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Abstract: In most developing coastal countries, the artisanal fisheries sector is managed as 

a common pool resource. As a result, such fisheries are overcapitalized and overfished. In 

Ghana, in addition to anthropogenic factors, there is evidence of rising coastal temperature 

and its variance, which could impact the environmental carrying capacity of the fish stock. 

This study investigates the effect of climate variation on biophysical parameters and  

yields. Our results indicate that the rising temperature is decreasing the carrying capacity.  

As a result, an optimum tax on harvest must reflect climate variability, as well as the 

congestion externality. 
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1. Introduction  

In spite of the plethora of policies aimed at sustaining capture fish stocks around the world, 

evidence abound that most stocks are heavily overexploited [1,2]. In developing coastal countries 

where fishery sectors directly employ significant numbers of people and regulations are generally 

inadequate, food security and sustainable livelihoods are directly threatened [3,4]. In Sub-Saharan 

Africa, for example, the fisheries sector directly employs close to three million people and additional  

7.5 million people are engaged in fish processing and trading. In addition, it is estimated that in Africa 

the current annual revenue from capture fishery (US$2 billion) generates a multiplier effect of  

2.5 times (US$5 billion) through trickle-up linkages [5]. The high number of fishers in coastal 

developing countries is due to a growing poverty trap. 

In Ghana, artisanal and semi-industrial fishing are the most important direct and indirect 

employment generating activities within the entire coastal zone. The artisanal sector supported about 

1.5 million people (about 9% of the total population) and landed about 70%–80% of total marine 

catches in 1996 [6]. The artisanal and semi-industrial fisheries are managed as unregulated common 

pool resources (CPR), hence are overcapitalized resulting in biological overfishing (i.e., declining 

catch per unit effort (CPUE)). The existing regulations include a ban on the use of light aggregation 

equipment, which involves shinning light in the ocean, when the moon is out, to attract fish and 

increase harvest; a ban on the use of mesh sizes smaller than an inch in stretch diagonal; and a ban on 

the use of explosives in fishing. These regulations aim at limiting fishing efforts which is on the rise. 

For example, after a sharp increase in artisanal catch per unit effort between 1989 and 1992, it declined 

from 1992 through 2008 although fishing techniques improved and the number of crew per boat also 

increased. Within the same period, available data shows the annual coastal temperature and its 

variance has been on the rise. Since pelagic stocks targeted by artisanal fishers feed on planktons that 

depend on seasonal upwelling, it is likely that the rising coastal temperature is impacting the catch per 

unit effort. Although favorable upwelling can increase with global warming, the rising temperature 

could impact other environmental conditions for spawning, recruitment, or larval development, among 

others [7,8].  

To reduce fish catches to sustainable levels, an optimum market-based policy instrument such as a 

tax on cost per unit effort or harvest is necessary. However, the efficacy of such a policy instrument 

hinges on the knowledge of the biophysical dynamics of the stocks. Two recent studies have shown 

that a fish stock could be potentially depleted if the biodynamic is misperceived, even if catch policies 

exist [9,10]. Using time series data on artisanal marine fishing in Ghana (1972–2007), this study  

(1) extends the existing surplus production function to account for the impact of changes in 

atmospheric temperature and its variance on the environmental carrying capacity of artisanal fish 

stock; (2) estimates the biophysical parameters employing the generalized maximum entropy (GME) 

estimators, which addresses the classical linear regression problems of endogeneity, multi-collinearity, 

and limited observations; and (3) estimates the optimum tax necessary to internalize congestion 

externality and the climate impact on fish yield; and forecasts the local atmospheric temperature as 

well as discusses its implication for the optimum tax. The results showed that the rising temperature 

yields negative biological response by decreasing the carrying capacity. In addition, a univariate 

analysis of the annual coastal temperature indicated that it will continue to rise at least in the near 
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future. As a result, the tax rate must be set high enough to account for the increasing temperature in 

order to protect the artisanal fish stock.  

The remainder of the paper is organized as follows. Section 2 presents the optimal control model for 

the optimal tax, and this is followed by incorporating the atmospheric forcing in the surplus production 

function in Section 3. Section 4 contains the empirical model and discussion on the estimation method. 

Section 5 provides the preliminary results and the final section, Section 6, concludes the paper.  

2. The Model for Optimum Tax  

To briefly outline the model for obtaining the optimum tax, following Akpalu [11], suppose a 

fishery is managed as a CPR. Let the biomass ( x ) of the fish stock grow according to a logistic 
function  ,g x k , where k  is a constant environmental carrying capacity   0xg    and   0xxg   . For 

analytical convenience let the logistic growth function be  , 1
x

g x k rx
k

   
 

, where r is intrinsic 

growth rate. Furthermore, let ( )c x  and p be cost per unit harvest and price per kg of fish, respectively. 

In addition, assume future benefits and costs are discounted at a positive rate,  . The value function of 

the entire fishery is given by Equation (1) and the stock dynamic Equation (2).  
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where 
dx

x
dt

 , H  is aggregate harvest, and ih  is the harvest of one economic agent ( i ). The 

corresponding current value Hamiltonian of the programme is 

   , , ( ) 1
x

x H pH c x H rx H
k

            
 (3)

where  is the scarcity value of the fish stock.  

From the maximum principle, assuming an interior solution exists, the first order condition with 

respect to harvest ( H ) is  

 .
( ) 0p c x

H


   


 (4)

Equation (4) simply stipulates that in an inter-temporal equilibrium harvest must be at a level that 
equates net marginal benefit (i.e., ( )p c x ) to the scarcity value of the stock (i.e.,  ). If ( )p c x   , 

harvest has to be at its maximum. On the other hand it must be set to zero if ( )p c x   . The 

corresponding costate equation is  

 . 2
1x

H x
c H r

x k

            
  (5)

Equation (5) implies that, in dynamic equilibrium, the interest earnable on the net marginal benefit 
from harvesting one kilogramme of fish today (i.e.,  ) must equate the sum of the capital gain from 
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conserving that kilogramme of fish (i.e., ) and some stock effect (i.e.,  11 2xc H r xk    ). In 

steady state 0x      so that Equations (4) and (5) become  

1
2

( ) 1 1
x x

p c x c rx r
k k


                     

x  (6)

Now suppose the stock is harvested as a CPR by n  users. Following Maler et al. [12] and  

Akpalu [11], the optimization programme for each community is 
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The corresponding first order condition from the maximum principle is 

 .
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 (9)

The shadow value assigned to the resource by each symmetric community is i n


  . The 

symmetric open-loop Nash equilibrium solution is  
1

2
( ) 1 1

x x
p c x c rx n r

n k k


                         

x  (10)

Equation (10) could be solved for the equilibrium stock level (i.e., ** ( , )x x k n ). Suppose the 

resource is harvested as a CPR and let a tax be imposed on cost of harvest (i.e.,  ( ) 1c x   ) to 

generate the first best solution. The equilibrium stock equation with the tax is 

   
1

2
( ) 1 1 1 1

x x
p c x c rx n r

k k


                            

x  (11)

or  
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From Equations (6) and (11): 
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If 1n  , aggregate catch will exceed the socially desirable level and a policy intervention will be 

required to regulate catch. Using *
*

( )
c

c x
qx

  (where c  and q  are cost per unit effort and catchability 

coefficient, respectively), the steady state stock *x  is 
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The specific tax expression is based on these specific functional forms. The tax depends on the 
values of the socio-economic parameters (i.e., p , c  and  ), which are readily available, and 

biological parameters (i.e., r , q  and k ) which are not.  

Climate Variability and Optimal Tax Rate  

If climate variability impacts the carrying capacity, then the tax rate must reflect potential 

variability in the climate. As indicated in the introduction, there is overwhelming evidence that climate 

variability may impact carrying capacity of the stock. Atmospheric forcing may result in a change in 

atmospheric temperature (see Figure 1). The change in temperature impacts water temperature and 

subsequently influences seasonal upwelling (or downwelling). This influences primary production, 

species distribution, fish yield, and increased variability of catches (4).  

 

Figure 1. The flow chart of the impact of atmospheric temperature on fish yield. Source: 

own compilation. 

To account for the impact of atmospheric temperature on fish production, we surmise that the 

carrying capacity is defined as 

0

1 t t

k
k
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 (14)

where T  and   are the state of the climate variable and its variances, respectively;   is notation for 

first difference (We used the change in temperature because the levels of the series are within a limited 

range, given the period considered for the empirical analysis. As expected, the levels were not 

significant in the empirical analysis (presented in the later section of the paper) but the first differences 
were.); and 0k ,  , and   are constants. The corresponding optimum path of the stock is 
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3. Obtaining the Biophysical Parameters  

To establish the link between climate variability and fish production, a biological model is 

employed. In order to estimate the biological parameters, a number of authors have employed models 

by Schaefer and Fox [13]. These models assume equilibrium or steady state conditions in order to 

obtain an equation that is used to estimate next period’s catch per unit effort without specifying future 

anticipated effort [13]. However, Schnute [14] has shown that these models may be invalid for  

non-equilibrium conditions and the assumption that catch per unit effort could be predicted without 

specifying future anticipated effort contradicts almost all theory on fisheries biology. As a result, the 

author suggested a modified version, which is Equation (16)  

1 1 1

0
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2 2

t t t t t

t

U U U E Er
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U qk
               

    
 (16)
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t

t

h
U

E

 
  
 

 signifies catch per unit effort, and tE  is fishing effort. As indicated in the 

introduction, there is overwhelming evidence that climate variability may impact carrying capacity of 

fish stock. Using Equation (14) in Equation (16), gives 
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4. The Empirical Model and Estimation Methods  

In this section, the extended Schnute model (i.e., Equation (17)) and an estimation method known 

as a GME estimator is presented. For the purpose of estimation, Equation (17) is specified as 

1
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, 4 0a q   , and t  is an error 

term. Time series data on catch, fishing effort, and temperature is required to estimate Equation (18).  

4.1. Empirical Estimations: Generalized Maximum Entropy  

The obvious problem with applying ordinary least squares estimation procedure to Equation (18) is 

endogeneity since the dependent variable interacts with other variables on the right hand side. It is also 

very likely that some of the variables are highly correlated. As a result, the coefficients are estimated 

using GME, which are explained in the subsequent sections. The GME method could generate reliable 

estimates of the parameters of our model. The GME is a semi-parametric estimator and belongs to a 

class of estimators used in engineering and physics. To present the GME estimator, let  

k ks ks
s

a z p  (19)



Sustainability 2015, 7 7948 

 

 

where 0ksp   are unknown probabilities and 1ks
s

p  ; ksz  constitutes a predetermined discrete 

support space ( s ) for the parameters; and ka  is as defined in Equation (18). Furthermore, define the 

error term in Equation (18) as  

i ig ig
g

u V w  
(20)

where 0igw   are unknown probabilities and 1ig
g

w  ; igV  constitutes an a priori discrete support 

space ( g ) for the errors; and iu  is as defined in Equation (18). The GME estimator is specified as 

max  ( , ) ln( ) ln( )ks ig ks ks ig ig
s g

H p w p p w w     
(21)

subject to Equation (18), but with the coefficients and the error term substituted by Equations (19) and 

(20). The limitation of this method is that the values of the parameters are sensitive to arbitrarily 

chosen support values making policy recommendations sensitive to such values. The estimations are 

implemented in general algebraic modeling system (GAMS). 

4.2. Data Types and Sources 

Data on catch and effort were collected from the Directorate of Fisheries of the Ministry of Food 

and Agriculture (MOFA) in Ghana. The Directorate is mandated to carry out research for the 

assessment for fisheries resources. As noted in the introduction, the artisanal fishery sector is one of 

the most important sectors within the economy. However, recent landing statistics for the artisanal 

fleet indicate landings peaked in 1992, and then declined due to overexploitation [15]. The data on 

temperature was collected from Ghana Meteorological Agency. The agency has 17 weather stations 

each reporting monthly average temperatures. The figure for the standard deviation of temperature is 

computed from the 12-month averages for each year. The summary statistics of the data is presented  

in Table 1.  

Table 1. Descriptive Statistics of catch, fishing trips and coastal temperature in Ghana.  

Variable 
1972–2008 1990–2008 

Mean Standard dev. Mean Standard dev. 

Catch (in kg) 195,354 53,378 229,212 34,192 
Effort (Number of trips) 1,319,614 1,549,476 1,653,440 1,988,563 

Temperature (in °C) 27.0 0.419 27.3 0.291 
Std. Dev. of temperature 1.193 0.170 1.193 0.124 

Source: Catch and effort data is collected from Directorate of Fisheries, Ghana; and temperature data is 

collected from Ghana Meteorological Agency.  

From Table 1, both catch and effort levels have increased over the last 18 years. In addition, as 

depicted in Figure 2, catch per unit effort oscilates over time. The periods of decline in the CPUE were 

1992 to 1995, 1997 to 2000, and 2002 through 2007. On the other hand, the CPUE increased from 

1994 to 1997, 2000 to 2002, and 2007 through 2008. On the average, however, the variable shows a 

weak pattern of decline from 1992 through 2008. 
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Figure 2. Trends in catch per unit effort of artisanal stocks (1992–2008); Source:  

own illustration.  

Furthermore, from Table 1, the mean temperature within the entire period (1972–2007) is lower 

than that of the last 18 years (1990–2007). The time trend of the atmospheric coastal temperature has 

revealed a rising trend over time (see Figure 3). Moreover, although the annual variance of the coastal 

temperature (shown in Figure 4a) (The variance is calculated as the sum of the squared deviation of 

monthly temperature from the yearly average, divided by 11 (i.e., degrees of freedom).) looks like a 

stationary process, a careful examination of a segment of the data (from 1990 through 2008) reveals an 

upward trend with a gentle slope (shown in Figure 4b). The period of 1990 through 2008 witnessed a 

decline in the catch per unit effort.  
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Figure 3. Trends in coastal temperature (1972–2008); Source: own illustration. 
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Trends in Variance in Temperature
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Figure 4. (a) Trends in the variance of coastal temperature (1972–2008); (b) Trends in the 

variance of coastal temperature (1990–2008); Source: own illustration. 

5. Results and Discussions 

The biological parameters were estimated using the General Algebraic Modeling System (GAMS). 

Since the catch intensified beginning 1990, the data for the estimation spans a period of 1990–2007. 

For the purpose of comparison, two versions of the model were estimated: one without the climate 

variables and a complete version with the climate impact on carrying capacity. The results of the 

estimation are reported in Table 2.  
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Table 2. Estimated biological parameters of the Schnute equation.  

Parameters Estimates 

Description Notation 
GME 

1 2 

Intrinsic growth rate r  1.91369 1.960 
Catchability coefficient * q  0.627 × 10−6 0.636 × 10−6 
Carrying capacity (in kg) 0k  530,066 449,683 

Impact of temperature on k     0.166244 
Impact of temperature variation on k     0.115561 

Pseudo R-squared 0.70 0.73 

Source: own computations. * Using surplus production functions, Clarke et al. [13] estimated the catchability 

coefficient to be within the range of 0.376 × 10−6 and 0.913 × 10−6. 

The pseudo R-squared indicates that including climate variables (i.e., the change in temperature and 

the annual variance of the temperature) in the model improves the fit of the estimation. Approximately 

73% of the variability in the dependent variables is explained by the regressors if the climate variables 

are considered. The corresponding value is 70% if the climate variables are ignored. The 
environmental carrying capacity ( 0k ) indicates that, without accounting for climate impact, the 

maximum stock the environment could accommodate is approximately 450 tons. Furthermore, the 
values of the parameters   and   are positive implying change in temperature and annual variance of 

temperature impact negatively on the carrying capacity (as per Equation (14)).  

Using the estimates for the biological parameters, a social discount rate ( ) of 3%, an average price 

of US$264 taken from Akpalu and Vondolia [16], and price to cost per unit effort ratio of 0.11 (or the 

average cost of harvest of US$232), the optimal catch series has been calculated. Figure 5 provides the 

plots of actual and estimated optimal catches. The actual catch is the observed catch data while the 

optimal catch is based on       * ** 11H t rx t x t k   . Note that  *
x t is obtained from Equation 

(15). As clearly depicted by the graphs, the actual catches are much higher than the optimal values 

(since the climate variable is accounted for) indicating a policy instrument is necessary to regulate 

catch. Thus, ignoring the climate impact may result in overestimation of the stock level as depicted in 

Figure 6. The estimated stock level that ignores the climate variable is Equation (13), while the same 

that account for the impact is Equation (15).  

The optimal tax path based on Equation (12) has also been calculated. Based on the values for price 

and cost per unit effort used, the values range from 8.5% to 21%, with the mean tax being 14.2%. The 

implication is that for harvest levels to mimic the desired or optimal trajectory in Figure 5, the tax rate 

on cost of harvest must follow the series depicted in Figure 7. Note that the tax evolves over time. 

Currently premix fuel, which constitutes a significant input in production, is subsidized at an 

approximate rate of 18%. Withdrawing a portion of the subsidy corresponding to the tax is necessary 

to lower catches to sustainable levels. There is a large amount of literature advocating for the withdrawal 

of input subsidies to save fisheries in both developed and developming countries (see e.g., [17–19]). 

Furthermore, the figure shows a direct relationship between the tax rate and the change in temperature. 

This makes sense because the carrying capacity decreases as the change in temperature increases 

leading to lower fish production. As a result, the tax rate must increase to regulate harvest.  
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Figure 5. Actual and optimal catches of artisanal stocks in Ghana; Source:  

own illustration. 
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Figure 6. Misperceived stock due to ignorance of climate impact in Ghana. Source:  

own illustration. 
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Figure 7. Optimum tax rates and change in annual temperature. Source: own illustration. 

Predicting the Coastal Temperature  

In the preceding section, it has been shown that if the coastal temperature increases or its annual 

variance increases, the environmental carrying capacity will decrease causing fish production to 

decline. As a result, we proceeded to investigate whether or not the local coastal temperature and the 

variance will rise or fall in the near future based on the historical trends of the series. To forecast the 

future values, the time series properties of the data were investigated. Table 3 contains the results of 

the augmented Dickey-Fuller (ADF) tests. The statistical software STATA 12 was used for the 

analysis. The results indicate that if trends and constants are included in the tests, the temperature 

series is stationary, but its annual variance is non-stationary at a 1% and 5% significance level. The 

first difference of the variance is, however, stationary implying the temperature and variance are 

integrated of order zero and one respectively.  

Table 3. Unit root analysis of annual temperature and variance of annual temperature. 

Series ADF (with Drift Term and Trend) 

 Z-Score Critical Values 

  1% 5% 10% 

Temperature (Temp) −5.455  −4.297 −3.564 −3.218 
Variance of temperature (Vtemp) −3.478 −4.297 −3.564 −3.218 

First difference of Vtemp (DVtemp) −5.455 −4.306 −3.568 −3.221 

Source: own computations. 

Following the Box-Jenkings approach to univariate time series econometric modeling, the plots of 

the autocorrelation and partial autocorrelation functions depict that the temperature series follow an 

autoregressive moving average (ARMA) process. A further analysis reveals that the variable could be 

modeled as ARMA (1, 10) process. The estimated results are presented in Table 4. The Wald  
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Chi-square test indicates that the line is a good fit at a 1% significance level. The coefficients of the 

first lag of the series, and the first and tenth lags of the error term are all significant at a 1% level.  

In addition the drift term, denoting the average temperature, is 27.15 °C and it is also significant at a 

1% level.  

Table 4. Fitting temperature with autoregressive moving average (ARMA).  

Variables Coefficient 

1tTemp   0.90  

(0.048) *** 

1te   −0.56  

(0.18) *** 

10te   0.55  

(0.21) *** 

Constant 
27.15 

(0.28) *** 

Wald chi2(2) 345.53 (Prob > 0.00) 

Note: Standard errors are in parentheses; *** significant at 1%; Source: own computations.  

Based on the results of the univariate analysis, the values of the temperature are forecasted and the 

forecast and actual values are presented in Figure 8. From the figure, it is evident that the annual 

temperature will continue to rise in the near future. This also implies that the artisanal stock is likely to 

decline; hence higher taxes on cost of harvest may be necessary to protect the stock.  
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Figure 8. Actual and predicted values of atmospheric temperature. Source: own illustration. 

Finally, the time path of the variance of the annual temperature is modelled. The corellogram of the 

first difference of the variance indicates it is an autoregressive (AR) (1) process without a drift term 
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(see Table 5). The Wald Chi-square test indicates that the line is a good fit at a 99% confidence level. 

The coefficient of the AR (1) term is negative indicating the first difference of the temperature is 

declining over time, with a marginal effect of −0.055. This also implies that the variance of annual 

temperature rises but at a decreasing rate. The plot of the actual and predicted values of the series in 

Figure 9 shows that the estimated model predicts the actual values quite well.  

Table 5. Fitting change in variance of annual temperature with ARMA (1, 0).  

Variables Coefficient 

1tVTemp   −0.55  
(0.19) *** 

Constant 
−0.000098  
(0.0223) 

Wald chi2(2) 7.93 (Prob. > 0.00) 

Note: Standard errors are in parentheses; *** significant at 1%; Source: own computations. 
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Figure 9. Actual and predicted values of change in variance of annual temperature. 

Source: own illustration.  

6. Conclusions  

Catch per unit effort of most artisanal fish stocks have declined over the past two decades due to 

overcapitalization of such stocks. The state of the artisanal fishery in Ghana typifies such occurrence. 

With the increasing poverty trap, coupled with a high unemployment rate within the coastal regions 

where off-fishing economic activities hardly exist, fishing is a livelihood of last resort. Indeed, the 

overfishing problem is expected to worsen.  

In addition to human activities, it has been found that the coastal climate is getting warmer with 

potential consequences for capture fisheries. If the warmer climate increases seasonal upwelling and 

thereby increases primary food production, it will be good for the fishery. On the other hand, if the 
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warmer climate, for example, bleaches corals and rather reduces the food production capability of the 

aquatic system, the environmental carrying capacity and fish production will decline. In this study, 

evidence has been found in support of the later case. A dynamic model of the common pool resources 

management problem in fisheries has been derived and an optimum tax necessary to internalize the 

congestion externality as well as account for the changing coastal temperature has been proposed. 

Using data on artisanal fisheries in Ghana, and selected values for price of fish and cost per unit effort, 

the tax rate is calculated to be within the range of 8 and 21% on cost per unit harvest. Since premix 

fuel, which is an important input in catch, is subsidized at 18% of ex-refinery price, withdrawing the 

subsidy could improve the sustainability of fishery. Moreover, the tax must positively correlate with 

the rising rate of change in temperature as well as the annual variance of the temperature. It is 

important to note that these results relate to species of low trophic levels and similar research is 

required for species of higher trophic levels. 

It is noteworthy that our study suffers some data limitations. Sea surface temperature was proxied 

by atmospheric temperature, balanced data on the relevant variables ended at 2008, and data on catch 

and fishing effort obtained from the fiesheries directorate are based on some approximations akin to 

fisheries data elsewhere. Regarding the climate data, a study in Ghana (not yet published) found a 

strong correlation between atmospheric temperature and sea surface temperature, suggesting that the 

findings of this study are somewhat robust. Furthermore, it is impossible to determine a priori how an 

increase in the time series data could alter the results. This empirical concern can only be adequately 

addressed as and when additionl data is available. Finally, the cost associated with collecting fisheries 

data (on fishing effort and catch) convering the entire population of fishers in Ghana is prohitive and 

precausions are taken to ensure that samples drawn are representative (This is as per communication 

with an official of the fisheries directorate).  
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Nomenclatures  

Letter  Definition  

x  Fish Stock (in kg of fish per year) 
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g  Functional notation for growth of fish in the fishing area 

E  Fishing Effort (i.e., # of fishing trips per year) 

U  Catch Per Unit Effort 

h  Catch/Harvest per fisher (in kg of fish) 

H  Aggregate Harvest/Catch 

  Social Discount Rate 

q  Catchability Coefficient (a measure of gear efficiency)  

c  Cost Per Unit Effort  

  Shadow Value of the Fish Stock  

k  Environmemtal Carrying Capacity (in kg) 

  Impact of temperature on carrying capacity  
  Impact of temperature variace on carrying capacity 

  First difference 

p  A competitive price per kg of fish  

r  Intrinsic growth rate of the fish stock 

T  State of the climate variable (i.e., Temperature)  

  Annual variance of temperature 
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