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Abstract: In this study, concrete-filled tube (CFT) column-to-foundation connections were 

investigated experimentally to improve the design of their structural details. Initially, five 

different types of foundation connections, which were classified according to the design 

parameters incorporating the types of anchor bolts, shear connectors, base members, and 

reinforced bars used, were fabricated. After conducting structural experiments on these 

foundation models, the performance and capacity of the individual model cases from the test 

results were compared with each other. The test results showed that some of the test models 

designed according to current design guidelines had problems related to the structural details. 

Therefore, this study proposed an adequate design methodology to improve the performance 

of foundation components, such as high tension bolt, base frame members, and embedded 

plate. An analytical investigation of the force-deformation relationship as well as the 

characteristic strains distributed over the individual foundation components was performed. 
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1. Introduction 

Design and construction methods have been improved by the development of new construction 

technologies in the field. In particular, road bridges, as a representative civil engineering structure, have 

become longer because of the demand for more space, and are constructed using a range of design 

methodologies. Currently, bridge piers need to be designed with sufficient strength to support the 

superstructure of such long-span bridges. Moreover, many piers upholding the road bridge have been 

constructed on space-intensive downtown area. For these reasons, most bridge piers have recently been 

designed with various types of concrete-filled tube (CFT) columns, which have structural advantages 

with regard to durability, strength and sustainability. In addition, concrete foundations, as the 

substructure of a bridge that transfers the loads from the pier to the ground, should be erected using 

reasonable design and construction methods to secure superior capacity and stable performance. 

For such a substructure, bridge piers can be connected to the base foundations using high strength 

anchor bolts. The anchor bolts installed between the lower pier and concrete foundation help ameliorate 

the stiffness of the substructure. Furthermore, double base plates are embedded into the concrete 

foundation and fastened to the anchor bolts under the pier in an effort to improve the behavioral 

performance and strength capacity. On the other hand, this erection method traditionally used for 

constructing the foundation connection includes some critical drawbacks associated with the 

complicated design, overestimated size demand, and unexpected brittle failure. With the increasing dead 

and live loads transferred from the superstructure, a relatively larger sized concrete foundation is needed 

for practical construction compared to other system designs. Therefore, there is demand for more anchor 

bolt installations arranged in 2 or 3 rows. In addition, complicated design details are necessary to 

accommodate this bolt arrangement with more equipped- and uneconomically larger  

sized base components as discussed elsewhere [1,2]. This paper proposes new structural details for 

column-to-foundation connection design to overcome these problems. 

Previous studies focused mainly on the I-shape and rectangular CFT column-to-foundation 

connections for building structures rather than on the circular CFT column ones for bridge structures as 

discussed elsewhere [3–6]. For example, Lee et al. numerically studied the exposed column-base plate 

connections about weak axis [4,5] and Astaneh et al. suggested optimum yield conditions after 

conducting experimental tests with axial and lateral load [7]. In addition to these column-to-foundation 

connections for building structures, studies about structural details of bridge piers improving seismic 

performance were mostly conducted. 

In particular, pilot studies for the experimental tests (or numerical analyses) conducted on circular 

CFT column-to-foundation connections are far from sufficient to induce adequate structural details for 

their practical design. Park et al. [8] proposed new connection details for circular steel piers after 

performing experimental tests and numerical analyses. They suggested a new pier connection that was 

replaced with reinforced steel bars acting as the fastened anchors, and examined its behavioral 

characteristics through reinforcement measures. Finite element (FE) models were designed based on the 

new structural details presented. After FE analysis, the analysis results were compared with the 

experimental test results to determine the adequacy of the design methods. The reinforcing bars were 

found to be adequate to set up the structure with a relatively smaller moment. 
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On the other hand, it is difficult to obtain more strength in the case of installing these bars at the 

foundation anchor of a long span bridge. Therefore, this study examined the drawbacks concerning the 

established design methodology for circular CFT column-to-foundation connections and the proposed 

new structural details to overcome these problems. High tension bolts were used to replace the embedded 

anchors to improve the capacity of the anchor frame. The advantages of installing high tension bolts can 

be verified through structural experiments performed on the connection specimens. Finally, a strength 

evaluation on the column base and foundation connection was conducted by analyzing the experimental 

test results, and new design guidelines were then suggested in this study. 

2. Experimental Section 

2.1. Design and Details of Specimens 

The aims of this study were to improve the structural design details for circular CFT  

column-to-foundation connections, and suggest reasonable design equations. To achieve this  

research aim, some specimens were designed according to the current design guidelines as discussed 

elsewhere [1,2,9–11]. Table 1 summarizes the design parameters classified as individual model cases. 

All models had eight anchor bolts placed around the outside of the CFT column. 

Table 1. Parameter classification. 

Specimens Parameters Details 

M-AF General Anchor, Anchor Frame Figure 1a 

H-NF High-Tension Bolt, No Anchor Frame Figure 1b 

H-ST High-Tension Bolt, Stud Figure 1c 

H-IB High-Tension Bolt, Inner Deformed Bar Figure 1d 

H-IA High-Tension Bolt, Inner Anchor Figure 1e 

The M-AF (Mild Steel Anchor Bolt-Anchor Frame) designed according to the current design code 

was composed of general anchor blots and anchor frames, as shown in Figure 1a. The anchor bolts were 

attached directly to the anchor frame embedded in the concrete foundation. The anchor frame can 

withstand lateral loads until the anchor bolts are pulled out or fail by yielding. On the other hand, 

complicated design details are needed for this foundation type, which make it difficult to predict the 

accurate pattern of the response mechanism. Although the embedded anchor frame may solidly clamp 

the anchor bolts to the foundation without slipping, it clearly increases the size of the concrete 

foundation. As shown in Figure 1b, the H-NF (High Tension Bolt-No Anchor Frame) model as an 

alternative foundation type was not designed with the anchor frame to resolve the simple design 

measures. Instead, general steel anchor bolts were replaced with high-tension strength bolts to 

compensate for the stiffness to resist lateral loads. The high tension bolts can easily fix a double plate 

also embedded in the concrete foundation. 

The H-ST (High Tension Bolt-Stud) model shown in Figure 1c was similar to the H-NF model except 

for the installation of the shear studs. The eight shear studs were welded to individual high tension bolts 

to increase the adhesion force to the attached surface. In addition, the upper and lower nuts were added 

to the upper base plate to enhance the performance of the high tension bolts on the compressive side. 
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The H-IB model shown in Figure 1d was comprised of deformed bars also installed in the inside of the 

C-FT column as well as component members that were also found in the H-ST model (e.g., high tension 

bolts and embedded double plates). The sixteen deformed bars installed inside were 1150 mm in length. 

Finally, the H-1A model shown in Figure 1e was designed with the inner anchor bolts replacing the 

deformed bars. The inner anchor bolts were fastened between the embedded double plates using nuts. This 

model can improve the behavioral capacity in terms of the strength, ductility, and force redistribution. 

(a) (b) 

(c) (d) 

Figure 1. Cont. 
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(e) 

Figure 1. Parameter classification (a) Mild steel anchor bolt-anchor frame (M-AF)  

(b) H-NF (c) H-ST (d) H-IB (e) H-IA. 

All specimens were fabricated in a full scale, separating column and base parts, and had a 3400 mm 

uniform height consisting of a 900 mm foundation height and a 2500 mm column height, respectively. 

The clear distance of the base plates was 375 mm and the thickness of the ribs was 22 mm.  

The internal diameter of the column was 500 mm. These member dimensions were applied uniformly to 

all model cases presented herein. Therefore, the connection details illustrated in Figure 1 result in design 

parameters that can be used to classify the individual model cases. In addition, Figures 2 and 3 show 

details of base plates and ribs, and fabrication process, respectively. Table 2 lists the distinctive design 

details applied to each specimen model. 

 
(a) (b) 

 
(c) (d) 

Figure 2. Details of base plates and ribs (a) base plates and ribs (b) front view  

(c) sectional view (top plate) (d) sectional view (bottom plate). 
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(a) (b) 

(c) (d) 

Figure 3. Fabrication process of specimens (a) Steel tube and base plates (b) Reinforcement 

placing in foundation (c) Concrete placing in foundation (d) Fabrication of column. 

Table 2. Dimensions of the test specimens. 

Classification Details (mm) 

Column 

Height 2500 

Diameter 
Outside 518 

Inside 500 

Baseplate 

Distance between Baseplates 375 

Thickness of Baseplates 25 

Thickness of Ribs 15 

Foundation 

Width 2210 

Length 1710 

Height 900 

General and High-tension Anchor Bolt
Diameter 30 

Length 1000 

Inner Deformed Bar 
Diameter 22 

Length 1125 

Inner Anchor 
Diameter 22 

Length 700 

2.2. Material Properties 

SM 490, low carbon steel, was used for all specimens. Three tensile coupon tests for each base 

component member, anchor bolt, and high tension bolt were performed to determine their material 

properties. Table 3 lists the yield stress, ultimate tensile strength, and elongation ratio obtained from the 
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coupon tests. The concrete was pumped into the hollow section tube column and the connected 

foundation twice. Six cylindrical-shaped concrete pieces were fabricated to measure the average 

compressive strength. Table 4 lists the concrete compressive strength, which had been pumped primarily 

and secondarily. 

Table 3. Test results of steel. 

Classification Yield Strength (MPa) Tensile Strength (MPa) Elongation (%) 

Steel Pipe 322.28 515.97 32.52 

General Anchor 542.92 584.05 17.03 

High-Tension Bolt 561.91 732.68 16.25 

Table 4. Test results of concrete. 

Classification 
Average Compressive 

Strength (MPa) 
Average Compressive Strength/Design 

Compressive Strength (%) 

First 40.08 97.5 

Second 27.36 99.0 

2.3. Loading Equipment and History 

The cyclic loads were applied to the specimens using three actuators. As shown in Figure 4, two 

actuators with a 1000 kN maximum loading capacity were used to reproduce the axial loads while the 

other with a 2000 kN maximum loading capacity was used to reproduce the lateral loads. The 1500 kN 

axial load was applied uniformly to take the gravity loads into consideration during the experimental 

tests, and the increasing lateral loads were imposed steadily by moving the actuator at the end of the 

CFT column. The displacement control was carried out to reproduce the stable-lateral loads. Figure 5 

shows the displacement loading history of the cyclic test. A couple of cycles were performed at each 

amplitude as discussed elsewhere [6–8,12]. Cyclic tests were carried out until complete failure of the 

experimental test specimens. 

 

Figure 4. Test setup view. 
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Figure 5. Cyclic loading sequence. 

2.4. Instrumentation 

The experimental data was measured to examine the hysteretic behavior of the individual  

specimens as discussed by Marson and Bruneau [12]. As shown in Figure 6a, the wire displacement 

transducer (w-LVDT) was installed on the top of the loading point to measure the lateral displacement. 

In addition, the displacement transducers (LVDT) were installed to measure the displacements occurring 

at the half and quarter of the CFT column height. 

(a) (b) (c) 

Figure 6. Locations of instrumentations on specimen (a) Detailed locations of instrumentations 

on the column (b) Detailed locations of instrumentations on base plates  

(c) Detailed instrumentations on anchors. 

The strain gauges were attached to the bottom of the ribs between both base plates. A total of four 

gauges were installed on both sides of the ribs on which the load was concentrated mostly when the 

lateral load was applied. Figure 6a shows the instrumentation for the gauge positions. The strain gauges 

were attached to different locations for each specimen. In the case of the M-AF and H-IB model, the 

strain gauges were located on a quarter of the rib, whereas they were located on a half of the rib in case 
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of H-NF, the H-ST and H-IA models. In addition, each of the vertical LVDTs was installed 

symmetrically at both sides of the base plate to measure the lifted displacement of the base plate, as 

shown in Figure 6b. 

When analyzing the structural behavior of the column-to-foundation connection, the most important 

consideration is the anchor. The strain gauges were attached at total three points, the top, middle and 

bottom, based on the embedded depth to clearly highlight the differences with respect to the materials 

and inner reinforcement. The instrumentations were installed at the top, middle, and bottom position, 

which were divided for high-tension and for the inner anchor, and attached to the middle only, which 

was the same point as the anchor. Figure 6c shows the location of the strain gauges in the anchor. 

3. Elastic Behavior Characteristics 

To check the behavior characteristics of the anchor in the elastic range, the strain data of each location 

was compared and analyzed. The strain data according to the embedded depth of the anchor was 

compared at the maximum elastic range (1.0 δy), and the difference in the strain occurrence tendency 

was confirmed according to the anchor grade. In addition, the changing tendency of the maximum strain, 

which occurred in the elastic range, was compared according to each location of the strain gauges. 

3.1. Strain Distribution Characteristics of Anchor 

The strain gauges were attached to the same locations of the anchor to analyze the strain distribution 

characteristics according to the structural details in the elastic range. The embedded depth (Ad) of the 

anchor was 500 mm, which was the same as the diameter of the column, and each of the strain gauges 

was installed at the top (A1), middle (A2) and bottom (A3) of the anchor. Therefore, according to the 

change in the lateral load, the compressive and tensile strain data could be measured. Figure 7 shows the 

strain distribution characteristics of the anchor according to the embedded depth. The strain distribution 

characteristics were compared at 1.0 δy (25 mm), the maximum elastic range. The strain indicated the 

greatest values below 0.5Ad (A2) in tensile strain. In compressive strain, in addition to the tensile strain, 

the greatest strain values occurred at the top (A1). The strain was barely measurable at the bottom (A3). 

At the top, the tensile strain was one and a half times greater than the compressive strain. As the tensile 

anchor supported the external load, the deformation of the tensile anchor took place, and small strain 

occurred because the load was not transferred to the compressive anchor, but to the foundation. 

Figures 8–10 present the changes in the tendency of the strain according to the drift ratio in the elastic 

range. The strain installed at the right side of the neutral axis was compared because the strain values 

were similar based on the right side of the neutral axis was compared because the strain values were 

similar based on the neutral axis. The strain values of all specimens were similar for the attached 

locations in the compressive side. On the other hand, the tensile strain of M-AF was relatively higher 

than that of the other specimens at the top and middle except for the bottom, and the strain occurrence 

tendency was similar for the other specimens with the high-tension bolt installed. These results were 

attributed to the anchor grade and not to the differences in the structural details. Therefore, the strain 

values of the general anchor were greater than those of the high-tension bolt. 
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Figure 7. Strain distribution of the embedded length. 

 

Figure 8. Load-strain relation of the anchor in the elastic range (A1). 

 

Figure 9. Load-strain relation of the anchor in the elastic range (A2). 
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Figure 10. Load-strain relation of the anchor in the elastic range (A3). 

3.2. Strain Distribution Characteristics of the Base Plate 

The load-strain relations of the rib were examined to check the strain distribution characteristics of 

the base plate, as shown in Figure 11. The strain values of the rib showed an opposite trend unlike the 

anchor according to the load directions. Therefore, in case where the rib was located on the tensile side, 

the strain values were barely measurable because the load was not transferred by the lift of the base plate. 

On the other hand, because the compressive load was transferred to the rib, which supports the base plate 

on the compressive side, the compressive strain became great by the increase in load. 

 

Figure 11. Load-strain relation of the base plate in the elastic range. 
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3.3. Strain Distribution Characteristics of Column 

When the column moved from the tensile to compressive direction or from the compressive to tensile 

direction by introducing a lateral load, tensile and compressive strain of the column occurred and the 

values were more relatively greater at the bottom of the column. Figure 12 shows the maximum strain 

distribution characteristics according to the location of the installed strain gauges, and the strain values 

were compared in the maximum elastic range, 1.0 δy (25 mm). In the elastic range, it was recognized 

that the strain values were highest at the bottom (C3) of the column. On the other hand, the differences 

in the strain values were not great, and strain was similar for each location because the strain in the 

elastic range was early behavior of the actuator introducing the load, 

Figures 13–15 show the changes in the strain according to the load for the attached locations.  

Figures 14 and 15 show the strain of the quarter and bottom points. The changes in strain for all 

specimens were similar in the elastic range. On the other hand, Figure 14 shows the strain at the half of 

the column, and the tensile and compressive strain values of H-IA were relatively higher than those of 

the other specimens. The strain was attributed to the enhanced bond between the column and the 

foundation due to the inner anchor installed to improve the applicability of the high-tension bolt. 

 

Figure 12. Strain distribution for the column’s height. 

 

Figure 13. Load-strain relation of the column in the elastic range (C1). 
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Figure 14. Load-strain relation of the column in the elastic range (C2). 

 

Figure 15. Load-strain relation of the column in the elastic range (C3). 
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the early behavior. On the other hand, additional research on the location of the installation is needed 

because the stud distributed the compressive stress in the elastic range. The added nut in the base plate 

influenced the load–displacement curve. Because of the nut supporting the base plate, the compressive 

load of the column was transferred directly to the high-tension bolt, and the displacement decreased with 

decreasing load. Therefore, there was no pinching. 

Figures 19 and 20 present the load–displacement curves of H-IB and H-IA. For H-IB, the displacement 

according to the load decreased gradually because the inner deformed bar was installed longitudinally 

and the behavior was stable. Therefore, buckling at the bottom of the column occurred by the reinforcing 

deformed bar in the column, and the load–displacement curve was stable, as shown in Figure 19. 

Figure 20 presents the load–displacement of H-IA with the inner anchor and the maximum drift ratio, 

8 δy. The same high-tension bolt was installed in H-IA and H-NF but the hysteresis behavior was similar 

to H-IB because of the reinforcing method. The sharp decrease in displacement with only a high-tension 

bolt could be changed to stable behavior by a reinforcing method. In addition, because of the inner 

anchor, H-IA was more advantageous in the deformation capacity than H-IB and the pinching effect was 

reduced considerably. 

 

Figure 16. Hysteresis curve of M-AF. 

 

Figure 17. Hysteresis curve of H-NF. 
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Figure 18. Hysteresis curve of H-ST. 

 

Figure 19. Hysteresis curve of H-IB. 

 

Figure 20. Hysteresis curve of H-IA. 
  

-500

-400

-300

-200

-100

0

100

200

300

400

500

-250 -200 -150 -100 -50 0 50 100 150 200 250

Displacement (mm)

L
at

er
al

 L
oa

d
 (

k
N

)

H-ST

-500

-400

-300

-200

-100

0

100

200

300

400

500

-250 -200 -150 -100 -50 0 50 100 150 200 250

Displacement (mm)

L
at

er
al

 L
oa

d
 (

k
N

)

H-IB

-500

-400

-300

-200

-100

0

100

200

300

400

500

-250 -200 -150 -100 -50 0 50 100 150 200 250

Displacement (mm)

L
at

er
al

 L
oa

d
 (

k
N

)

H-IA



Sustainability 2015, 7 5275 

 

 

Therefore, the hysteresis behavior according to the reinforcing method was different but the 

reinforced specimens, H-IB and H-IA, were more stable than H-NF without reinforcement.  

Accordingly, it is believed that the high-tension bolt is more advantageous in the strength side than the 

general anchor. 

4.2. Comparison of Strength Characteristic 

Figure 21 shows the load-displacement envelope curves. Failure of the connection for M-AF and the 

buckling failure of the connection by the nut for H-ST occurred, and the strength increased gradually 

and the envelope curve reached the maximum load after yield. Buckling occurred at the bottom of the 

column for H-NF but the tendency of the envelope curve was similar to the other two specimens, M-AF 

and H-ST, because buckling occurred when the load reached the maximum. For H-IB and H-IA, which 

were reinforced, the strength decreased slowly after the ultimate load. The load decreased gradually after 

the ultimate load because buckling occurred after yield at the bottom of the column. 

 

Figure 21. Load-displacement envelope curves. 
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In the strength side, however, the energy absorption was verified in terms of the various structural details 

because the installation of the high-tension bolt is more advantageous. 

For H-ST, the early accumulated dissipated energy was similar to the H-NF because the same anchor 

grade was used. On the other hand, the accumulated dissipated energy of H-ST was different from H-

NF after 3 δy. The tendency of the load–displacement hysteretic curve is believed to have changed 

because of the added nut on the base plate. These differences occurred because the added nut prevented 

deformation and distributed the compressive load to the anchor and foundation. Therefore, the nut had 

a greater effect on the deformation capacity than the stud, and it was believed that H-ST was more 

advantageous than H-NF with only a high-tension bolt in the energy absorption. 

The energy capacity of the reinforced specimens, H-IB and H-IA, was the same as that of the other 

specimens with a high-tension bolt until 2 δy. After 2 δy, the tendencies of the energy capacity clearly 

differed according to the reinforcing method. The final load and displacement of H-IA were the greatest, 

and in each step, the H-IB’s displacement and load showed an increase in energy capacity. Replacing 

the general anchor to the high-tension bolt maintained and improved the performance of the structure 

and the reinforced types were more advantageous than H-NF. Therefore, to remove the anchor frame 

and improve the performance of the structure instead of replacing the high-tension bolt, installing an 

inner deformed bar and inner anchor as reinforcement, are more advantageous than the installing a stud. 

 

Figure 22. Accumulated dissipated energy curves. 

5. Failure Types 

5.1. Failure of the Connection 

The behavior characteristics of the structures could be predicted using high levels of instrumentation 

on the specimens. Through these predictions, the final failure types of the structures could be confirmed 

according to the anchor grade, and the final failure type of M-AF was found to be the failure of the 

connection by tension. 

M-AF was made from the general anchor, which was used in the current construction, and the  

anchor frame was installed in the concrete foundation. Pullout of the anchor occurred in the early 

loading, as shown in Figure 23a. The 3 anchors were pulled out according to the load direction because 
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the lateral load caused a lift in the base plate and the pullout length of the outermost anchor was the 

longest. Therefore, the difference in the load–displacement hysteresis curve occurred when the same 

load was applied twice. 

 
(a) (b) (c) 

Figure 23. Detailed failure shapes of M-AF (a) Pullout of anchor (b) Lift of base plate  

(c) Tensile failure of the general anchor. 

Figure 23b shows the lift in the base plate according to the increase in lateral load. Because the  

lifted displacement of the opposite base plate occurred when a lateral load was pulled, the pullout of the 

anchor was accelerated. Subsequently, failure took place when the lateral load reached the failure 

strength and anchor failure occurred in M-AF. Figure 23c shows the results of the connection failure, 

and tensile failure occurred when the deformation capacity of the anchor reached the limit by the lift in 

the base plate. 

The final failure type of H-ST was connection failure by buckling of the high-tension bolt located 

between the base plates. In addition, inelastic buckling at the bottom of the column occurred and  

Figure 24a shows the final failure. For H-ST, the pullout of the high-tension bolt barely occurred in the 

elastic range, and it is believed that the added nut under the upper base plate prevented pullout of the 

high-tension bolt. The crack on the concrete foundation and the lift in the base plate began to develop 

after that. As shown in Figure 24a, nonlinear buckling of the high-tension bolt was much more developed 

according to the increase in load because the compressive load was transferred to the  

high-tension bolt by the added nut. 
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(a) (b) 

Figure 24. Detailed failure shapes of H-ST (a) Final failure shape of H-ST (b) Pullout of 

high-tension bolt. 

5.2. Failure of the Column 

Buckling at the bottom of the column was observed in the 3 specimens. H-NF was simply designed 

to install the high-tension bolt without an anchor frame unlike the M-AF and the final failure is presented 

in Figure 25a. Similar to M-AF, the pullout of the high-tension bolt took place in the early elastic range, 

and the maximum pullout displacement occurred at the outermost bolt. In addition, the lift of the base 

plate was confirmed and was similar to the early elastic behavior of M-AF. On the other hand, the crack 

of the concrete foundation was observed in the early elastic range unlike M-AF. In the case of M-AF, 

the crack of concrete developed after anchor failure. When the load was applied much more, it was 

confirmed that the small crack developed by deformation of the high-tension bolt. The deformation 

capacity of the connection for H-NF was improved when the anchor was replaced at the high-tension 

bolt, and it is then believed that relatively weak column failure took place. Therefore, the final failure of 

H-NF was buckling at the bottom of the column. 

 
(a) (b) (c) 

Figure 25. Failure shape by buckling of the column (a) Failure shape of H-NF (b) Failure 

shape of H-IB (c) Failure shape of H-IA. 
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H-IB was designed to install a deformed bar in the longitudinal direction and the deformed bar was 

not installed directly on the high-tension bolt but just added from the column to the foundation. In the 

early loading sequence, the pullout of the high-tension bolt, the small crack and the lift of the base plate, 

which were observed in all specimens except for H-ST, were observed. Those were more developed 

while the load was increased. After the early loading sequence, pullout of the high-tension bolt occurred 

less than the other specimens by the reinforced inner bar. In addition, buckling at the bottom of the 

column took place because the connection capacity of the foundation and the base plate was improved 

by the inner deformed bar. Therefore, the final failure was buckling at the bottom of column, as shown 

in Figure 25b. 

H-IA was designed to install as many inner anchors as high-tension bolts and the connection capacity 

was improved like H-IB. The pullout of the high-tension bolt barely occurred in the early elastic range 

unlike the other specimens. Pullout of the high-tension bolt was reduced because the reinforced inner 

anchor was tightened with the nut, which caused a lift in the base plate small. Local buckling appeared 

slowly at the bottom of the column in the inelastic range between 7 and 8 δy. 

These results were attributed to the difference in the reinforcement method. That is, significantly more 

deformation of the column occurred by tightening the base plate with the inner anchor for H-IA because 

the inner deformed bar was just added without a direct connection to the nut to strengthen the flexural 

rigidity of H-IB. 

The final failure of H-IA was the buckling at the bottom of the column, which was the same as  

H-IB. Because the connection capacity of H-IB and H-IA was improved by the reinforcement, the failure 

was transferred to the column that was relatively weak. On the other hand, an examination of the 

behavioral characteristics and the hysteresis behavior of the column and anchor showed that a reinforcing 

method, such as H-IB and H-IA, is more advantageous to improving the applicability of the high-tension 

bolt. 

6. Conclusions 

This study focused mainly on new structural details concerning the design methodology for circular 

CFT column-to-foundation anchor connections. The experimental specimens were designed based on 

some design parameters, and structural experiments were conducted to suggest reasonable guidelines for 

connection design. The performance of these foundation connections were analyzed by examining the 

resulting data obtained from the experimental tests. More conclusions are as follows: 

(1) The failure type of each circular CFT column-to-foundation connection can be classified as 

anchor failure and local buckling at the column base. The specimens with general anchors and 

anchor frames exhibited tensile anchor failure. On the other hand, the specimens with high 

tension bolts showed local bucking failure under a load. It was thought that the failure  

type changed because of strength increment. Therefore, to ensure sufficient strength of the 

column-to-foundation connections, installing high-tension bolts is reasonable. 

(2) The experimental loading tests revealed that the specimens with high tension bolts exhibited 

better structural performance than those with general anchors or anchor frames. In addition, The 

H-NF’s behavior without anchor frames was similar to M-AF’s in lifted displacement and crack 

of concrete foundation so it was thought that installation of anchor frames little affects structure’s 
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behavior. For this reason, this study suggested new structural details for design using high tension 

bolts. 

(3) The envelope curves used mostly for estimating the energy dissipation were obtained from the 

experimental tests. Both curves compared to each other clearly showed their differences 

according to the failure types, such as the tensile fracture and local buckling. The H-IB and  

H-IA specimens with inner reinforcing showed more energy dissipation and especially, H-IB had 

maximum 1.39 times more energy dissipation than H-IA. The H-IA’s accumulated dissipated 

energy for each section, however, was more increased than the H-IB’s. Therefore, it is thought 

that the specimen with inner reinforcing is more advantageous than that with the high-tension 

bolts. 
(4) For the purpose of replacing the established types (i.e., M-AF model), four specimen types newly 

proposed herein displayed different behavioral characteristic. With the exception of anchor 

frames, specimens with high tension bolts, which generally show better performance, need to be 

applied as inner reinforcements to improve the performance of high tension bolts. 
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