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Abstract: Wastewater treatment is an important link in the water cycle that allows for water
sanitation and reuse, facilitates energy generation, and allows for the recovery of products from waste.
The scientific community has paid significant attention to wastewater treatment, especially from a
technical point of view. Extensive literature is available on new technologies, processes, and materials
to improve wastewater treatment. However, scant studies have been conducted in the management
field focusing on the development of a performance measurement tool that supports plant managers.
The current article addresses this literature gap, developing a reporting tool that integrates technical
and cost measures and implements it in a large wastewater utility. The tool successfully identifies
cause and effect linkages among key plant performance drivers and supports management in finding
activities with poor performance and allows them to delay non-relevant measures of control.

Keywords: performance; wastewater treatment; strategic map

1. Introduction

Wastewater treatment plants (WWTPs) play a fundamental role in the water supply chain as
they enable water sanitation and reuse. Wastewater treatment is the process where organic and
inorganic pollutants are removed from the sewage. Wastewater cannot be released directly into the
environment as soil, sea, rivers, and lakes are unable to degrade quantities of polluting substances
higher than their own disposal capacity. The main pollutants that can be removed following treatment
are biodegradable organics (e.g., biochemical oxygen demand (BOD)), suspended solids, nitrates,
phosphates, and pathogenic bacteria. With the current emphasis on environmental health and water
scarcity affecting some European countries, there is a growing awareness of the need to dispose of such
wastes in a safe and beneficial way, as instructed by the Directive 91/271/EU [1] on urban wastewater
treatment, and Directive 2013/39/EU [2] on monitoring micro-pollutants.

Two main challenges characterize the industry: increasing the environmental sustainability of the
treatment process and minimizing the economic cost for operating the service. The expenditure on
wastewater management and treatment in the European Union with 28 member states was around
0.60% of GDP in 2011 [3].

In order to achieve these strategic objectives, water utilities might adopt different policies.
Scientific literature often suggests the renewal of the whole plant or a part of it, introducing devices
for energy recovery [4,5], or for raw material recovery from sludge [6], or high tech solutions that
improve the efficiency of reagent dispensing and consumption. Innovations have been continually
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developed for wastewater and sludge treatments [7,8]. Additionally, some interesting innovations
were also developed in relation to materials such as coagulators and flocculants used to facilitate the
treatment process, which resulted in increased removal rates of pollutants and lower sludge volume
indices [9,10].

However, to the best of our knowledge, there is no evidence of a Performance Measurement
System (PMS) based on a set of key performance indicators (KPIs), financial and non-financial, that
aids the management of water utilities. A PMS includes measures to evaluate the efficiency and
effectiveness of a manager’s actions and acts as a control process [11]. A correctly designed PMS ensures
improvement in achieving the firm’s strategic objectives. The PMS framework, which represents an
evolution of management control systems (MCS), integrates strategy goals and KPIs, as well as
financial, quality, and technical measures [11].

Literature on performance measurement in WWTPs is based only on technical indicators [12,13].
Only recently have some scholars proposed an integration of technical, economic, and environmental
performance in a single indicator [14,15]. The previously proposed framework integrating financial
and non-financial measures had regulatory purposes [16] or alternatively was aimed at identifying
short and long term drivers of plants’ performance [17,18]. However, there is lack of work on a
PMS developed to improve efficiency and profitability of WWTPs from an internal and managerial
perspective, with a process of plan-do-check-act. Recently, some interesting models where developed,
but they followed only an ex ante approach, based on simulation and on benchmarking scenarios [19].

The current paper develops a PMS with a set of KPIs linked by cause and effect relationships,
based on the Balanced Scorecard model [20,21]. This tool was tested on a wastewater utility covering
more than 1 million population equivalent (PE) and located in Italy. The tool was used to assess its
effectiveness in helping the management to identify key factors affecting the plant’s performance.
During the study, 17 KPIs grouped in four different clusters were measured for three years. Structural
Equation Modeling (SEM) was used to identify the cause and effect linkages among the KPIs.

The research addresses the literature gap on performance measurements of WWTPs, launching an
integrated reporting tool and providing a managerial approach to this issue, based on several types of
measures linked by causal linkages. The novelty of the article is that it provides to water utilities a tool
which supports the management in finding activities with poor performance, designing a strategic
map among KPIs, and allowing them to delay non-relevant measures of control.

The remainder of the paper is structured as follows. The next section provides a description
of the case study, which is one of the largest plants in Tuscany; the third section discusses the PMS,
selection of KPIs, and describes the statistical analysis for identifying the main drivers of performance.
The fourth section describes the results obtained following the adoption of the PMS in the wastewater
utility and discusses their practical implications.

2. Main Characteristics of the Case Study

The study was conducted at the Baciacavallo site of Gestione Impianti Depurazione Acque
(GIDA), which means Management of Wastewater Treatment Plants. The utility was founded in 1981
on the basis of the Italian National Law 319/1976 [22] that requires more sustainable practices in water
management. GIDA is a public-private company with three partners: Prato Town Council (with 46.5%
of shares), Confindustria (an Industrial Association with 45.5% of shares), while the remaining 8% is
owned by a company wholly controlled by the municipalities in the area.

The WWTP at Baciacavallo is composed of two water lines constructed at different times: 1980
and 1986. Wastewater collected from an old sewerage for domestic customers and two industrial
districts is treated here. In 2001, a new hydraulic connection was established with the WWTP of Calice,
also owned by GIDA.

The plant of Baciacavallo was designed to treat 130,000 m>/d of sewage, with a daily average
input load of 220 mg/L of chemical oxygen demand (COD) and 200 mg/L of biochemical oxygen
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demand (BOD?5). The design capacity of the plant, calculated on the basis of the available water supply
of 0.2 m3/PE, corresponds to 650,000 PE.

Wastewater effluent from the sewerage is subject to mechanical treatment using desanders and
primary sedimentation and is, thereafter, stored in two equalization tanks. Then, the wastewater
is transferred to biological basins for nitrification and oxidation. Subsequently, the wastewater is
subjected to secondary sedimentation, tertiary treatment, ozonation, and finally discharged into the
Ombrone River. The sludge that is produced during the treatment of sewage is thickened, dewatered
by centrifugation, and then incinerated. Figure 1 shows the structure of the plant.

SCHEMATIC REPRESENTATION OF THE BACIAVALLO WWTP AND THE SAMPLING POINTS (%)
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Figure 1. Layout of Baciacavallo wastewater treatment facility in Tuscany, Italy.

2.1. Primary Treatment

Wastewater from the sewerage collector is treated using two vertical grids. Thereafter, it is raised
by four Archimedes screw pumps and sent for fine screening. The solid material is collected in a
container and disposed of as waste, while wastewater is collected by the drainage system which
discharges into the head of the plant.

The residues present in the liquid phase are separated from the wastewater using two vertical
fine grids. After fine filtration, the flow of wastewater is divided into two treatment lines that cross
through four circular tanks, called desanders, each with a volume of 50 m3. The solid waste obtained
is collected in a container and disposed of as waste in a similar manner to that described for the first
step of gridding.

The core of the primary treatment consists of four tanks of 10,800 m® with a slow mixing
mechanism where the sewage is exposed to ferric chloride and anionic polymer and five rectangular
tanks where the settling of solids takes place. The settled sludge is periodically extracted and
transferred to the thickening tanks of the sludge line. Each line is equipped with a rotating grid
for filtering and separating floating solids extracted from the primary sedimentation.

The wastewater from the primary treatment is stored in two circular tanks of 11,000 m® each,
which serve as equalization basins. Subsequently, wastewater is sent to oxidation tanks for biological
treatment using Archimedes screw pumps that raise the water at 1500 m3/h.
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2.2. Secondary Treatment

The effluent from the primary sedimentation, or that raised from the equalization tanks, is sent to
four oxidation/nitrification tanks, with a capacity of 7500 m? each, equipped with superficial rotors
that provide the air required for the oxidation process.

Following nitrification, the wastewater is sent to four circular sedimentation tanks with volumes
of 7654 m? each, equipped with mechanically driven scrapers that continually drive the collected
sludge towards a hopper in the base of the tank where it is pumped to sludge treatment facilities,
or recycled to the same oxidation tank to increase the sludge retention time (SRT).

In particular, the extracted sludge from the sedimentation can follow two different paths:

> Resent to the oxidation tanks to keep the concentration of biomass constant, through four
recirculation screws with speeds of 2160 m?/h each;
> Sent to thickening tanks through four pumps.

2.3. Tertiary Treatment

Following oxidation/nitrification, wastewater flows in tanks equipped with electric mixers, where
aluminum trichloride (TRIAL) and anionic polyelectrolyte are added. Subsequently, wastewater is
sent for final sedimentation. The sludge produced in this phase is collected and sent at 40 m>/h using
extraction pumps to the thickening process of the sludge line.

2.4. Ozonation

The wastewater from the tertiary treatment is sent through a pipe to a pumping station, and
then sent to contact tanks for ozonation. The scope of the ozone treatment is to reduce the color and
the concentration of surfactants, which have not been degraded by the biological-oxidative process.
Ozone is generated by means of four ozonators working with pure oxygen.

Ozone gas is produced from liquid oxygen stored in four tanks. Ozone generators produce gas by
passing electrical discharges of high intensity through oxygen gas. The process yields about 10% (kg of
ozone [O3] per kg of oxygen [O;]). The gas mixture produced is blown through a network of porous
disks in three basins of contact consisting of four compartments, which contain the wastewater after
the tertiary treatment. The maximum capacity of ozone generation is 200 kg/h (50 kg per generator),
and the power of each is approximately 350 kW.

2.5. Sludge Treatment

The excess sludge from the tertiary and secondary treatments is sent to a thickener, with a
capacity of 900 m?, and subsequently to two other thickeners of similar volumes, where the extracted
sludge from the primary sedimentation also converges. Sludge originating from the plant at Calice is
transported through a dedicated pipe called “fangodotto” and is also processed here.

The thickened sludge is then dewatered through two centrifuges with capacities of 45 m?/h after
the addition of cationic polyelectrolyte. The dehydrated sludge is pumped in two storage silos, with
capacities of about 75 m® each, and sent to the incinerator through pumps.

3. Performance Measurement System for WWTPs

The PMS developed for the case study was quite similar to the balanced scorecard of Kaplan and
Norton (1992), as it is also structured in four perspectives. However, the financial, customer, process,
and knowledge areas of the well-known reporting tool were replaced by other parameters more suited
for WWTPs, such as costs, quality, efficiency, and external environment (Figure 2). The PMS was
developed in collaboration with GIDA, following the framework of Istituto Superiore per la Protezione
e la Ricerca Ambientale (ISPRA) [23].

In total, 17 KPIs were identified. Five were related to the cost perspective and referred to direct
and variable cost items. They included energy, reagents, and sludge disposal costs per cubic meter.
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Any positive (or negative) variation of costs measured by the report can be interpreted as a loss
(or gain) of economic efficiency.

Figure 2. Reporting tool for waste water treatment plants (WWTPs).
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Other costs, even if relevant, were excluded from this analysis, as they do not vary with the
volume of wastewater treated or its pollutant load, such as staff, maintenance costs, amortization,
and depreciation of assets. Staff is among the first three cost items of WWTPs, with energy and sludge
disposal. However, different from these last items, staff is strictly fixed, and its variation in the short
term might not depend on the plant’s workload. The cost KPIs where chosen according to the plant’s
characteristics. Energy costs included: (1) costs for the classic treatment for wastewater and sludge
(ucENcla), including grid, primary sedimentation, active sludge, secondary sedimentation, sludge
dewatering, and drying; (2) costs for the ozone treatment for the removal of color and surfactants
(ucENoz). Similarly, reagents costs for the wastewater treatment (ucREAGwa) were included, such as
aluminum trichloride, anionic polyelectrolyte, and oxygen consumed, and for the sludge treatment
(ucREAGs]), where cationic polyelectrolyte was added to facilitate flocculation and sedimentation
of the suspended solids; and, finally; (3) disposal costs (ucDISP) measured for the expenditure of
transporting the sludge to the landfill, composting plants, farms, or incinerators. The sludge treatment
cycle’s output produced by Baciacavallo and Calice plants was fed into the incinerating process.

Costs were calculated in reference to the volume of wastewater treated (€/m?). An alternative
measure would be the unit cost per kg of pollutants removed (e.g., €/kg COD). Both measures have
their own advantages and limits. The former quantifies pure cost efficiency, but is affected by the
rate of storm water that mixes with the sewage. Actually, the cost per cubic meter usually decreases
when this rate increases, consequently sewer networks with higher infiltrations could appear more
efficient than others with equivalent volume. The latter relates to costs of the effective output of a
WWTP, but could be affected by exogenous variables such as the COD concentration of the influent
wastewater, which cannot be wholly controlled by the plant manager. The pollution concentration of
the input wastewater has a negative effect on efficiency and removal rate, according to Fraquelli and
Giandrone [24] and Lorenzo-Toja et al. [25]. This can explain the higher costs incurred to remove an
intense pollutant load.

The quality perspective includes three KPIs measuring the removal rate of three pollutants: total
suspended solids (SST), COD, and color. The suspended solids and the COD are two classic indices of
pollution. Nitrogen (N) removal rate was not included to not burden the PMS, since the wastewater
inflows of GIDA are characterized by the other pollutants mentioned and the amount of nitrate in the
discharged effluent are considerably under the maximum limit provided by the environmental law.
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The indicators were estimated using Equation (1):

RR
Quality (rCOD, rSST, rCOL) = ——<

= 1
R M

where rCOD, rSST, and rCOL are the quality indexes for the removal of COD, SST, and color,
respectively; RRexp is the expected removal rate, estimated as the average removal rate recorded
in the previous years; and RR,; is the actual removal rate measured in the current period.

This method of computation assigns a score that increases with higher removal rate. A similar
score is estimated when technical efficiency is measured. The company decided to set a target on
the basis of its past performance and not according to the standard set by the scientific literature.
This choice could be explained considering that the literature usually provides standards for plant
treating only domestic wastewater, while the Baciacavallo plant operates on non-domestic wastewater,
coming mainly from textile industries, for which it is very difficult to find generally accepted
performance standards in terms of quality and efficiency.

Energy and reagents consumption were split in two measures based on their consumption during
the classic and ozone treatment phases. Sludge treatment was monitored using three indicators that
referred to the volume of sludge produced, quality of treatment, and disposal.

The two energy efficiency measures (enCLA and enOZ) were quantified by the ratio of the
expected kWh to the actual kWh consumed in the classic and ozone treatments. A growth (decrease)
of the score identifies a savings (loss) of efficiency, as shown in Equation (2).

KWh/m3ex

kWh/m3 act @)

Energy efficiency =
A similar measure was obtained for the reagents (Equation (3)). The efficiency of reagents for
ozone (reagOZ) is the ratio of the expected to actual amount of oxygen consumed.

kg / m? Oz exp

7= P
reago kg/ m3 OZact

®)

For the classic treatment (reagCLA), the global score of efficiency in terms of reagent consumption
was calculated using a weighted average of the scores estimated for the three types of chemicals used
(anionic and cationic polyelectrolyte and aluminum trichloride). The weights specified in Equation (4)
were chosen by the management of GIDA, considering their relative importance in the process of
the treatment.

kg

k 3 AL —&pol an
kg/m Alog | gy mP7Mop 55, m
kg/m3 ALyt “&polan, “Epol cat,,

kg
m3pol cat,,

reagCLA = x 0.3 4)

The production of sludge (sIPROD) for the Baciacavallo plant was measured by the ratio of
the expected weight of SST to the actual volumes. This indicator was not directly handled by the
plant managers as it mainly depends on the SST concentration in the wastewater inflow. However,
its measurement is crucial as the total amount of SST can affect the disposal costs indicator included in
the economic perspective.

The efficiency of treatment (sITREAT) quantifies the capability of the plant to reduce the amount
of organic suspended solids in the stabilized sludge and its humidity, as shown in Equation (5):

(=)
T exp +08 % DMexp

ITREAT = 0.2 X ——«c—
s . ( SSV ) DMact
SST act

©)
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where SSV is the percentage of the volatile solid (organic) included in the sludge and DM is the
percentage of dry matter obtained.

The sludge treatment efficiency was obtained using both ratios with two weights chosen by the
management of GIDA.

The last technical efficiency indicator was sludge disposal (sIDISP) that measures the amount of
energy and raw material recovered, and was estimated using Equation (6):

(% energy rec + % raw material rec)

sIDISP = act (6)

(% energy rec + % raw material rec) exp

KPIs pertaining to the plant performance included two indicators related to wastewater
characteristics: COD concentration of sewage inflow (CODcon) measured in terms of mg/L,
and volume of inflow (VOLinf), measured in terms of cubic meters.

Plant performance on the basis of the 17 KPIs was collected monthly for three years, from 2013 to
2015. In total, 612 observations were collected and SEM approach was applied to identify the cause and
effect relationships among the KPIs and to identify effective performance drivers for the plant studied.

The KPIs observed could be linked following several combinations.

Linkages among KPIs can be non-sequential as a component of one balanced scorecard perspective
has a cause and effect relationship with one or more components of other perspectives and not
necessarily with those included in the level immediately above, as in the case of “sequential”
linkages [26-28]. Furthermore, interdependent linkages arise when two KPIs of different levels
have a bidirectional relationship, also called a “reverse linkage” [29]. Finally, two KPIs of the same
perspective can exhibit an intra-dependent relationship. All these links could be indirect or direct,
and may involve other KPIs as mediators.

SEM is one of the best approaches to map all these nexuses [29,30]. SEM adopts different
mathematical models to study relationships among variables and it often studies latent variables,
which are not directly observed, but only inferred from other measures (e.g., the quality of life can
be measured inferring wealth or environment). Path analysis is a special application of SEM, applied
only to observed variables [31]. Path analysis is based on a set of multivariate regression functions.
The method is suited to identify direct and indirect effects of causal variables. Path analysis has already
been used to draw the causal relationships among KPIs [32-35]. SEM using path analysis was applied
in this study.

Considering the 17 KPIs as a non-oriented network [36], the potential causal relationships are
identified as n x (n — 1), where n represents the number of nodes of the network. In our study, there
could be 17 x 16 = 272 connections. To avoid a complex system of multivariate regression functions,
a correlation matrix was built to identify all significant nexuses among KPIs, excluding those that are
not relevant.

Thereafter, each KPI was related to its potential drivers and mapped with the correlation matrix.
A variety of estimation methods have been used in SEM, however, three standard methods that
almost all SEM programs support are ordinary least square (OLS), generalized least square (GLS),
and modified least square (MLS).

The current research is based on OLS and applies a post estimation assessment using the
F-test. Unlike t-tests that can assess only one regression coefficient, the F-test can assess multiple
coefficients simultaneously. The F-test compares a model with no predictors to a specified model [37].
While R-squared values estimate the strength of the relationship between dependent and independent
variables, the F-test determines whether this relationship is statistically significant; if the p-value for
the test is lower than a certain threshold the R-squared value is statistically significant.

F is measured as the ratio between the explained and unexplained variance of the dependent
variable, as summarized by Equation (7).
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SSR

_ MSR _ dfys @)
MSE ~ _SSE
dfvse

where SSR is the sum of square regression, SSE is the sum of square error, df is a degree of freedom,
and MSR and MSE are the mean sum of square due to treatment and error, respectively.

The ratio indicates when the independent variables do not exert any significant impact on y.
This null hypothesis must be accepted when the p-value of the test is under a threshold (usually 5%).

4. Results of PMS Implementation

An overview of the data collected for the plant at Baciacavallo is reported in Table 1. All the KPIs
in the quality perspective were greater than 1, which demonstrates that GIDA was performing well in
the quality perspective. However, a wide variation was recorded for the SST removal rate, as shown by
the relative standard deviation index. Among the KPIs pertaining to technical efficiency, only reagent
consumption was greater than 1, while energy and sludge performance decreased from 2013 to 2015.
A wide variation was recorded for reagent consumption, sludge production, and energy consumed
for the ozone treatment. Furthermore, the energy consumption in classic treatment, sludge treatment,
and disposal was relatively stable. Exogenous variables observed included approximately 3 mil of m3
treated monthly with an average COD concentration of 218 mg/L. Both these variables varied during
the three years, as the relative standard deviations were 15% and 21%, respectively. The cost observed
had a total value of 1.08 €/m3, obtained by adding the mean values reported in Table 1. In order of
relevance, the main costs were for energy in classic treatment, sludge disposal, and energy in ozone
treatment. The cost for reagents in water treatment was about 21% of the energy costs, while the cost
for reagents in the sludge treatment was about 6% of energy costs.

Table 1. Key performance indicators (KPIs) collected between 2013 and 2015 at the wastewater utility
at Baciacavallo.

Mean Max Min Std Dev Relative Std Dev
rSST 1.030 1.532 0.703 0.180 17%
rCOD 1.010 1.275 0.776 0.132 13%
rCOL 1.002 1.292 0.788 0.127 13%
enCLA 0.976 1.127 0.846 0.070 7%
enOZ 0.992 1.448 0.678 0.146 15%
reagCLA 1.077 2.706 0.818 0.295 27%
reagOZ 1.048 1.600 0.521 0.214 20%
sIPROD 1.003 1.439 0.677 0.158 16%
sITREAT 0.996 1.017 0.975 0.010 1%
sIDISP 0.993 1.000 0.912 0.019 2%
VOLinf 3,085,591 3,846,350 1,861,689 467,407 15%
CODcon 218 287 127 46 21%
ucENcla 0.035 0.045 0.023 0.005 16%
ucENoz 0.025 0.039 0.010 0.007 27%
ucREAGwa 0.013 0.019 0.007 0.003 21%
ucREAGsl 0.004 0.009 0.001 0.002 38%
ucDISP 0.031 0.049 0.016 0.007 24%

Before the path analysis, a correlation matrix was drafted to identify variables linked by potential
cause and effect nexus (see Table 2). This tool was applied to choose the dependent variables of the
regression functions estimated during the path analysis. According to the method applied, variables
included in the statistic models must show a Bravais Pearson correlation index greater than 0.20.

Considering that exogenous variables are affected by environmental factors not measured by the
PMS, and disposal costs do not have any relevant correlation index, this paper studied 14 regression
functions structures, as reported in Table 3, with R?, adjusted R?, and p value of the F-test. We observed
that RZ was between 0.20 and 0.66. The p value of F-test was always under 0.05; therefore, the null
hypothesis of the test, which specified that the independent variables do not exert any effect on y,
had to be rejected.
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Table 2. Correlation matrix with 17 KPIs.

rSST rCOD rCOL enCLA enOZ  reagCLA reagOZ  sIPROD sITREAT  sIDISP  ucENcla ucENoz ucREAGwa ucREAGsl ucDISP VOLinf CODcon

rSST 1
rCOD 0.8561 1
rCOL 0.6160 0.6499 1
enCLA —0.2177  —0.0485 0.0339 1
enOZ —-0.2975  —0.0833 0.0675 0.5025 1
reagCLA 0.0673 0.1138 0.0030 —0.0376 0.0573 1
reagOZ —0.0550 —0.0984 0.1485 0.0752 0.5270 0.1995 1
sIPROD —0.1702 0.0366 —0.1846 0.1219 0.0708 0.2540 —0.4042 1
sITREAT 0.0494 0.0695 0.0042 0.3966 0.0582 —0.2258 —0.1140 0.1519 1
sIDISP 0.1420 0.0562 0.1358 0.2742 0.2281 —0.0086 0.3531 —-0.3929 0.1004 1
ucENcla —0.4730 —0.5695 —0.4464 —0.0299 0.0068 —0.3131 —0.0393 —0.0697 0.2090 0.0749 1
ucENoz —-0.3954 05172 —0.2613 —0.0681 —0.1193 —0.4171 —0.0869 —0.1215 0.0835 0.0863 0.8816 1
ucREAGwa  —0.2866 —0.3255 —0.1765 0.0343 —0.0737  —0.4617 —0.3224 0.0511 0.2125 0.1394 0.7909 0.8873 1
ucREAGs! —0.3993 —-0.5668 —0.1989 —0.0276 —0.0985 —0.4874 —0.0507 —0.3188 0.1366 0.0674 0.6653 0.6321 0.5509 1
ucDISP —0.3463 —0.4202 —0.1891 0.1193 0.0545 —0.3309 0.2098 —0.4754 0.0695 0.3107 0.6516 0.6847 0.6048 0.6899 1
VOLinf —0.1057  —0.0920 0.1882 0.3102 0.2238 —0.3783 0.0191 —0.1278 0.1762 0.4939 0.4101 0.5163 0.6725 0.3241 0.5150 1
CODcon —0.5935 —0.7245 04690 —0.4062 —0.2375 —0.1318 —0.1562 0.0091 —0.1972 —0.1535 0.6563 0.6396 0.5256 0.5998 0.3777 0.1772 1
Table 3. Structure of regression functions.
rSST rCOD rCOL enCLA enOZ reagCLA  reagOZ sIPROD  sITREAT  sIDISP ucENcla ucENoz  ucREAGwa  ucREAGsl
1SST 0.005 0.005 —0.000 0.002
rCOD —0.010 —0.027 * —0.007 —0.007 **
rCOL —0.021 ** —0.006
enCLA —1.049 *** 0.029 *** 0.054 ** 0.081 —0.002 *
enOZ —0.356 ** 0.193 *** 0.794 *** 0.000
reagCLA 0.175 ** —0.007 0.002 —0.006 ** —0.002 **
reagOZ 0.372 *** —0.280 ** 0.016 —0.005 ***
sIPROD 0.459 —0.042 * —0.001
sITREAT 2.258 ** —6.271 —0.563 *** 0.047 0.022
sIDISP 0.427 —1.337 0.747 —2.146
VOLinf 0.000 —0.000 *
CODcon —0.003 ***  —0.002 ***  —0.001 *** —0.000 —0.000
R? 0.66 0.52 0.22 0.45 0.51 0.22 0.47 0.33 0.20 0.34 041 0.47 0.42
Adj R? 0.63 0.51 0.19 0.38 0.43 0.15 0.42 0.27 0.15 0.23 0.33 0.38 0.34
Prob >F 0.000 0.000 0.003 0.000 0.000 0.039 0.000 0.003 0.024 0.020 0.001 0.001 0.001

*, *%, **%* Significant at 10 %, 5%, 1%, respectively.
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Figure 3 summarizes the key findings of the path analysis. The algebraic sign near each measure
indicates the effect exerted on the related KPI: “+” is positive and implies a directly proportional
correlation, while “—" is negative and implies an indirectly proportional relationship.
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Figure 3. Summary of key findings.

Unit costs were directly affected by the removal rate of pollutants (COD and color), with the
exception of ucCREAGwa. All unit cost indicators were directly affected by at least one KPI of technical
efficiency; and, furthermore, they were always conditioned indirectly by exogenous variables.

VOLinf and CODcon played relevant roles in the PMS designed in this research. The pollutant
load affects the quality perspective, affecting the SST, COD, and color removal rate; simultaneously, the
COD concentration had an effect on the cost, mediated by the COD and color removal rate. Therefore, a
high concentration of pollutant load in the wastewater inflow results in a decrease in the removal rate
of COD and color, and (indirectly) an increase in costs (with the exception of reagents added to the
water treatment). This highlights that a higher pollutant load, measured in terms of carbon and color,
requires more intense work by the plant, but achieves poorer results in terms of quality.

The Bravais Pearson correlation coefficients reported in Table 2 demonstrate that an increasing
pollutant load required higher energy consumption in classic and ozone treatments, and higher
consumption of reagents in the classic treatment. Furthermore, energy is required to achieve a higher
removal rate in terms of suspended solids.

The relationship between each type of chemical added and CODcon was studied to understand
the trend in consumption of reagents. Figures 4 and 5 show the consumption of reagents added during
the water treatment, and Figure 6 refers to the consumption of cationic polyelectrolyte during the
sludge treatment. Only anionic polyelectrolyte (Figure 5) was employed in larger amounts when the
pollutant load decreased. In contrast, the amount of cationic polyelectrolyte and aluminum trichloride
increased with heavier wastewater inflow. These results explain why ucREAGwa was not affected
by CODcon; one of the two chemicals employed was not used following the pollutant load and
counterbalanced the cost savings effected by the other reagent.

Therefore, an analysis of the variation in the volume of wastewater treated on reagents dosage was
conducted. VOLinf influenced the quantity of reagents used in the classic treatment (water + sludge);
a higher value of this exogenous variable determined a loss in efficiency of reagent consumption and
an increase of reagents for water (uCREAGwa) and sludge treatment (ucREAGsl). This decreasing
return to scale in reagent consumption and relative costs were due to some weakness of the dosage
activity, as the ability of devices to vary the quantity of chemicals added on the basis of controlled
factors, such as volume and pollutants concentration, is not properly developed.
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These observations on reagents consumption were also confirmed by the analysis of cause and
effect relationships on the technical efficiency perspective. Firstly, the measure of efficiency for
consumption of reagents in the classic treatment affected all costs as shown in Figure 3, with the
exception of ucENcla. This means that this technical KPI should be analytically controlled by the
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plant manager of Baciacavallo. Secondly, the consumption of oxygen for the ozone treatment was
affected by the quantity of sludge treated and produced; an increase (or decrease) in sludge production
determined a decrease (or increase) in reagent consumed in the ozone treatment. This counterintuitive
result could be explained in terms of the inefficiency that characterizes the dosage activity.

Among technical efficiency KPIs, energy measures play a relevant role as quality drivers and not
as costs drivers (like reagOZ and reagCLA). Both types of measures for energy (classic and ozone)
were crucial to achieve a good removal rate of SST as the treatment to remove solids properly from the
wastewater needed a lot of energy for mechanical filtration, sand removal, and primary and secondary
sedimentation. However, enCLA and enOZ do not affect energy costs as energy is a mixed cost that
does not proportionally vary with kWh consumption and volume of wastewater treated; furthermore,
the cost also varies with the price negotiated with the providers. In the period observed, the purchasing
price per MWh decreased: GIDA paid an energy cost of 154.5 €/MWh in 2013, 155.2 €/MWh in 2014,
and 145.5 €/MWHh in 2015. At the same time, the enCLA indicator was 0.95 in 2013, 1.05 in 2014,
and 0.92 in 2015. This confirms that GIDA took advantage of lower prices, and increased consumption
in 2015; however, in terms of cause and effect relationship, the price variation counterbalanced the
consumption variation, neutralizing its effects on unit costs.

Thus, the tool developed in this study provided wide support to GIDA’s staff in identifying the
key performance drivers and their main effects that must be continuously monitored. The following
conclusions can be drawn from this case study.

Quality is a perspective of performance that requires high energy consumption in both classic
and ozone treatments; an improvement of the removal rates requires higher power consumption in
the plant. Further, quality also depends on the pollutant load; with a low COD concentration, higher
removal rates were achieved with lower costs per cubic meter. This highlights the benefits that could
be obtained by the plant from a more diluted sewage, for example, during rainy weather. Costs
are affected by quality, reagent consumption, and sludge treatment among the technical efficiency
KPIs. A weakness of the treatment process was highlighted by the PMS, with reference to reagents.
An increase in consumption did not generate any benefits to the removal rate, and increased costs.
Additionally, the negative relationship between sludge produced and oxygen consumption can be
considered as a warning. It means that oxygen in ozone treatment is consumed regardless of the SST
to be removed, so that a rationalization of this activity is required, for example, dosing the ozone
according to the pollutants load of the wastewater to be treated.

Finally, indirect linkages reveal that the volume of wastewater inflow and pollutant load affect
the plant unit cost through their effects on quality and efficiency. An increase in volume damages
technical efficiency and increases cost; while the removal of high pollutants concentration is hard
and expensive. However, as demonstrated by prior literature [38], the concentration of pollutants
could exert an opposite effect when functional units different from volume are adopted as the COD
is removed.

Thus, the study highlights the importance of a PMS that links technical measures, usually
monitored by engineers and chemists, with costs and other financial measures, usually controlled by
the chief financial officer of a water utility. The integrated reporting developed assists production
managers in identifying the economic effects of their choices, while financial officers can understand
the real causes of poor financial performance.
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