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Abstract: The subject of this paper pertains to sliding mode control and its application in nonlinear
electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing
with unmodeled system dynamics, sliding mode control has been widely used in electrical power
system applications. This paper presents first and high order sliding mode control schemes for
permanent magnet synchronous generator-based wind energy conversion systems. The application
of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those
of the high speed shaft rotational speed show a high level of efficiency in power extraction from
a varying wind resource. Computer simulation results have shown the efficacy of the proposed
sliding mode control approaches.

Keywords: wind energy conversion systems; sliding mode control; permanent magnet
synchronous generators

1. Introduction

Concerns over the environmental impacts and scarcity of fossil fuels have led to increased usage
and growing demand of alternative energy resources, such as wind and solar energy. Studies predict
20% of the United State’s electrical energy will come from wind by 2030 [1]. Modern wind energy
conversion systems (WECS) are designed to maximize the electrical power extraction from wind input,
which is commonly known as the maximum power point tracking (MPPT) [2–4]. Due to the highly
unpredictable nature of wind, the ability to obtain satisfactory efficiency has been difficult until recent
advances in nonlinear control technologies [5].

In recent years, as WECS have moved away from the doubly-fed induction generators (DFIGs)
and more towards permanent magnet synchronous generators (PMSGs), even further emphasis
has been placed on efficient control strategies due to the high price and complexity of typical
aerodynamic control systems [6]. Using PMSGs over DFIGs renders higher reliability, greater efficiency,
a larger energy to weight ratio and an improved power factor to wind energy conversion systems
(WECS) [7,8]. A PMSG eliminates the necessity of the gearbox, which further reduces costs associated
with maintenance by allowing for direct coupling of the shafts of the generator and the turbine [9].

One proposed control method that shows promise in helping to achieve high efficiency, robustness
and stability is sliding mode control (SMC). For WECS employing DFIGs, SMC applied to torque
control demonstrates high MPPT with low variations in torque. The usefulness of this control method
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extends into synchronous machines, as well. Research into the use of SMC in PMSGs effectively
demonstrates the potential power of this control method. The strength of SMC comes from the
ability to control high-order systems, while exhibiting resiliency against disturbances and variations
in model parameters. Research into SMC for PMSGs illustrates the potential of this control method
and accentuates SMCs promise as a candidate for achieving the goal of increasing the efficiency level
in regards to MPPT. Results demonstrated by research involving the use of SMC with permanent
magnet synchronous motors (PMSMs) and permanent magnet synchronous generators (PMSGs)
continue to demonstrate the strength of SMC as a viable method for effective control of synchronous
machines [10–14].

Although the positive attributes of SMC make it seem an ideal control method, it does not exist
without fault. The phenomenon in first-order sliding mode control, known as chattering, invites
an understandable level of criticism. Due to the non-idealities in switching devices, the response
of the system under SMC oscillates about the desired reference, known as the sliding surface. This
leads to higher mechanical wear, lower accuracy and heat loss in power circuits. Modifications in
the first-order sliding mode control calculation to assume imperfect switching times, such as using
hysteresis instead of signum functions, can be utilized in order to compensate for chattering, but
such methods complicate calculations for a relatively small reduction in chattering [15–18]. Thus, the
principal method for avoiding chattering is to increase the order of sliding mode control by forcing
higher order derivatives of the sliding manifold to zero [19–21]. In an ideal case, careful usage of high
order sliding mode control removes chattering as a concern [22–24]. Advances in generalizing the
sliding mode control to these higher orders have allowed the system to maintain high accuracy and
robustness while still reducing the effect of chattering [25–27].

The structure of this paper is as follows: Section 2 develops and outlines models for the
aerodynamics of the wind turbine and the PMSG. Section 3 presents the design of first- and high order
sliding mode control methods for PMSG-based WECS. Section 4 gives the results comparison based on
the simulations conducted in MATLAB and SIMULINK. Lastly, Section 5 concludes this work with
comments on the effectiveness of the proposed control methods.

2. Wind Energy Conversion PMSG Model

2.1. Ideal Actuator Disk Model

The aerodynamic behavior of an ideal wind turbine is modeled through an actuator disk used
to extract mechanical power from the dynamic wind power input. Figure 1 shows the actuator disk
model, where the variables with subscript u indicate conditions (velocity, pressure) in front of the disk,
subscript 0 indicates conditions at the disk and subscript w indicates conditions behind the disk.

Figure 1. Model of actuator disk interaction with wind [28].
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Wind of air mass m, pressure p, density ρ and velocity v transfers momentum H = m(vu − vw) to
a disk of cross-sectional area A. The resulting force is:

F =
∆H
∆t

=
∆m(vu − vw)

∆t
= ρAv0(vu − vw) (1)

Equivalently, the force on the actuator disk can be written as:

F = A(p+0 − p−0 ) (2)

Based on Bernoulli’s equation, the pressure difference is:

(p+0 − p−0 ) =
1
2

ρ(v2
u − v2

w) (3)

which means the force can be expressed as:

F =
1
2

ρA(v2
u − v2

w) (4)

From Equations (1)–(4), the wind velocity at the actuator disk can be found in terms of input and
output wind speed in the form of:

v0 =
1
2
(vu + vw) (5)

Equivalently, we have:
vu − vw = 2(vu − v0) (6)

The kinetic energy of the air mass traveling at speed v is E = 1
2 mv2. Since air mass, which passes

the actuator disk in 1 s of time, can be expressed as m = ρAv0, where A is the cross-sectional area, the
input wind power is given in the form:

Pwind =
1
2

ρAv3
0 (7)

The power extracted by the actuator disk, i.e., the power supplied to the rotor (turbine), can be
obtained as:

Protor =
1
2

ρAv0(v2
u − v2

w) =
1
2

ρAv3
04a(1− a)2 (8)

where:
a = 1− v0

vu
(9)

Denote the power coefficient Cp as the power ratio of power extracted by the actuator disk to the
power input from wind. Cp can be obtained as:

Cp =
Protor

Pwind
= 4a(1− a)2 (10)

From Equation (10), Cp achieves its maximum value Cp,max = 0.59, when a = 1
3 , known as the

Betz limit, and represents the maximum power extraction of a wind energy conversion system in the
most optimal case.

2.2. Performance of a Non-Ideal Wind Turbine

For most practical wind energy conversion systems (WECS), as shown in Figure 2, the maximum
achievable power extraction is approximately 70%–80% of the Betz limit (41.5%–47.4% in total efficiency
from power extraction from wind) [29,30].
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Figure 2. Simplified diagram of a permanent magnet synchronous generator (PMSG)-WECS [28].

Cp =
Protor

Pwind
< 0.5 (11)

Denote the tip speed ratio λ as the ratio between the peripheral blade speed and the corresponding
wind speed v (Note: v = v0) as:

λ =
ωrotorRt

v
(12)

where Rt is the blade length of the turbine.
The Cp power coefficient describes the power extraction efficiency of a wind turbine. A

commonly-used Cp power coefficient is calculated as a function of the tip speed ratio λ and the
blade pitch β and is given by the following mathematical approximation [31,32]:

Cp(λ, β) = c1(
c2

λi
− c3β− c4)e

−c5
λi (13)

λi = (
1

λ + c6β
− c7

β3 + 1
)−1 (14)

where c1–c7 are wind turbine constants. Consider β = 0o, c1 = 0.39, c2 = 116, c3 = 0.4, c4 = 5,
c5 = 16.5, c6 = 0.089 and c7 = 0.035; we have Cp,max = 0.4953, and the optimal tip speed ratio λo = 7.2,
which falls within the range of realistic expectations for a wind turbine. The power coefficient Cp curve
is shown in Figure 3.
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Figure 3. Cp power coefficient vs. tip speed vs. pitch angle.
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The torque at the rotor can be expressed in the form as:

τrotor =
Protor

ωrotor
=

1
2

ρCpπR2
t v3

ωrotor
(15)

where Rt is the blade length of the turbine and v is the wind speed.
For torque assessment and control purposes, the torque coefficient Cq, which characterizes the

rotor output torque, is derived from the power coefficient simply dividing it by the tip speed ratio as:

Cq =
Cp

λ
(16)

The resultant Cq curve is shown in Figure 4.

Figure 4. Cq torque coefficient vs. tip speed vs. pitch angle.

2.3. Permanent Magnet Synchronous Generator Model

Park’s transform is used to transfer the abc coordinate frame permanent magnet synchronous
generator model to the dq coordinate frame model. This yields the following equations for the direct
and quadrature axis voltages:

ud = −Rsid − Ld
did
dt

+ Lqiqωe (17)

uq = −Rsiq − Lq
diq

dt
+ (−Ldid + Ψm)ωe (18)

For a surface-mounted PMSG, Ld = Lq, which we hereby denote as L for both quantities.
Rearrangement of Equation (17) and Equation (18) yields the following system model:

did
dt

= −Rs

L
id + ωeiq −

1
L

ud (19)

diq
dt

= −Rs

L
iq −ωeid −

1
L

ud +
1
L

Ψmωe (20)
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The third state variable is introduced based on the high speed shaft rotational speed equation as.

dωr

dt
=

τm

J
− τe

J
− Bωr

J
(21)

Considering ωe =
P
2 ωr, where P is the number of stator poles, τe = Ktiq and Kt =

3
4 PΨm, thus the

overall permanent magnet synchronous generator-based wind energy conversion system model is:

did
dt

= −Rs

L
id +

P
2

iqωr −
1
L

ud (22)

diq

dt
= −Rs

L
iq −

P
2

(
id −

Ψm

L

)
ωr −

1
L

uq (23)

dωr

dt
=

τm

J
−

Ktiq

J
− Bωr

J
(24)

3. Sliding Mode Control

3.1. First-Order Sliding Mode Control

SMC design is applied to Equations (22) and (23) and expanded to include Equation (24) in order
to create a new sliding mode control architecture for the WECS using a PMSG.

3.1.1. Sliding Surfaces

The sliding surfaces are to be defined as:

sd(t) = [id(t)− i∗d(t)] = 0 (25)

sq(t) = [iq(t)− i∗q (t)] = 0 (26)

sωr (t) = [ωr(t)−ω∗r (t)] = 0 (27)

i∗d(t), i∗q (t) and ω∗r (t) are the reference values for their respective surfaces. Due to the nature of
field-oriented control, the d-axis stator current reference i∗d(t) = 0.

The speed reference is given as:

ω∗r (t) = i
vλ

Rt
(28)

where i is the WECS fixed drive train multiplying ratio.
The q-axis stator current reference i∗q (t) is a dynamic value and will be revealed as the resulting

output of the control law developed for Equation (24).

3.1.2. Reachability

The reachability conditions for Equations (25)–(27) are given respectively as:

sd(t)ṡd(t) < 0 (29)

sq(t)ṡq(t) < 0 (30)

sωr (t)ṡωr (t) < 0 (31)

These inequalities ensure that the trajectories will remain driven towards their respective
sliding surfaces.
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3.1.3. Parameter Variations

Possible unmodeled dynamics present in Equations (22)–(24) are taken into consideration by the
Rs = R̂s + ∆Rs, where R̂s is the nominal value, and ∆Rs is a bounded disturbance. The same reasoning
is applied to L = L̂ + ∆L, Ψm = Ψ̂m + ∆Ψm, τm = τ̂m + ∆τm, J = Ĵ + ∆J and B = B̂ + ∆B.

3.1.4. Direct Axis Current Control Design

In order to develop the d-axis control, Equation (29) must be satisfied. From Equation (22), this
inequality can be re-written as:

sd(t)
L

[
−Rsid(t) +

P
2

Liq(t)ωr(t)− ud(t)− L
di∗d(t)

dt

]
< 0 (32)

Denoting the d-axis control law as:

ud(t) = ud,eq(t) + ud,N(t) (33)

where ud,eq(t) is the equivalent control and ud,N(t) is the switching control. The equivalent control is
given as follows:

ud,eq(t) = −R̂sid(t) +
P
2

L̂iq(t)ωr(t)− L̂
di∗d(t)

dt
(34)

Hence, ṡd from inequality Equation (32) becomes:

ṡd(t) =
1

∆L

[
−∆Rsid(t)− ∆L

(
di∗d(t)

dt
− P

2
iq(t)ωr(t)

)]
− 1

∆L
ud,N(t) (35)

Due to the bounded nature of the uncertainties, along with the variables di∗d(t)
dt , id(t), iq(t) and

ωr(t), there exists a positive constant udo, such that:

udo >

∣∣∣∣−∆Rsid(t) + ∆L
P
2

iq(t)ωr(t)− ∆L
di∗d(t)

dt

∣∣∣∣ (36)

From this, the switching portion of ud(t) is determined to be:

ud,N(t) = −udosgn(sd(t)) (37)

where:

sgn(s) =


1, if s > 0

0, if s = 0

−1, if s < 0

The design of this controller should ensure that id(t) is driven to i∗d(t) = 0 and will remain there
despite disturbances.

3.1.5. Quadrature Axis Control Design

Following the same method and considering the q-axis control, the inequality Equation (30) must
be satisfied. Re-writing ṡq(t) in terms of Equations (23) and (26), Equation (30) can be re-written as:

sq(t)
L

[
−Rsiq(t)−

P
2
(Lid(t)−Ψm)ωr(t)

]
+

sq(t)
L

[
−uq(t)− L

di∗q (t)
dt

]
< 0 (38)
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Denoting the q-axis control law as the sum of the equivalent and switching controls respectively:

uq(t) = uq,eq(t) + uq,N(t) (39)

The equivalent control can be given as:

uq,eq(t) = −R̂siq(t) +
P
2
(L̂id(t)− Ψ̂m)ωr(t)− L̂

di∗q (t)
dt

(40)

Now, ṡq from inequality Equation (38) is written as:

ṡq(t) =
1

∆L

[
−∆Rsiq(t)−

P
2
(∆Lid(t)− ∆Ψm)ωr(t)

]
− 1

∆L

[
∆L

di∗q (t)
dt
− uq,N(t)

]
(41)

Again, due to the bounded nature of the uncertainties and variables, there exists a positive
constant uqo, such that:

uqo >

∣∣∣∣−∆Rsiq(t)−
P
2
(∆Liq(t) + ∆Ψm)ωr(t)− ∆L

di∗d(t)
dt

∣∣∣∣ (42)

From this, the switching portion of uq(t) is determined to be:

uq,N(t) = −uqosgn(sq(t)) (43)

The result of this control design should be that iq(t) is maintained at the reference i∗q (t).

3.1.6. Control Design Based on Rotational Speed Dynamics

Again, making use of the similar method used for the d- and q-axis controls and ensuring that
inequality Equation (31) is satisfied, ṡωr (t) can be re-written from Equations (24) and (27). Equation (31)
now becomes:

sωr (t)
Kt

[
τm − Ktiq(t)− Bωr(t)− J

dω∗r (t)
dt

]
< 0 (44)

For the rotational speed controller, the control variable becomes the quadrature axis reference
current. It follows that the control law is designated:

i∗q (t) = i∗q,eq(t) + i∗q,N(t) (45)

With equivalent control:

i∗q,eq(t) =
1
Kt

[
τ̂m − B̂ωr(t)− Ĵ

dω∗r (t)
dt

]
(46)

ṡq from inequality Equation (44) is now re-written as:

ṡωr (t) =
1
Kt

[
∆τm − ∆Bωr(t)− ∆J

dω∗r (t)
dt

]
(47)

Based on previous reasoning for the d- and q-axis control design, there exists a positive constant
iqo, such that:

iqo =

∣∣∣∣ 1
Kt

[
∆τm − ∆B− ∆J

dω∗r (t)
dt

]∣∣∣∣ (48)
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It then follows that:
i∗q,N(t) = −iqosgn(sωr (t)) (49)

This controller will actively control i∗q (t). Therefore, the output is the input to the q-axis control
developed previously.

3.2. Higher Order Sliding Mode Design Using Super Twisting Algorithm

To reduce the effect of chattering, higher order sliding mode control methods have been developed.
The derivation of higher order sliding mode (HOSM) control is obtained using the super twisting
algorithm. The sliding surfaces for HOSM control are chosen to be the same as the first-order type.

3.2.1. Direct Axis Control Design

For second-order sliding mode control, both s(x) and ṡ(x) must be zero, so one more derivative
of each function must be calculated. From the previous section, we have:

ṡd =
1
L
[−Rsid +

P
2

ωrLiq − ud]−
di∗d
dt

(50)

from Equation (50), s̈d is found to be:

s̈d = −Rs

L
did
dt

+
P
2

dωr

dt
iq +

P
2

diq
dt

ωr −
1
L

dud
dt
−

d2i∗d
dt2 (51)

Denote:

ψd = −Rs

L
did
dt

+
P
2

dωr

dt
iq +

P
2

diq

dt
ωr −

d2i∗d
dt
∈ [−Ψd, Ψd] (52)

and:
γd =

1
L

dud
dt
∈ [Γm, ΓM] (53)

The control input ud consists of the sum of two parts, ud,eq and ũd, where ud,eq is the equivalent
control (equal to the equivalent control found in the first-order sliding mode control), and ũd is
defined as:

ũd = ud1 + ud2 (54)

where:
u̇d1 = −Wdsgn(sd) (55)

ud2 =

{
−λ|s0|psgn(sd) |sd| > |s0|
−λ|sd|psgn(sd) |sd| ≤ |s0|

(56)

the corresponding sufficient conditions for finite time convergence to the sliding manifold are:

Wd >
Ψd
Γm

(57)

λ2 ≥ 4Ψd
Γ2

m

ΓM(Wd + Ψd)

Γm(Wd −Ψd)
(58)

0 < p ≤ 0.5 (59)
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The choice p = 0.5 ensures the maximum real sliding order two is achieved. Thus, we have:

ũd = −λ|sd|1/2sgn(sd)−Wd

∫
sgn(sd)dt (60)

and the overall control is:
ud = ud,eq + ũd (61)

3.2.2. Quadrature Axis Control Design

The same method used for the direct axis is applied to the quadrature axis. Previously,

ṡq =
1
L
[−Rsiq −

P
2

ωr(Lid −Φm)− uq]−
di∗q
dt

(62)

From Equation (62), we find s̈q to be:

s̈q = −Rs

L
diq

dt
− P

2
did
dt

ωr −
P
2
(id −

Φm

L
)

dωr

dt
− 1

L
duq

dt
−

d2i∗q
dt2 (63)

Denote:

ψq = −Rs

L
diq

dt
− P

2
did
dt

ωr −
P
2
(id −

Φm

L
)

dωr

dt
−

d2i∗q
dt2 ∈ [−Ψq, Ψq] (64)

and:

γq =
1
L

duq

dt
∈ [Γm, ΓM] (65)

ũq = uq1 + uq2 (66)

where:
u̇q1 = −Wqsgn(sq) (67)

uq2 =

{
−λ|s0|psgn(sq) |sq| > |s0|
−λ|sq|psgn(sq) |sq| ≤ |s0|

(68)

the corresponding sufficient conditions for finite time convergence to the sliding manifold are:

Wq >
Ψq

Γm
(69)

λ2 ≥
4Ψq

Γ2
m

ΓM(Wq + Ψq)

Γm(Wq −Ψq)
(70)

0 < p ≤ 0.5 (71)

Thus, we have:
ũq = −λ|sq|1/2sgn(sq)−Wq

∫
sgn(sq)dt (72)

and the overall control is:
uq = uq,eq + ũq (73)
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3.2.3. Quadrature Axis Current Reference Control Design

From the previous section,

ṡωr =
τm

J
− Kt

J
iq −

Bωr

J
− dω∗r

dt
(74)

where Kt =
3PΦm

4
From Equation (74), s̈ωr is:

s̈ωr =
1
J

dτm

dt
− Kt

J
diq
dt
− B

J
dωr

dt
− d2ω∗r

dt2 (75)

Again, denote:

ψω =
1
J

dτm

dt
− B

J
dωr

dt
− d2ω∗r

dt2 ∈ [−Ψω, Ψω ] (76)

and:

γ = −Kt

J
diq

dt
∈ [Γm, ΓM] (77)

The overall control input is:
i∗q = i∗q,eq + ĩ∗q (78)

and:
ĩ∗q = iq1 + iq2 (79)

where:
i̇q1 = −Wωsgn(sω) (80)

iq2 =

{
−λ|s0|psgn(sωr ) |sωr | > |s0|
−λ|sωr |psgn(sωr ) |sωr | ≤ |s0|

(81)

the corresponding sufficient conditions for finite time convergence to the sliding manifold are:

Wωr >
Ψωr

Γm
(82)

λ2 ≥ 4Ψωr

Γ2
m

ΓM(Wωr + Ψωr )

Γm(Wωr −Ψωr )
(83)

0 < p ≤ 0.5 (84)

Thus, we have:
ĩ∗q = −λ|sωr |1/2sgn(sωr )−Wωr

∫
sgn(sωr )dt (85)

and the overall control is:
i∗q = i∗q,eq + ĩ∗q (86)

4. Computer Simulation Results

The implementation of the wind turbine aerodynamics, PMSG dynamics and SMC control
architecture in MATLAB SIMULINK is shown by Figure 5. The nominal PMSG parameters used
are listed in Table 1. Parameter variations were implemented within the Generator Dynamics block.
The SIMULINK wind model in Figure 5 is capable of producing varying degrees of wind intensity and
speed variations.
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Table 1. Turbine and generator parameters.

Property Parameter Value

Rotor radius Rt = 3 m
Stator Resistance Rs = 3.5 Ω
d-axis inductance Lq = 35 mH
q-axis inductance Ld = 35 mH

Flux linkage Ψm = 0.3 Wb
Poles P = 6

Inertia J = 1
Stiffness B = 0.001

Figure 5. Overall MATLAB simulation model.

Two computer simulation studies are conducted with different wind speed profiles. In the first
scenario, the wind speed input is piecewise affine. In the second scenario, the stochastic wind input is
considered. Both simulation scenarios show the efficacy of the proposed approach.

4.1. Piecewise Affine Wind Speed Input

Figure 6 shows the piecewise affine wind speed input, which is used to demonstrate the
effectiveness of the proposed control approach. The range of varying speed is between 5 m/s and
35 m/s.

Both the stator direct axis current id(t) and quadrature axis current iq are shown. As can be seen
in Figure 7, the d-axis current accurately tracks the reference value i∗d(t) = 0. Chattering about the
reference with the first order sliding mode control is due to high frequency switching. However,
despite constant fluctuations in wind speed, the d-axis control scheme effectively resists the effects
of disturbances and parameter variations. The high order sliding mode control greatly improves the
chattering effect. In Figure 8, the q-axis currents also accurately track the desired value i∗q (t) with both
the first- and high order sliding mode controllers. Figure 9 shows the rotational speed ωr(t) accurately
tracking the speed reference ω∗r (t).
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Figure 8. The quadrature axis current iq state trajectory controlled by the SMC.
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Figure 9. The rotational speed ωr state trajectory controlled by the SMC.

Inspection of these figures shows that accurate current and speed control are achieved, while
the high order sliding mode control shows better accuracy and very significant chattering reduction.
To better show the significant improvement of the high order SMC approach, the average mean square
error (MSE) comparison of the iq state trajectory between the first and high order controllers is shown
in Figure 10, where the exact effects of the chattering reduction can be seen. Figure 11 is a zoomed-in
picture of Figure 9 between a short time period of 21.9 s and 22.2 s, which shows the better performance
of the high order SMC in rotor speed ωr control.

The final and probably the most important result regards MPPT. Figure 12 shows the power
coefficient corresponding to the piecewise affine wind profile in Figure 6. Immediately following the
initial approach towards Cp,max, it can be seen that the value of Cp is held at or near Cp,max despite all
variations in the wind and system modeling uncertainties.
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Figure 10. MSE comparison of iq state trajectory with first- and high order SMC.
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Figure 11. The “zoomed in” ωr state trajectory to show the chattering effect.
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Figure 12. Power coefficient.

4.2. Stochastic Wind Speed Input

Figure 13 shows the stochastic wind input used for the remainder of the simulation results listed.
For the second scenario, the stochastic wind input was chosen to demonstrate the effectiveness of the
control design due to its highly varying nonlinear nature and the range of wind speeds.

The first result shown is that of id(t). As can be seen by Figure 14, the d-axis current accurately
tracks the reference value i∗d(t) = 0. Chattering about the reference with the first-order sliding mode
control is due to switching delays. However, despite constant fluctuations in wind speed, the d-axis
control scheme effectively resists the effects of disturbances and parameter variations. The high order
sliding mode control significantly improves the chattering phenomenon.
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Figure 13. Stochastic wind input.
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Figure 14. The direct axis current id state trajectory controlled by the SMC.

One of the key components of the proposed control scheme is the active control of the quadrature
axis current reference i∗q (t) through the implementation of a sliding mode controller based on the
rotational speed dynamics of the WECS. Figure 15 shows the actual value of iq(t), accurately tracking
the defined reference i∗q (t). Figure 16 shows the the rotational speed ωr(t) accurately tracking the
speed reference ω∗r (t). Inspection of these figures shows that accurate current and speed control
are achieved, while the high order sliding mode control shows better accuracy and very significant
chattering reduction. To better show the significant improvement of the high order SMC approach,
the average MSE comparison of the id state trajectory between the first- and high order controllers is
shown in Figure 17, where the exact effects of the chattering reduction can be seen. Figure 18 presents
a zoomed in section of Figure 16 to show the reduced chattering of the high order SMC in ωr after 38 s.
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Figure 15. The quadrature axis current iq state trajectory controlled by the SMC.
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Figure 16. The rotational speed ωr state trajectory controlled by the SMC.
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Figure 17. MSE comparison of id state trajectory with first- and high order SMC.
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Figure 18. The “zoomed in” ωr state trajectory to show the chattering effect.

The final and probably the most important result regards MPPT. Figure 19 shows the power
coefficient throughout the course of the simulation. Immediately following the initial approach towards
Cp,max, it can be seen that the value of Cp is held at or near Cp,max despite all fluctuations in the wind
and parameters.

The proposed control algorithm will be realized in hardware for controlling the PMSG-based
wind energy system in real time using the dSPACE DS1103 PPC system in future research studies.
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Figure 19. Power coefficient.

5. Conclusions

The proposed first- and high order sliding mode controllers designed for a variable-speed
surface-mounted PMSG-based WECS have been designed and simulated using MATLAB/SIMULINK.
Preliminary testing of the novel control design results in a system with low sensitivity to disturbances
and the ability to maintain a relatively constant level of power extraction efficiency in the presence of
a highly varying wind input and bounded model parameter variations. Initial research into this method
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shows promise for active control of the quadrature axis current reference based on the use of an SMC
control design for the dynamics of the high speed shaft rotational speed of the system. Testing with
high order sliding mode controls shows vastly reduced chattering compared to a first-order sliding
mode controller applied to the same model, even in highly variable wind conditions. This improved
performance allows the WECS to maintain optimal power extraction efficiency without the side effects
of chattering. Computer simulation results support this conclusion. However, the effectiveness of the
proposed control topologies shows that they merit future research.
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