be assessed for each population group. The second step was to determine weighting 

values using Delphi survey and Shannon’s entropy, which provided subjective and objective weights, 

respectively. The third step was to identify the vulnerability using a TOPSIS method. The final step 

was to compare the vulnerability characteristics by population size. We focused on the vulnerability 

characteristics according to the population size of each district; therefore, vulnerability components 

and indicators from previous studies [14,15] were used in the current study. 

Figure 1. Procedure used in this study. 
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2.2. Vulnerability Framework 

The concept of vulnerability has a long history in the risk-hazard and social science literature [16], 

but it was introduced to the water sector only in 1992, after the Dublin conference declared freshwater 

to be a vulnerable resource. Vulnerability analysis is widely used in such disciplines as natural science, 

economy, poverty, climate change, water resources, human ecology, and geography. In recent years, 

interdisciplinary research teams have begun exploring the vulnerability of linked human environment 

systems [16]. 

A general conceptual model for vulnerability has emerged in the climate change literature that is 

similar to the wider use of the concept [17,18]. Adger [17] has summarized the vulnerability knowledge 

developed so far and reports considerable diversity in the concept and definition of vulnerability based 

on the discipline and context of each study. This study used a vulnerability framework that has been 

previously defined and applied by the IPCC report among the various frameworks. Vulnerability is defined 

as the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate 

change, including climate variability and extremes. Vulnerability is also a function of the character, 

magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive 

capacity [19]. Although Hinkel [20] criticized the IPCC’s definition as being overly trendy and noted 

the resulting difficulty in making it operational, the definition is one of the most generic available and 

could therefore be considered a basis for further refinement. This situation has been the case in the 

global environmental change and sustainability science communities, who introduced the notion of a 

coupled social-ecological system in conceptualizing vulnerability [21,22]. Therefore, this study considered 

the IPCC vulnerability framework. 

In the IPCC framework, climate exposure refers to a large variety of climate-related stimuli, such  

as a rise in sea level, temperature changes, precipitation changes, heat waves, heavy rainstorms, and 

droughts. Sensitivity is defined as the degree to which a system is affected, either adversely or 

beneficially, by climate-related stimuli. Adaptive capacity is the ability of a system to evolve to 

accommodate environmental hazards or policy changes and to expand the range of variability it can 

accommodate [17]. 

Although sensitivity, adaptive capacity, and vulnerability are useful integrative and multidimensional 

concepts for the evaluation of a water resources system’s status, they are also complex concepts that 

cannot be measured or observed directly. Thus, it has been necessary to identify proxy variables or 

indicators for use in assessment and modeling [23]. Desirable proxy indicators are variables that 

quantify, measure, and communicate relevant information, and they should simplify or summarize a 

number of important properties rather than focus on the isolated characteristics of a system. Indicators 

must be measurable or at least observable, and the methodology used to construct them should be 

transparent and understandable [24]. 

2.3. Weighting Values 

This study used two different approaches to determine the weighting values. The Delphi technique 

was used to derive the subjective weights reflecting expert opinions. Shannon’s entropy was also used 

to derive the objective weights reflecting the uncertainty of the performance values. 
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2.3.1. Delphi Technique 

The Delphi technique is a method for structuring a group communication process so that the process 

is effective in allowing a group of individuals, as a whole, to address a complex problem [25]. The 

Delphi technique is founded on a structured process for collecting and distilling knowledge from a 

group of experts through a series of questionnaires interspersed with controlled opinion feedback [26]. 

A chain of iterative questionnaires is sent to a group of purposely selected experts, who remain 

anonymous to one another [27]. The results of the previous questionnaires are returned to the respondents, 

who are then able to modify their responses. By the second of three rounds in this process, it is hoped 

that the experts will be able to arrive at a consensus on the estimation problem. 

Rowe et al. [28] characterized the classical Delphi technique by four key features. (1) The Delphi 

participants are anonymous, which allows them to freely express their opinions without undue social 

pressure to conform from others in the group. Decisions are evaluated based on their merit rather than 

on who has proposed the idea. (2) Iteration allows the participants to refine their views in light of the 

group’s progress from round to round. (3) Controlled feedback informs the participants of the other 

participants’ perspectives and provides an opportunity for Delphi participants to clarify or change their 

views. (4) A statistical aggregation of the group’s responses allows for quantitative analysis and 

interpretation of the data. 

2.3.2. Shannon’s Entropy 

The entropy method developed by Shannon [29] provides objective weights with which to solve 

uncertainty information because it uses only the information from indicators. The influence of these 

indicators is obtained from the magnitude of their entropy weight. Smaller entropy values and larger 

entropy weights of certain index accounts in this index will provide more useful information to the 

decision maker [30]. 

For the MCDM problems, a performance matrix containing elements xij is constructed, where i 

represents the alternatives (i = 1, 2, …, m) and j represents the evaluating indicators (j = 1, 2, …, n). To 

apply the entropy method, a normalized decision matrix can be obtained as follows: 

 

(1)

The uncertainty and entropy are smaller if a relatively large amount of information is available and 

vice versa [30]. As in Equation (4), the entropy is defined as 
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(4)

where n denotes the number of evaluated objects, and when fij  0 , fij  log fij  0 . Finally, the 

entropy weight of the ith evaluating indicator is determined as follows: 

 

(5)
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m
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2.4. TOPSIS 

The TOPSIS method was initiated for solving a multiple attribute decision-making problem with  

no articulation of preference information [31]. The TOPSIS technique is based on the concept that the 

ideal alternative solution has the best level outcome for all considered attributes, whereas the negative 

ideal solution is the one with the worst attribute values. A TOPSIS solution is defined as the alternative 

solution that is simultaneously farthest from the negative ideal solution and closest to the ideal 

alternative solution [32]. 

The TOPSIS procedure is presented in [33]. To apply the MCDM method, we respectively constructed 

an original indicator value matrix and a weight matrix: 

 (6)

 (7)

where i represents the alternatives, i.e., groups by population size (i = 1, 2, …, m, and j represents the 

evaluating indicators (j = 1, 2, …, n). The weighting values sum to 1, i.e., 0  wi 1 and wi 1
i

m

 . 

This step transforms various attribute dimensions into non-dimensional attributes, which allows for 

a direct comparison among the attributes. Therefore, the normalized performance matrix R is constructed 

by computing the normalized value rij as follows: 
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Moreover, the PIS (positive ideal solution) and the NIS (negative ideal solution) are respectively 

determined as follows: 

 
(11)

 (12)

The separation distances between each alternative and the PIS and between each alternative and the 

NIS are respectively defined to be 

 

(13)

Therefore, the closeness coefficient for each alternative i can be defined as 

 

(14)
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Finally, all alternatives are ranked to determine the best alternative solution according to the 

closeness coefficient. 

3. Materials 
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Figure 2. Study area. Districts in South Korea according to their province and population. 

(a) Province classification; (b) Population classification. 

(a) (b) 

Table 1. Characteristics of the 16 provinces in South Korea. 

Provinces Number of 
Districts 

Area 
(km2) 

Population  
(103 People) Name Symbol 

Seoul A01 25 605.3 10,039 
Busan A02 16 765.9 3446 
Daegu A03 8 885.6 2431 

Incheon A04 10 1029.4 2661 
Gwangju A05 5 501.3 1450 
Daejeon A06 5 539.9 1515 
Ulsan A07 5 1057.1 1094 

Gyeonggi-do A08 31 10,183.9 11,637 
Gangwon-do A09 18 16,874.9 1443 

Chungcheongbuk-do A10 12 7431.5 1479 
Chungcheongnam-do A11 16 8598.0 1959 

Jeollabuk-do A12 14 8051.0 1703 
Jeollanam-do A13 22 12,095.1 1740 

Gyeongsangbuk-do A14 23 19,026.1 2592 
Gyeongsangnam-do A15 20 10,531.1 3141 

Jeju-do A16 2 1845.9 547 

Total 232 100,021.7 48,877 
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The weights were determined through the use of two-round surveys, which were reduced to the 

variability of the weighting values determined by the expert groups. However, the weights obtained 

from the Delphi technique are subjective. Therefore, we also used Shannon’s entropy method to derive 

objective weights to effectively compare the influence of subjective and objective weights. 

3.3. Performance Values 

Datasets were obtained from a climate change adaptation tool based on GIS and created by the 

NIER [15] to create a performance matrix of South Korea’s 232 districts. The sensitivity and adaptive 

capacity data were acquired from Statistics Korea, the National Institute of Disaster Management Institute, 

and GIS analysis. The climate exposure data were acquired from the climate model and hydrologic 

model simulations under the A1B climate change scenario. These climate data were set by downscaling 

the outputs from the National Center for Atmospheric Research (NCAR) Community Climate System 

Model 3 with the PSU/NCAR Mesoscale Model (MM5) [34,35]. The outputs from the MM5 were 

used to derive hydrologic models of the land-surface process model and a hydrologic simulation program 

in FORTRAN, which in turn provided the hydrologic data. 

4. Results 

4.1. Population-Based Groups 

We categorized the 232 districts into six groups (from G1 to G6) according to each district’s population 

size (Figure 2b and Table 2). The largest districts (populations exceeding 500,000) were classified as 

G1. The next-largest districts (populations exceeding 300,000) were placed in G2. Medium-sized districts, 

i.e., those with populations exceeding 200,000 and 100,000 were placed in G3 and G4, respectively. 

Small districts (fewer than 100,000 inhabitants) were grouped into G5 and G6. Seven metropolitan cities 

(A01–07) are contained within G1, G2 and G3. The other cities (A08–A16) are in the smaller districts. 

Table 2. Grouping of districts according to population size. 

Population Size Symbol Number of Districts 

More than 500,000 G1 23 
300,000–500,000 G2 42 
200,000–300,000 G3 31 
100,000–200,000 G4 39 
50,000–100,000 G5 51 
Less than 50,000 G6 46 

Total  232 

4.2. Weights with Subjective and Objective Approaches 

We used two different weights, as shown in Tables 3 and 4. As noted above, “Delphi” corresponds 

to an average of expert opinions obtained from Delphi surveys. The weights for indicators (i.e., criteria) 

or for components (sensitivity, adaptive capacity, and climate exposure) based on the expert opinions 

gathered in the Delphi survey were quite different from those based on the data characteristics given 
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by Shannon’s entropy, as expected. Considering the weights for different vulnerability components 

(sensitivity, adaptive capacity, and climate exposure), the entropy-based method led to relatively smaller 

weights for climate exposure according to both the flood and water scarcity vulnerabilities; however, 

the Delphi survey led to relatively larger weights. Nevertheless, the entropy-based weights for sensitivity 

were considerably higher than the Delphi-based weights for flood and water scarcity vulnerability. The 

opposite weights were derived with adaptive capacity, meaning that the entropy-based weights for 

flood damage and the Delphi-based weights for water scarcity were higher than the others. 

Table 3. Weighting and indicator values for flood vulnerability. 

Criteria 
Weighting Value Indicator Value 

Delphi Entropy Min. Avg. Max. 

Sensitivity 0.27 0.42    

Low-lying area of less than 10 m (km2) 0.10 0.067 0.0 17.5 266.2 

Low-lying household of less than 10 m 0.10 0.061 0.0 2.5 61.9 

Area ratio with banks (%) 0.07 0.153 0.0 2.6 21.1 

Population density (persons/km2) 0.12 0.095 0.19 38.7 271.8 

Total population (persons) 0.10 0.148 0.833 202.8 1040 

Regional average slope (°) 0.11 0.190 0.8 11.5 23.0 

Percentage of road area (%) 0.07 0.156 0.7 5.6 26.2 

Cost of flood management over last three years  
(106 Korean won) 

0.16 0.081 0.0 342.5 21129.5 

Population affected by flood management over last 
three years (10 persons) 

0.15 0.049 0.4 200.8 103.8 

Adaptive Capacity 0.34 0.38    

Financial independence (%) 0.13 0.192 7.4 28.0 90.5 

Number of civil servants per population  
(persons/103 people) 

0.07 0.208 25.0 55.0 90.8 

GRDP (106 Korean won) 0.11 0.180 8.7 87.7 236.5 

Number of civil servants related to water 0.13 0.104 0.0 0.4 7.9 

Ratio of improved river section (%) 0.14 0.208 16.0 72.6 100.0 

Capacity of drainage facilities (m3/min) 0.21 0.105 0.0 48.1 459.0 

Flood controllability of reservoirs (106 m3) 0.21 0.003 0.0 11.3 616.0 

Climate Exposure 0.39 0.19    

Daily maximum precipitation (mm) 0.31 0.205 58.4 80.8 162.6 

Days with over 80 mm of rainfall (days) 0.23 0.189 0.0 0.7 2.5 

5-day maximum rainfall (mm/5 days) 0.19 0.205 92.6 141.6 273.1 

Surface runoff (mm/day) 0.16 0.197 0.0 0.1 0.3 

Summer precipitation (June–September) (mm) 0.11 0.205 311.8 605.1 933.9 

In terms of sensitivity to flood damage, the expert groups placed more weight on the cost and population 

associated with past flood damage, but the data-driven weights were relatively low for those indicators. 

Additionally, a reservoir’s flood controllability (i.e., capacity) in terms of adaptive capacity for flood 

damage also differed between the Delphi and entropy approaches, meaning that reservoir capacity was 
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critical for flood vulnerability but lacking in its assessment function. The indicators for water scarcity 

vulnerability, such as household water consumption and reservoir capacity, also presented discrepancies. 

Table 4. Weighting and indicator values for water scarcity vulnerability. 

Criteria 
Weighting Value  Indicator Value 

Delphi Entropy Min. Avg. Max. 

Sensitivity 0.31 0.38    

Population density (persons/km2) 0.11  0.078 0.19 38.7 271.8 

Total population (persons) 0.10  0.117 8.3 202.6 1040 

Water supply (L/person/day) 0.07  0.143 299.7 359.5 444.1 

Grain production per area (ton/km2) 0.07  0.092 0.0 29.5 300.1 

Livestock production per area (km2) 0.06  0.101 0.6 65.4 630 

Groundwater withdrawal (m3/year) 0.08  0.119 0.02 15.7 103.3 

River water withdrawal (m3/year) 0.09  0.118 0.0 152.8 762.1 

Household water consumption (103/m3/year) 0.15  0.051 0.2 11.5 143.2 

Industrial water usage (103 m3/year) 0.14  0.077 0.0 13.2 279.7 

Agriculture water usage (103 m3/year) 0.13  0.103 0.01 68.0 743.5 

Adaptive Capacity 0.38 0.33    

Financial independence (%) 0.12  0.152 7.4 27.9 90.5 

Civil servants per population (persons/104 people) 0.05  0.159 25.0 55.0 90.8 

GRDP (106 Korean won) 0.09  0.139 8.7 87.7 236.5 

Number of civil servants related to water (persons) 0.09  0.085 0.0 0.4 7.9 

Water supply distribution ratio (%) 0.15  0.165 74.5 89.6 100.0 

Groundwater capacity (103 m3/year) 0.14  0.139 0.32 46.8 327.0 

Reservoir for water supply capacity per area (103 m3) 0.21  0.093 0.0 1.3 22.3 

Recycled water usage per area (103 ton/year) 0.15  0.068 0.18 14.9 210.0 

Climate Exposure 0.31 0.29    

Maximum number of continuous non-rainy days (days) 0.22  0.178 13.9 21.0 26.2 

Winter (Dec, Jan and Feb; DJF) precipitation (mm) 0.18  0.173 0.5 1.1 3.4 

Spring (Mar, Apr and May; MAM) precipitation (mm) 0.21  0.178 1.2 1.9 3.0 

Winter (DJF) evapotranspiration (mm) 0.10  0.125 0.2 1.9 13.8 

Spring (MAM) evapotranspiration (mm) 0.13  0.175 0.04 2.3 5.6 

Underground outflow (mm) 0.15  0.171 0.0 0.3 0.7 

4.3. Vulnerability Rankings and Scores 

We assessed flood and water scarcity vulnerability based on district size using two different weights, 

as shown in Equations (8)–(15). First, we normalized the performance values because they are mutually 

incompatible. Tables 3 and 4 show that most of the measurement units are different; therefore, their 

magnitudes vary substantially. To make the various criterion scores compatible, they must be transformed 

into a common measurement unit while ensuring that the scores for each criterion range from 0 to 1. 

The normalization technique that uses the maximum or minimum values, i.e., Equation (9), is limited 

in considering large variations in the percentage or fractional ranges of the performance values.  

For example, performance values for the cost of flood management range from approximately 0 to 

21.1 million Won; the ratios relative to the average range from approximately 0 to 62. Moreover, the 
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performance values for the water supply range from approximately 330 to 444 L/person/day; the ratios 

relative to the average range from 0.83 to 1.2. Such smoothing effects of normalization can be overcome 

by other normalization techniques, such as the Z-score method, which, to some extent, uses the average 

and standard variation of the performance values. However, such a method is limited in that criteria 

with relatively large ranges of performance values might over-dominate the final scores. 

In terms of flood vulnerability (Table 5 and Figures 2a and 3a), G3 is the most vulnerable group, 

which is followed by G1. However, G4, G5, and G6 are relatively negatively vulnerable. Based on 

these findings, districts with 200,000–300,000 inhabitants are vulnerable to flood damage in a changing 

climate. Therefore, preventive measures for flood damage should be planned in these medium-sized 

districts. In terms of sensitivity rankings, G3 and G1 are highly vulnerable; G2 is the next most vulnerable 

group. The flood damage for these three regions may be adversely affected by climate-related stimuli. 

In terms of adaptive capacity, G1, G2, and G3 are the most vulnerable, i.e., they do not have the ability 

to evolve to accommodate environmental hazards or policy changes for increases in flood damage. In 

terms of climate exposure, G5 is the most vulnerable, while G6, G1, and G2 formed the second most 

vulnerable group; therefore, these groups have a high likelihood of exposure to extreme climate stimuli. 

Therefore, G1 is overly weak in terms of adaptive capacity, and districts belonging to G1 should plan 

to enhance their ability to accommodate environmental hazards. 

In terms of water scarcity (Table 6 and Figures 2b and 3b), G1 is the most vulnerable region, 

whereas G5 and G6 are relatively stable districts. Contrary to the results for flood vulnerability, districts 

with more than 500,000 inhabitants are vulnerable to water scarcity in a changing climate; therefore, 

preventive measures that ensure more stable water resources should be investigated. In terms of sensitivity 

and adaptive capacity, G1, G2 and G4 are highly vulnerable, whereas G3, G5, and G6 are relatively 

less vulnerable. Because G1, G2, and G4 have a high likelihood of extreme drought conditions, a 

numerical analysis of water scarcity should be conducted. 

Table 5. Flood vulnerability according to the Delphi and entropy methods. Sensitivity, 

adaptive capacity, and climate exposure are normalized values. 

Method Symbol Sensitivity 
Adaptive 
Capacity 

Climate 
Exposure 

C* Ranking 

TOPSIS with 
Delphi 

G1 0.510 0.656 0.370 0.363 2 
G2 0.474 0.565 0.411 0.306 3 
G3 0.546 0.498 0.412 0.871 1 
G4 0.460 0.487 0.413 0.263 4 
G5 0.354 0.412 0.419 0.163 5 
G6 0.193 0.311 0.394 0.023 6 

TOPSIS with 
entropy 

G1 0.515 0.715 0.465 0.398 2 
G2 0.490 0.555 0.498 0.331 3 
G3 0.513 0.494 0.489 0.886 1 
G4 0.427 0.521 0.488 0.266 4 
G5 0.297 0.471 0.477 0.138 5 
G6 0.165 0.403 0.474 0.004 6 
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Figure 3. Rankings for flood and water scarcity vulnerability for each group based on the 

Delphi and Entropy methods. (a) Flood vulnerability; (b) Water scarcity vulnerability. 

(a) (b) 

Table 6. Water scarcity vulnerability according to the Delphi and entropy methods. 

Sensitivity, adaptive capacity, and climate exposure are normalized values. 

Method Symbol Sensitivity 
Adaptive 
Capacity 

Climate 
Exposure 

C* Ranking 

TOPSIS with 
Delphi 

G1 0.782 0.581 0.590 1.000 1 
G2 0.698 0.439 0.537 0.568 2 
G3 0.670 0.482 0.493 0.538 3 
G4 0.582 0.501 0.522 0.438 4 
G5 0.520 0.507 0.471 0.286 5 
G6 0.476 0.526 0.393 0.224 6 

TOPSIS with 
entropy 

G1 0.669 0.696 0.531 1.000 1 
G2 0.518 0.518 0.470 0.246 4 
G3 0.571 0.499 0.466 0.300 3 
G4 0.531 0.531 0.498 0.325 2 
G5 0.543 0.505 0.448 0.215 5 
G6 0.543 0.523 0.378 0.125 6 

Furthermore, the two rankings determined using the Delphi and entropy methods are identical  

for flood vulnerability; however, these rankings are slightly different for water scarcity vulnerability 

(Figure 3). G2 is the second most vulnerable district according to the Delphi weights and the fourth 

most vulnerable based on the entropy method, while G4 is fourth and second, respectively. Furthermore, 

Figure 4 presents the rankings based on the average vulnerability scores from the Delphi and entropy 

methods. Based on a comparison of the Delphi-based vulnerability and the entropy-based vulnerability, 

the results suggest that it is crucial to consider multiple possibilities for criteria weights to make  

robust decisions. 
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Figure 4. Distribution of flood and water scarcity vulnerability in districts based on the 

average vulnerability scores determined using the Delphi and entropy methods. (a) Flood 

vulnerability; (b) Water scarcity vulnerability. 

(a) (b) 

5. Conclusions 

In this study, we derived flood and water scarcity vulnerabilities according to district population 

sizes under a specific climate change scenario, i.e., IPCC’s A1B. To quantify vulnerability, TOPSIS 

was used along with two approaches to determine the weights for key indicators of vulnerability. The 

weights based on Delphi surveys were complemented with the weights based on Shannon’s entropy. 

The critical vulnerability characteristics according to population of individual districts were derived 

by applying the proposed procedure to vulnerability in South Korea. The medium-sized districts and 

the largest districts were the most vulnerable to flood damage and water scarcity. In particular, the 

results suggest that we could enhance factors related to water scarcity sensitivity and adaptive capacity 

for the largest districts. Additionally, the adaptive capacity of G1 to flood damage displays high 

vulnerability. In contrast, G5 and G6 (for flood damage and water scarcity) are negatively vulnerable. 

Therefore, districts with 50,000–100,000 or fewer than 50,000 inhabitants are relatively well-prepared 

and/or less vulnerable to climate change. 

In the future, this study could be applied to develop particular preventive measures for various 

possible climate change scenarios with both subjective and objective weighting methods. In particular, 

large sets of scenarios and multiple MCDM approaches should be used to draw practical and robust 

adaptation strategies to climate change. Moreover, the multiple rankings could be integrated with 

aggregation methods (e.g., [32]). 
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