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Abstract: Grape production is associated with some negative environmental externalities. However,
they are not considered in the traditional data envelopment analysis (DEA) efficiency assessment
models and the research literature. Hence, the assessment results cannot correctly reflect the technical
efficiency level of open-field grape production. We measured the environmental efficiency of China’s
open-field grape production under the constraint of carbon emissions using the slacks-based measure
(SBM) model, including the undesirable outputs. In addition, spatial relations of environmental
efficiency in different open-field grape production areas in China were evaluated by adopting spatial
econometric methods. The results indicate that the average environmental efficiency score of grape
production in China is at a low level of 0.651. Overall, the average environmental efficiencies in
southern, southwest, and northeast regions are lower than the average levels, which implies the
imbalance in economic outputs, resource consumption, and environmental efficiency in open-field
grape cultivation. Moreover, the spatial autocorrelation results show that the environmental efficiency
of grape production has obvious continuity in neighboring regions and spatial correlation.
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1. Introduction

The environmental problems caused by greenhouse gas emissions have brought significant
adverse effects to human health and economic development, and have gradually become the major
issues of concern to countries around the world [1]. The Intergovernmental Panel on Climate Change
(IPCC) has stressed that agriculture has become the second largest source of greenhouse gas emissions,
and its emissions have been as high as the global anthropogenic emissions of 13.5% in the fourth
assessment report [2]. Chinese agriculture is changing from extensive agriculture to a more intensive
type and greater importance is being stressed on ecological and environmentally friendly production
patterns. However, a large amount of fertilizer and pesticides have been invested in the process of
agricultural production, driven by economic benefits, which has inevitably led to serious agricultural
environmental problems that have badly hindered the process of agricultural modernization in China.
Therefore, it is the unwaveringly future trend to achieve sustainable and harmonious development in
the agricultural economy and ecological environmental protection in modern agriculture in China.

Currently, viticulture has become an important part of China’s agriculture. According to the
statistics of the Chinese Agricultural Research System [3], the total area for Chinese open-field grape
cultivation exceeds 500,000 hectares, and amounts for about 80% of the total viticulture. However, the
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pursuit of high economic benefits simply could not be in accordance with the concept of sustainable
development, so the ecological benefits of open-field grape cultivation and sustainable development
gradually attracted universal attention. Studies have shown that open-field grape cultivation will
bring high carbon emissions and other environmental hazards, so it faces the problem of a threat to the
sustainable development of production systems and significant environmental pressure [4–6]. Hence,
it is necessary to accurately measure the environmental efficiency of open-field grape production
in various regions of China, so as to adjust resource consumption, achieving energy-saving and the
reduction of emissions and improving the environmental performance in viticulture.

Many theories and methods for environmental efficiency assessment are currently available, such
as life-cycle analysis [7–10], the ecological footprint method [11–13], material flow analyses [14,15],
the multiple-criteria decision-making method[16], the clustering method [17], production frontal
analysis, which mainly includes stochastic frontier analysis (SFA) [18–21], and data envelopment
analysis (DEA) [22–24]. Among these methods, the DEA method has been widely used to evaluate
environmental efficiency [25–27].

As far as environmental efficiency is concerned, various studies based on experimental research
show that the spatial factor may play a key role in environmental efficiency differences [28]. It is
necessary to research the spatial characteristics of the environmental efficiency of grape production
since viticulture depends highly on local endowments, such as the climate, land, and other natural
resources and socioeconomic factors. There are also several published studies on spatial characteristics
of environmental efficiency in various parts of the world. Camarero [29] applied variation coefficients
to test for convergence of the spatial discrepancy in environmental performance. Marconi [30]
performed a Moran’s statistics analysis and the local indicators of spatial association (LISA) analysis to
test agri-environmental efficiency for local spatial autocorrelations. Costantini [31] adopted spatial
econometrics to analyze the agglomerative effect and the environmental performance of neighboring
regions in Italy. Adetutu [32] explored environmental efficiency in Europe by a multistage spatial
analysis, and found that a country’s total factor productivity (TFP) growth must fall to reduce its
nitrogen and sulfur emissions. Shen [33] measured the cluster of regional environmental efficiency
of the Chinese industry and its overflowing effect. Zhao [34] used the spatial econometric model to
evaluate the spatial distribution characteristics of the environmental efficiency of the Chinese industry.

As stated previously, it can be found that although the DEA method is widely used in
environmental performance evaluation, only a few extant studies on open-field grape production are
available, especially for environmental efficiency research [35]. Additionally, analysis using GIS and
spatial econometrics for the characteristics of the space differences in environmental efficiency is far
from adequate. Accordingly, this paper aims to explore the environmental efficiency, as well as its
spatial correlation, of open-field grape cultivation in China.

The structure of this paper is organized as follows: firstly, the materials and methods are presented,
in the next section the environmental efficiency of open-field grape cultivation under the view of
environmental protection is evaluated, and then the spatial correlation of the environmental efficiency
is discussed, and, finally, the paper concludes with implications.

2. Materials and Methods

2.1.Data Collection

In this study, the open-field grape production counties were selected as the sample. The data were
collected using a questionnaire that was distributed in 119 open-field grape production counties of
China. The survey was conducted in 2014 with the support of the China Agricultural Research System
(CARS-30), which is a nationwide research team that focuses on the grape and wine industry.

During the investigation, 745 questionnaires were distributed to the open-field grape planters.
Excluding the invalid questionnaires lacking key items and including logic errors, 494 valid
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questionnaires distributed were eventually reclaimed from 119 counties in China, with a validity
rate of 66.31%, and the margin error of the survey with the 95% degree of confidence is 3.9%.

Following the prior research [36], the counties were divided into five main production regions to
research the differences between areas using spatial autocorrelation, which are the grape production
regions of North China, Northeast China, South China, Southwest China, and Northwest China.

2.1. Environmental Efficiency Analysis Based on Carbon Emission Calculation in the Production System

2.1.1. Open-Field Grape Production System Analysis with the Constraint of Carbon Emissions

In addition to the “desired outputs” or “good outputs” (such as grapes, etc.), the open-field
grape production system may also produce some unwelcome byproducts that are called “undesirable
outputs” or “bad outputs” (such as pesticide pollution, greenhouse gases emissions, etc.). The “desired
outputs” and “undesirable outputs” together constitute the eco-economic system of open-field grape
production, which can reflect the technical system between outputs and inputs [37]. On the one hand,
open-field grape production is affected by the ecological environment; on the other hand, a series of
carbon emissions in the production process of grapes, in turn, will cause an impact on the environment.
Therefore, it is necessary to analyze the production process of open-field grape production under the
constraint of carbon emissions, so as to ensure the accuracy and comparability of the carbon emission
analysis results. The open-field grape production process, considering the carbon emissions is shown
in Figure 1.
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Figure 1. The production process of open-field grapes under the constraint of carbon emissions.

2.1.2. Carbon Emission Calculation Method

Two types of carbon emissions from open-field grape production are distinguished: direct carbon
emissions and indirect carbon emissions, and their definitions are as follows:

• Direct carbon emissions include the carbon emissions from fossil energy consumption in the
production process of grape, such as diesel, and so on;

• Indirect carbon emissions are carbon emissions from the production of the agricultural inputs,
such as electricity, pesticides, and so on.

According to the analysis of carbon emissions in the process of open-field grape production and
the relevant research [5], this paper classifies the main sources of carbon emissions in the open-field
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grape production process, which include the direct and indirect carbon emissions resulting from the
production and use of chemical fertilizers, pesticides, agricultural film, diesel, and electricity.

Based on the above, this paper calculates the carbon emissions in the open-field grape production
process. The form of function is as shown in Equation (1):

E = ∑ Ei = ∑ Ti · δi (1)

The variable E represents the total carbon emissions in the open-field grape production process, Ei
represents carbon emissions from various sources, Ti is the amount of each carbon emission source and
δi is the carbon emission coefficient of various sources. The carbon emission coefficients of different
sources are shown in Table 1.

Table 1. The carbon emission coefficients of different sources.

Sources Carbon Emission
Coefficient Reference

Chemical Fertilizer 0.8956 Kg·Kg−1 West et al. [38]
Pesticides 5.10 Kg·Kg−1 Lal et al. [39]

Agricultural Film 5.18 Kg·Kg−1 Institute of Resource, Ecosystem and Environment of Agriculture of Nanjing city
Diesel 2.76 Kg·L−1 Dyer et al. [40]

Electricity 0.608 Kg·kWh−1 Pishgar-Komleh et al. [41]

2.2. Evaluation Model of Environmental Efficiency

Each evaluation object is regarded as a decision-making unit (DMU) in the traditional DEA model,
and the DMUs constitute the evaluation group. In the analysis, each county of grape production was a
DMU. Through the analysis of the variables which is obtained from the weights of input and output
indicators in the DMU, the traditional DEA model can assess whether the DMU is effective [42,43].
However, the effect of “slack variables” on the efficiency is not considered in the traditional DEA
model, which will result in distortion and the efficiency score will not be accurate [44].

In order to improve the traditional DEA model, the SBM model based on the undesirable output
is proposed by Tone [45]. The SBM model adds slack variables into objective function so as to eliminate
the effect produced by the slack variables. Assuming that there are n DMUs in the production system,
and there are three vectors, which are the input vector, the desirable output vector and the undesirable
output vector. The vectors can be represented as x ∈ Rm, yg ∈ Rs1 and yb ∈ Rs2. Then, three
matrices are defined as X, Yg, and Yb, where X = [x1, · · · , xn] ∈ Rm×n, Yg = [yg

1 , · · · , yg
n] ∈ Rs1×n,

and Yb = [yb
1, · · · , yb

n] ∈ RS2×n. Additionally, X > 0, Yg > 0, and Yb > 0. The production set can be

defined as follows: P =
{
(x, yg, yb)

∣∣∣x ≥ Xλ, yg ≤ Ygλ, λ ≥ 0
}

. Then, the SBM model based on the
undesirable output can be expressed as:

ρ∗ = min
1− 1

m ∑m
i=1

s−i
xi0

1+ 1
s1+s2

(∑
s1
r=1

sg
r

yg
r0
+∑

s2
r=1

sb
r

yb
r0
)

s.t.


x0 = Xλ + s−

yg
0 = Ygλ− sg

yb
0 = Ybλ + sb

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

(2)

where s− is the amount of inputs that can be reduced, sg is the amount of desirable output that can be
increased, and sb is the amount of undesirable output that can be reduced; s denotes the slack variable
of the input or output, and λ is the vector of weight, which reflects the degree of participation of each
DMU in constructing the production frontier. Additionally, 0 ≤ ρ∗ ≤ 1.
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If and only if ρ∗ = 1, that is s− = 0, sg = 0, and sb = 0, the DMU is efficient; the DMU is not
completely effective when ρ∗ = 1, but s− 6= 0, sg 6= 0, and sb 6= 0, which means that the amount of
output will not be changed when redundancies in inputs are reduced. The DMU is inefficient when
0 ≤ ρ∗ < 1, thus, the inputs, desired outputs, and undesirable outputs should be improved so that the
DMU can be turned into an efficient one.

In view of the characteristics of the cost inputs in open-field grape cultivation, eight input
indicators were selected and regarded as the independent variables. The desirable output was grape
production, and the undesirable output was set as the carbon emissions, which are shown in Table 2.
These input and output indices constituted the variables in environmental efficiency evaluation model
of open-field grape cultivation.

Table 2. Variables of inputs and outputs.

Input/Output Variable Units

Input

Labor (labor·day)/ha./year
Agricultural film Kg/ha./year

Diesel Kg/ha./year
Chemical fertilizers Kg/ha./year

Electricity kWh/ha./year
Pesticides Kg/ha./year

Water Kg/ha./year
Organic fertilizer Kg/ha./year

Desirable output Grapes Kg/ha./year
Undesirable output Carbon emission Kg/ha./year

According to Zheng [46], the results under the variable return to scale (VRS) are more reliable.
Therefore, the environmental efficiency of grape production in 119 main open-field grape production
counties of China was calculated based on the VRS.

2.3. Spatial Autocorrelation Model

2.3.1. The Global Autocorrelation Model of the Environmental Efficiency

Global autocorrelation is used to analyze the spatial distribution characteristics of the geographic
elements or phenomena in a certain system. If the phenomenon has the same or similar tendency in
the different regions, it is said that there is spatial agglomeration and positive correlations. The global
Moran’s I index is often used to evaluate the global correlation [47], as shown in the Equations (3)
and (4):

I =

n
∑
i

n
∑
j 6=i

wij(xi − x)(xj − x)

S2
n
∑
i

n
∑
j 6=i

wij

(3)

S2 =
1
n

n

∑
i=1

(xi − x)2 (4)

where n is the total number of DMUs, xi is the spatial attribute value of i, which represents the research
object, x is the average attribute’s value of all the objects, and wij is the spatial weight matrix. The value
of the global Moran’s I index is from −1 to 1, I > 0 means the positive correlation exists between
DMUs, and the larger the value is, the stronger the spatial correlation is; I < 0 indicates the negative
correlation; also, the DMU is random and independent when the I value is 0.
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The Z test and p test are generally used to test the significant degree of spatial correlation, the Z
test formula is as follows:

z(i) =
i− E(i)√

var(i)
(5)

In Equation (5): E(i) represents the mathematical expectation; var(i) is the population variance.
If |Z| > 1.96, it shows the global Moran’s I is significant at the 5% significance level, and when
Z > 0, it shows that the DMUs have positive spatial autocorrelation; Z < 0 indicates negative spatial
autocorrelation between DMUs.

The p test is the confidence evaluation of global Moran’s I index, which is assessed several times
in random tests. When p < 5%, the probability of the null hypothesis that the DMUs can be randomly
distributed is very low, and it means that the DMUs have spatial autocorrelation.

2.3.2. Local Autocorrelation Analysis of the Environmental Efficiency

Local autocorrelation analysis can be used to analyze spatial correlation characteristics between
a geographic region and its surroundings. To find the spatial correlation of regions, local Moran’s I
index is the most widely used evaluation index [48], as is shown in Equation (6):

Ii(d) = Zi

n

∑
j 6=i

wijZj (6)

where Zi, Zj are, respectively, the deviation between the observed value and the average of xi and
xj; that is Zi = (xi −

_
x), Zj = (xj −

_
x). Additionally, wij is the spatial weight matrix which has been

standardized. Ii > 0 indicates the autocorrelation type of High-High (H-H) or Low-Low (L-L), while,
Ii < 0 represents the type of Low-High (L-H) autocorrelation or High-Low (H-L) autocorrelation.
The explanation of these four types is as follows:

High-High (H-H) type: This type of local autocorrelation means that the environmental efficiencies
of the certain region itself and the surrounding areas are similar and relatively high, so the degree of
spatial difference is smaller.

Low-High (L-H) type: This type indicates that the environmental efficiency of the certain region
is relatively low, but environmental efficiencies of its surrounding areas are generally higher, so they
are diverse in environmental efficiency, and the degree of spatial difference is relatively large.

Low-Low (L-L) type: This type means that the environmental efficiency of the certain region,
itself, and its surrounding areas are similar and relatively low; there is also a small difference in
spatial difference.

High-Low (H-L) type: While the environmental efficiencies of the certain region, itself, is relatively
high, and environmental efficiencies of its surrounding areas are generally lower, the degree of spatial
difference is larger.

3. Results

3.1. Environmental Efficiency Evaluation

Figure 2 shows the evaluation results of the environmental efficiency of Chinese open-field grape
production. The average overall efficiency score of the 119 counties is 0.651, which indicates that
the efficiency in open-field grape production systems in China is relatively low. Additionally, it can
be seen from Figure 2 that counties with high efficiency scores are concentrated in the central areas
of China, such as the counties of Ningcheng (0.980), Jianping (0.991), and Kalaqinqi (1.000). These
counties mostly concentrated in the provinces of Inner Mongolia, Hebei, and Henan. In addition, there
are some counties with lower efficiency scores which are concentrated in the provinces of Sichuan and
Yunnan, such as the counties of Longcai (0.443), Binchuan (0.326) and Yongren (0.253).
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To analyze the environmental efficiency of open-field grape production systems on a larger scale,
the 119 counties were divided into five main production areas. The average efficiency scores and
standard deviations (S.D.) are shown in Table 3. It can be seen that the average environmental
efficiency of the North China area is 0.714 (S.D.: 0.121), which is the highest efficiency score,
followed by Northwest China with 0.679 (S.D.: 0.023), and Northeast China with 0.626 (S.D.: 0.158).
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South and Southwest China’s environmental efficiency scores are only 0.618 (S.D.: 0.179) and 0.528
(S.D.: 0.163), respectively.

Table 3. The average efficiency score (AES) of the five areas and the provincial-level regions.

Areas AES S.D. Regions AES

North China 0.714 0.121

Beijing 0.779
Shanxi 0.689

Shandong 0.684
Henan 0.679
Hebei 0.772

Inner Mongolia 0.681

Southwest China 0.528 0.163
Sichuan 0.483
Yunnan 0.573

Northeast China 0.626 0.158
Heilongjiang 0.564

Liaoning 0.679
Jilin 0.635

South China 0.618 0.179

Jiangsu 0.646
Hubei 0.518
Anhui 0.669
Fujian 0.585

Guangxi 0.673

Northwest China 0.679 0.023

Gansu 0.690
Xinjiang 0.695
Shanxi 0.682

Ningxia 0.650

3.2. Global Spatial Correlation Analysis

As the basis and premise of spatial autocorrelation analysis, only the correct and reasonable
selection of the spatial weight matrix can be used for the analysis of the spatial correlation. Generally
speaking, the spatial weight matrix can be divided into two kinds of matrices, which are “adjacency”
and “distance” [49]. In order to distinguish the spatial difference between counties better, the research
area is designated as the county administrative regions in this study. The spatial weight matrix of
“adjacency” is not suitable because the sampled administrative areas are not adjacent geographically;
therefore, the weight of the K-nearest neighbor is selected as the spatial weight to ensure that each
administrative region has four areas which are adjacent.

This study measured the global spatial correlation of the environmental efficiency of open-field
grape production in China using ArcGIS 10.0 software (ESRI, Redlands, CA, USA) from the American
ESRI Company and OpenGeo-Da software (University of Illinois at Urbana-Champaign, Champaign,
IL, USA) which is a free software package that was developed by the Spatial Analysis Laboratory of
the University of Illinois at Urbana-Champaign under the direction of Luc Anselin. The results of the
Global Moran’s I index are shown in Table 4. The p-value shows that the probability of having a random
distribution is very low; hence, spatial autocorrelation exists in the sampled counties. The Moran’s I
index is 0.329; the positive index shows that the environmental efficiency has the characteristic of
positive spatial autocorrelation. The Z-value and the Moran’s I index also show that similar samples
are spatially clustered.

Table 4. Calculated results of the Global Moran’s I.

Year Moran’s I p-Value Z-Value

2014 0.329 0.001 5.784
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3.3. Local Spatial Correlation Analysis

The spatial autocorrelation of the environmental efficiency of Chinese open-field grape production
was evaluated by local indicators of spatial association (LISA). The LISA graph is a vivid and explicit
display of the local Moran’s I index. It can show the similarity degree of the attribute values of adjacent
areas [50]. The LISA graph is shown in Figure 4, which shows the clustered points of environmental
efficiency at the county level in China, respectively, in terms of the four types of spatial correlations:
H-H, L-L, H-L, and L-H.
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4. Discussion

Figure 2 indicates that efficiency in open-field grape production in China is relatively low.
The samples with higher environmental efficiencies are mostly concentrated in the provinces of
Inner Mongolia, Hebei, and Henan. The open-field grape vineyards in these counties perform well
and profit from many aspects, such as the implementation of technological innovation, or the superior
natural conditions for open-field viticulture. The vineyards with lower efficiency scores, which
are concentrated in the provinces of Sichuan and Yunnan, show the necessity of reducing resource
consumption or carbon emissions for open-field grape production in these counties.

The distribution of efficiency scores in Figure 3 shows that more than 50% of the samples’
environmental efficiencies are less than 0.700. This means that the environmental performance of
Chinese open-field grape production systems is inadequate in resource-saving and carbon emissions
reduction. In order to obtain higher economic benefits, massive amounts of input resources are
applied in the open-field grape industry, such as chemical fertilizers, pesticides, and so on. Such
excessive applications of fertilizers and pesticides do not contribute sufficiently to achieving ideal
output, but cause serious environmental pollution. In other words, there is a great potential to reduce
resource consumption and carbon emissions in these counties and to increase the yield of grapes by
implementing structure adjustments and technical innovation, rather than higher inputs.
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From the perspective of the production regions, the environmental performance of North China
in the open-field grape production system is the best, which also confirms the fact that the north
regions develop relatively better in the open-field grape industry, and they are the traditionally suitable
viticulture areas as they have appropriate natural conditions for grape growing. Nevertheless, South
and Southwest China are non-suitable areas for grape production in terms of natural resources; they
have become viable for viticulture nowadays with the improvement of cultivation technology and
the appearance of new cultivation patterns. It was also found that, in the same production areas, the
regions present obvious differences in environmental efficiency, which can be explained by the fact
that the level of open-field grape production development of regions in the same area is not balanced.

The global spatial autocorrelation evaluation results prove that the environmental efficiency
of Chinese open-field grape production areas has obvious continuity in neighboring regions and
spatial correlation, namely for counties with high environmental efficiency, where the environmental
efficiency of the surrounding counties is relatively high. The opposite applies for the regions with low
environmental efficiency. The main reason for this phenomenon in the country is that geographical
and natural factors result in greatly differing viticulture conditions in different production areas, and
the input and output statuses are similar in geographically adjacent areas, so it is easy to form a certain
degree of spatial agglomeration.

Figure 4 shows that only 13 counties belong to the H-H type, mainly occurring in the province
of Hebei and the city of Beijing. The reason is that the counties with better environmental efficiency
invest more in advanced technologies which save materials and operate with lower emissions. On the
other hand, the grape growers in these counties affect each other, and better production models will
be imitated and promoted by growers to achieve a higher yield of grape. The counties belonging to
the L-L type are mainly located in the provinces of Sichuan and Yunnan. These counties are located
in Southwest China, which belongs to the emerging areas of open-field grape planting. The growers
in these counties tend to use larger amounts of materials, such as fertilizer and pesticides, to gain
higher economic benefit. Such an approach leads to higher emissions and resource consumption.
Additionally, a more efficient production model is absent in the adjacent area, which contributes to
the formation of the agglomeration area with low environmental efficiency. Furthermore, there are
some counties that belong to the H-L and L-H types. In these cases, the growers in the counties with
low scores are relatively ready to accept more efficient production models. However, changing the
production model requires a long time, so low scores and high scores will co-exist in the short term.
On the other hand, some growers relying heavily on traditional cultivated experience might not have
the will to master new environmental technology, which will lead to a lower score. This is a reason
why counties with the H-L and L-H types gather together.

5. Conclusions

In this paper, we aimed at measuring the environmental efficiency of open-field grape production
in China based on the SBM model. In addition, spatial relations of environmental efficiency in different
grape production counties were studied using spatial econometric methods.

In this paper, our findings have made specific academic and practical contributions.
Firstly, based on the academic findings on the environmental efficiency of China’s open-field

grape production [51], the present study further accumulates knowledge in this realm by adding
more relevant variables, such as carbon emissions, as the undesirable output variables in this paper.
The average environmental efficiency score of grape production in China is 0.651, a result which
indicates that China is faced with a relatively low efficiency in open-field grape production. This
result is in accordance with the findings of a previous study by Ma [52]. For the improvement of
environmental efficiency, more internal potential should be explored, producers’ technology levels
should be improved, and the allocation structure of resources should be optimized, rather than simply
increasing the inputs, for the sake of reducing the carbon emissions of the production system.
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Secondly, this study has practical contributions that benefit open-field grape production in China.
According to the phenomenon of spatial agglomeration, the results imply that the environmental
efficiency of Chinese open-field grape production areas has obvious continuity in neighboring
regions and spatial correlation, and great differences among counties of open-field grape production
exist in China in terms of natural conditions. Thus, grape farmers should select the appropriate
production mode and input resources based on local circumstances from the perspective of sustainable
development. Additionally, the local spatial correlation analysis indicates that it is necessary to
pay more attention to the spatial correlation of Chinese open-field grape production areas so as to
coordinate the development of the economy and environment in different production areas, which is
also important for policy-makers in China.

It should be noted that the data collected for our paper is only for the year 2014, so extending
the empirical study to multiple years and further conducting a dynamic analysis of open-field grape
production in China may be a particular direction for future research.
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