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Abstract: The adoption of open innovation and peer production, powered by 3D printing technology,
is transforming traditional manufacturing methods towards a “third industrial revolution”. The purpose
of this research is to provide empirical evidence for an integrated approach, based on collaborative
product development and peer production, combined with 3D printing, to deliver more sustainable,
yet competitive, marketable products. In particular, this experimental study is conducted in the
context of mobile forensics, an emerging market where limited expensive products exist and
alternative solutions are needed. The technical viability and economic feasibility of the prototype
developed in this research validate the proposed integrated approach, which could be a game-changer
in the field of mobile forensics, as well as in other sectors. The sustainability improvements with this
approach are a reduction of the total cost, thereby making it affordable for lower income users, and a
decrease in energy consumption and pollutant emissions. The validated integrated approach offers
start-up opportunities to develop and deliver more sustainable, marketable products, towards the
paradigm of Open Sustainable Innovation. While the device developed and tested in this research has
similar features to existing products, the methodology, implementation, and motivation are original.

Keywords: peer production; collaborative product development; open innovation; sustainability;
3D printing; open sustainable innovation; mobile forensics

1. Introduction

The recent trend of producing small quantities of custom designed and low cost finished goods
comes from the model of mass customization, as postulated in the “think global and produce local”
concept [1]. The increasingly popular means to better prepare for this novel trend are (i) open
approach to hardware and software development; (ii) peer production, and (iii) distributed 3D printer
manufacturing [2,3].

The open innovation (OI) concept has changed the traditional, vertically-integrated mode for
internally developed output, to achieve a new paradigm of innovation based on collaboration
with several actors from outside the firm boundaries [4–12]. There are different partners that
can be involved in OI practices, such as suppliers, universities, non-profit organization and other
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firms [13]. Recently, the advances in information technology facilitated the involvement of dispersed
individuals by overcoming geographical, social, and physical barriers [14,15]. In this way, it is
possible to exploit the “crowd wisdom” that arises from heterogeneous mindsets and knowledge
diversity [16–20]. Collaboration amongst different people to develop the final product means that the
distinctions between manufacturer and customer are disappearing, thereby building new collaborative
networks [21,22]. Actually, this cooperation is understood to be an effective mechanism for increasing
innovation efficiency and creativity [4,23]. OI can be applied to all of the product development stages,
from hardware and software design to the production phase [24–26]. In this vein, hardware and
software development can be realized and continuously updated thanks to the collaborative work of
researchers and volunteers interacting online [27].

Peer production is intended as a collaborative activity aimed at sharing productive goals [28].
This productive methodology is based on self-organized communities, which easily interact together
thanks to information technology advancements and cooperation to realize a final product. Towards
this end, recent advances in 3D printing technology have made the production of components possible
with commercially available desktop 3D printers [29], which are able to fabricate goods with custom
shapes and colors [30]. Thus, people can network online for the ideation and the design of the product,
and subsequently fabricate and assemble it locally.

3D printing is a growing manufacturing technology that allows the design and fabrication of
products or components directly from a computer connected to a 3D printer, by following successive
steps [31]. First, the design is developed by means of a Computer Aided Design (CAD) 3D model;
subsequently, it is converted to a Standard Triangulation Language (STL) format; then the file is
transferred to a prototyping system, generally referred to as Computer Aided Manufacturing (CAM),
where the structure is divided into layers. Finally, it is sent for fabrication to a desktop 3D printer.
Thanks to 3D printing the production stage nowadays can easily enhance customers customization
requirements [32]. Additionally, 3D printing is also able to unlock “latent entrepreneurship”, as new
opportunities are emerging to enter the market and bypass the barriers to entry, such as initial capital
investment, mass production requirements for cost reductions, prototyping costs, and transportation
and distribution systems [33]. In particular, the adoption of 3D printing and peer production
allows (i) a reduction in supply chain management efforts; (ii) the recycling of wasted materials;
(iii) the absence of costly tools, molds, or punches; and (iv) the elimination of inventory, as the
production happens just in time [34]. Therefore, even if initially used for prototyping, 3D printing is
nowadays increasingly employed for the final product realization of small production volumes [35].
Markets show that the annual sales growth rate of the 3D printing manufacturing sector was +24% in
2010, where 20% of the products were not prototypes, but real products [36], and the sector is expected
to grow further in the coming years [35].

Nowadays, companies need not only to capture business opportunities and bring value to
customers, but they must also provide social outcomes for the welfare of the public [37,38]. Actually,
business strategies and regulations increasingly demand firms to enhance sustainability in addition
to pursuing their traditional production criteria (i.e., economic feasibility, technical viability, and
customer requirements) [39–41]. In order for products or services to be more sustainable, they must
simultaneously benefit three main pillars: economy, society, and environment [39,42]. The profound
shift in manufacturing, from remote factories to local 3D printing and peer production, in addition
to product development, through collaboration parties outside the organization’s boundaries, can
help in the achievement of improved sustainability [43,44]. Therefore, the integrated approach herein
described is intended to generate innovative, sustainable, marketable products by exploiting the open
innovation paradigm and peer production with 3D printing, in an effort to achieve Open Sustainable
Innovation (OSI) [45].

The adoption of open innovation and peer production powered by 3D printing technology is
transforming traditional manufacturing methods towards a “third industrial revolution” [34]. Actually,
low cost customization for everyone is favored by these methodologies, and will provide enormous
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value to the “commons” [46]. In particular, the research question we addressed in this paper is: can
peer production, coupled with 3D printing and collaborative hardware and software development,
be adopted in an integrated approach to deliver cheaper and more sustainable marketable products?
To this end, we experimentally validate the development of a prototype, called CellIntel, for professional
mobile forensics. CellIntel is a tool for extracting digital evidence from mobile devices during private
and public investigations, and has the ability to compete with existing market competitors. Thus,
the objective of this research is to demonstrate that the use of the integrated approach makes it
possible to realize a product that is cheaper, more widely available, more sustainable than traditional
manufacturing processes, and economically profitable in the mobile forensics sector.

The remainder of the paper is structured as follows. In Section 2, we introduce the field in which
we tested the product development and where it will operate (i.e., mobile forensics). In Section 3,
we provide an overview of the integrated approach, with details about the hardware and software
components and related sustainability implications. In Section 4, we report field-testing results for the
prototype. Section 5 provides an analysis of the product’s economic feasibility. Section 6 details the
limitations of the research and, finally, Section 7 addresses final thoughts and conclusions about our
findings and possible future research.

2. Experimental Context: Mobile Forensics

Over the past twenty years, we have experienced exponential growth in mobile communications;
the number of mobile phone subscribers has recently been estimated to be in excess of five billion,
with a notable increase in sales in developing countries [47,48]. Mobile technologies have become an
integral and pervasive part of common life, thanks to the increasing power, functionality, and ability to
collect and share large quantities of data from such small devices [49].

Unfortunately, the propensity for criminals to use mobile phones to conduct their nefarious
activities has also increased dramatically and, therefore, these devices have become even more valuable
sources of evidence due to the incredible amount of information stored internally [50]. In particular,
with the integration of highly developed communication features and with the increasing capacity in
data storage and functionality, the distinction between mobile phones and personal computers has
become blurred. Therefore, mobile device forensics is critical in every type of investigation today.
In recent years, researchers and practitioners alike understood the importance of mobile devices as
a fundamental source of digital evidence, which can be essential in capturing critical information to
prosecute a suspect [51,52].

This approach lies in the so-called digital forensics sector defined as: “The use of scientifically derived
and proven methods toward the preservation, collection, validation, identification, analysis, interpretation,
documentation and presentation of digital evidence derived from digital sources for the purpose of facilitating
or furthering the reconstruction of events found to be criminal, or helping to anticipate unauthorized actions
shown to be disruptive to planned operations” [53]. The concept of mobile forensics involves forensic
imaging, which is the creation of a bit-for-bit copy of mobile device memory for examination during
an investigation.

There are few investigative solutions, which are commercially available for mobile forensics,
based on heterogeneous design criteria. Some of the most notable solutions include Paraben’s Device
seizure [54], Oxygen Forensics Suite [55], and Cellebrite’s UFED [56], which extract data from the
devices via a Universal Series Bus (USB) connection. The initial price, subsequent maintenance costs,
large dimensions, and sizeable weight are common with all of these forensic technologies, while there
is an increasing need for mobile forensics capabilities (i.e., see the 2016 Apple-FBI diatribe where
the intelligence agency sought to compel Apple to gain access to terrorist’s iPhone) [57]. The main
incumbent in this sector, in terms of product maturity and market share, is Cellebrite with its UFED.
Their product retails for approximately $20,000, and comes with an annual maintenance commitment
of approximately $3000. Despite these high costs, the product can be found in numerous investigation
departments. The unit is portable, but still heavy and cumbersome to be considered portable for
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professional activities. In addition, the limited selection of mobile forensics solutions means that prices
are expected to remain high for the foreseeable future.

Therefore, mobile forensics represents a relevant field to empirically test the integrated approach
proposed in this research. Actually, the sector does not have large production volume, which is
a suitable characteristic for our production methodology, but it is growing globally, giving good
scalability opportunities for start-ups. The incumbents are few and sell expensive solutions, thereby
leaving opportunities for new entrants with different production techniques. This sector involves
hardware and software development, thus the proposed integrated approach can benefit both fields
of expertise.

3. A New Integrated Approach for Product Development

The potential to develop and offer a state-of-the-art device for mobile forensics, at a lower price
and with smaller dimensions, is attractive. Offering a cheaper device is an objective not just for
economic reasons in an effort to challenge existing competitors, but also to address the needs of
private investigators and smaller institutions that cannot afford expensive solutions. Additionally,
an easier and faster production process will facilitate the global distribution of these devices. Therefore,
while the design of the hardware and software take place online, through the collaboration of loosely
affiliated collaborators, who are directed by the researchers through an open innovation approach
(i.e., recently defined “crowdsourcing” [58]), the production of the final product can be achieved by local
branches worldwide. Utilizing this production and distribution approach, the product also promotes
environmental sustainability, as it is able to reduce energy supply usage and CO2 emissions when
compared to traditional production methodologies [35]. Finally, to make field investigations easier,
the device must be easy to use and portable.

Therefore, in this study we focused on developing a mobile forensics imaging device, with
improved field usability and customer accessibility, which was cheaper, environmentally sustainable,
and economically feasible. The prototype described in this paper represents an example of OSI [45], as it
is based on open innovation for worldwide development and assembly, while enhancing sustainability
by (i) eliminating the inventory, transportation, and delivery costs; (ii) reducing the production costs
and time while still generating profits and, finally; (iii) decreasing pollutant emissions by lowering
energy consumption [35].

In order to achieve these objectives, the following steps have been undertaken: (i) offering an
open approach to software development and hardware design, by involving international students
from different fields of study in collaboration with the researchers; (ii) exploiting peer production
based on 3D printing and off-the-shelf components to assemble the product; (iii) performing empirical
testing and economic simulation to validate this new compact, portable device developed for this
research. This study offers empirical evidence for the successful implementation of this new integrated
approach in the field of mobile forensics, which could be generalized and applied to other sectors.

3.1. Hardware Prototype

In this section, the hardware design is described and the electronic components are listed, in order
to provide a comprehensive overview of the final product. The prototype is an electronic portable
device that acquires and stores digital evidence. The device can image both Android and iOS devices,
which account for 95% of the United States mobile operating system market share and 90% of European
Union market share [59]. An open approach is used for both hardware and software design, in order
to involve external partners in product development [27].

The electronic parts used were chosen among those readily available in the marketplace.
The external case of the imager was produced with a 3D printer, and finally all of the components
are manually assembled. In the following subsections, the prototype components are described,
although the in-depth details were not disclosed as the aim of this research is to provide evidence of
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the possibility to enter the market with this new approach and, therefore, we are looking to effectively
start-up a new venture and sell the product in the near future.

3.1.1. Case Design and Production

The prototype device was designed with several key characteristics in mind, which were: (i) lower
cost; (ii) touchscreen; (iii) smaller than competitors; (iv) lighter than competitors; (v) easier to assemble;
(vi) ability to connect to different mobile devices; and (vii) manually assembled. Thus, the adoption of
3D printing technology to produce the device allows a minimal initial investment for the production
equipment, low unit cost, product portability, custom design, and ease of assembly. The project began
with the acquisition of two desktop 3D printers, which were not excessively expensive, whose cost lies
in the range of $3000 to $10,000. As the precision and the surface finishing of a 3D printer increase,
the price rises too. The design of the casing was realized with 3D CAD (Figure 1).
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Figure 1. Computer aided design (CAD) rendering of the CellIntel prototype connected to a mobile device.

Given the goal of peer production, screws and bolts were avoided, and the assembly of the
parts was designed for manual interlocking, by applying a small force. Therefore, the product can
be manufactured and assembled in different locations and by different individuals without any
specialized training. The 3D printed parts for the prototype case are comprised of: (i) a case to house
electronic components and batteries, with openings designed specifically for connectors and board;
(ii) the second part is mounted on top of the previous part to house the liquid crystal display (LCD)
screen; and (iii) the third part locks the LCD screen into place.

The desktop software Solidworks (release 2013, Dassault Systèmes, Velizy-Villacoublay, France)
was employed to create the file used by the 3D printer. The software was also able to provide
information regarding the cost of plastic used and the time required to complete each unit. In Table 1,
the overall production cost, which also includes electricity costs based on an estimation of similar
3D-printed products in the USA [3,60], is listed for each component. The casing material is acrylonitrile
butadiene styrene (ABS), a thermoplastic polymer typically used by 3D printers. The printer used for
the first casing was a low-cost, $3000, commercially available desktop solution (Makerbot Replicator
5th, Makerbot, New York, NY, USA). For the second casing prototype, another more expensive ($10,000)
commercial 3D printer (S250 Tiertime, Tiertime, Beijing, China) was employed. These printers use
the fuse deposition modeling (FDM) [61], an additive manufacturing process that works by laying
down the plastic filament in layers, unwound from a coil and hot-extruded [62]. The printing outputs
are the same in terms of functionality between the two solutions, but the second printer provides a
superior precision level and a smoother surface finishing, more suitable for entering the market and
for competing with the incumbents.
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Table 1. Costs for the 3D printed casing components for the CellIntel prototype.

Components Mass Production Time Cost

Electronic box 17 g 4 h, 12 m $3.40
LCD Screen box 21.8 g 2 h, 38 m $2.56
Top of the box 16.4 g 2 h, 10 m $2.14

Electricity costs 55.2 g $0.03
Total 55.2 g 9 h $8.13

3.1.2. Prototype Electronics

The electronic parts were housed in the casing produced with the 3D printing methodology.
To keep costs low, the device was built around off the shelf components that are cheap and easily
available on the market. The average prices of the electronics components are listed in Table 2.

Table 2. Costs of the off the shelf electronic components for the CellIntel prototype.

Components Cost

LCD screen $55.99
Solid state drive (SSD) 2.5” $85.99

Motherboard $49.89
3D printed casing $8.13

Total $200

3.2. Software Prototype

The novel device developed in this research, operates using a Debian Linux build operating system
(kernel 3.4.90). An interface, written in Java programming language, runs on top of the operating
system, providing the user a simple one-click method to execute programs and scripts installed
in the device, which automates the process of evidence acquisition. The choice of Linux, an open
source operating system, facilitates the open innovation approach to software development, as many
communities are active in providing drivers and access to the mobile devices. The in-house developed
software was created by a community of student volunteers working together with researchers,
a cooperation that facilitates the implementation of future updates, who utilize open source code from
community platforms, such as GitHub [63].

The starting point for the prototype’s software was in-house developed software, used to extract
data from Android and iOS devices. The community at large would contribute to updates. The user
interface, created in Java, was designed to be user-friendly, thereby appealing to more users. The user
interface was designed with touch screen in mind, which was easy to use.

3.3. Sustainability Implications

The concept of sustainability requires “development that meets the needs of the present without
compromising the ability of future generations to meet their own needs” [64]. The changing needs of customers
and the introduction of new laws internationally have increased the demand for more sustainable
products. More than ever, firms are engaged in redesigning their products and services towards
sustainability [39–41]. Innovative products and services should comply with traditional specifications,
in terms of quality and technical standards, as well as with sustainability requirements [39].

The definition of sustainability is broad and covers economic, social, and environmental concerns,
which are considered to be the three “overlapping dimensions of sustainability” [65]. Therefore, to foster
sustainability and to benefit all stakeholders, innovations must be effective in simultaneously benefiting
the economy, society, and the environment [39,42]. The integrated approach described in this study
fulfills these three dimensions of sustainability by reducing the overall cost (and purchase price), energy
consumption, and pollutant emissions [35]. Thus, society benefits from lower priced products with
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greater accessibility; the economy is enhanced by bringing to market profitable products and facilitating
new ventures; and, finally, the environment is safeguarded by lowering energy consumption and
pollution [42,66]. More specifically, the integrated approach outlined in this research allows products
to be manufactured locally thanks to 3D printers and peer production. As a result, raw materials,
transportation costs, inventory stock, and wasted materials are significantly reduced [67]. Indeed,
production costs, energy usage, and CO2 emissions can be reduced on average by 25%, 30%, and 30%,
respectively, when compared to traditional production techniques, as demonstrated by previous
research [35]. More specifically, the potential savings realized by 3D printing and peer production,
in terms of costs and CO2 emissions, are estimated to be in the range of $170–$579 billion USD and
130–525 Mt of CO2, respectively, by 2025 [35]. These savings, in terms of lower energy usage and
pollutant emissions, positively impact both the environment and society, given the current global
strategies against climate change [68–71]. In addition, reduced costs allow broader appeal, by offering
the device at a lower price while still realizing profitability, as analyzed in Section 5.

The ability to support all three pillars of sustainability (i.e., economical, societal, and
environmental [39,42]), while also pursuing business objectives, means that the innovative product
realized through our proposed integrated approach represents a successful implementation of the OSI
paradigm [45].

4. Empirical Testing

The empirical testing performed during the study showed positive results in producing the
prototype using the aforementioned techniques. The prototype has similar functionality and improved
usability when compared to rivals. After the collaborative hardware and software design described in
the previous sections, the CellIntel prototype was produced with a S250 Tiertime 3D printer and was
then manually assembled. Subsequently, the software was installed on the device (Figure 2).
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The assembled prototype, consisting of the in-house produced 3D printed case and commercially
available components, is displayed in Figure 3.
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case, battery, SSD hard disk drive, printed circuit board, cables for connections among components,
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Finally, data extractions for forensics investigations, performed with the prototype device CellIntel,
were successful with both Android and iOS devices (Figure 4).
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Figure 4. CellIntel assembled prototype in function: touch screen user interface during the choice of
the device to be imaged.

5. Economic Analysis

The finished prototype demonstrated the technical viability of the proposed integrated approach,
with the ability to deliver the same technical features of its main competitors. However, the objective
of this research was not only the validation of a state-of-the-art mobile forensics imaging device, but
also to demonstrate its economic feasibility while offering it at a drastically lower price compared to its
competitors, while still maintaining a reasonable margin to start-up in the market. The supply chain
is simplified, as all of the components are readily available on the market or can be 3D printed and
manually assembled, and the value proposition for customers is to buy a cheaper and more sustainable
product (as described in Section 3.3). The last aspect to be addressed is how the new venture can
become profitable [44,72]. In order to assess the economic feasibility of this new product in the market,
it is crucial for a new venture to perform a Net Present Value (NPV) analysis [73]. The inputs required
to conduct a NPV analysis are (i) duration of the project; (ii) cost of capital; (iii) tax rate and, finally;
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(iv) free cash flows. All of the detailed assumptions and calculations are provided in the following
paragraphs. In particular, the information used to calculate the free cash flow for each year of operation
was: (i) revenues; (ii) costs of units sold; (iii) employees’ wages; (iv) initial capital investment for the
equipment; and its (v) amortization. All of the details are reported in the following paragraphs and are
summarized in a Table 3.

With regards to the overall costs, we considered the main constituents of the total cost of ownership
model [74–76]. The operating costs are divided into the cost of units sold, as the plastic and electricity
cost per unit produced, and labor costs, as employees’ wages. The logistics and transportation costs,
which generally account for 15% of the overall costs [67], are avoided as all of the components are
delivered or produced at local assembly stations. Moreover, there is no inventory cost due to the fact
the production happens just in time. We considered an initial cost for the 3D printer with a conservative
expected lifetime and amortization. Additionally, we also considered the opportunity cost of capital
and the taxes for running the venture. Regarding the costs related to the software, the researchers
involved in the project were already established software developers and they partially used code
from open source software communities.

In our testing, we developed a durable and resilient prototype with both the Makerbot printer [77]
and the S250 Tiertime printer [78], although differences in the surface finishing are noticeable and the
latter one is consequently preferred for the final production. The time required for the production of
our 3D printed toolbox is about eight hours, and one hour for the final assembly. Therefore, with one
3D printer, each day it is possible to produce two finished products, and approximately 40 units per
month. The raw material for the 3D printer has an estimated cost of $8, while the components costs
$192, for a total cost of $200 to realize the final product, as reported in Table 2. In this research, we
aimed to sell the product for a much lower unit price than the competitors’ product, which is $999
instead of $10,000, on average. This price is significantly less than the competitors’ prices, but it also
allows a reasonable markup (i.e., the margin of revenues over costs) for starting a new venture.

Choosing to buy the most expensive 3D printer (the $10,000 S250 Tiertime printer), as a result of
a better surface finished casing, we estimated the break-even point for units sold, which tells us the
amount of goods produced for which the NPV equals zero. The lifespan of the printer is supposed to be
three years, which is a conservative estimate considering that the warranty period offered in Europe for
this product is two years. Thus, the initial investment is equal to $10,000, with an annual straight-line
depreciation of $3333. An appropriate cost of capital must be apportioned for an evaluation of the
project with the NPV methodology, as described in [79,80]. We concur that the cost of capital for the
computer service sector nowadays (updated to September 2015) in the USA, which represents our
target market to deploy our product, is 7.64% [81] and the tax rate is 40%.

Two simulations were performed to assess the required number of units to be produced and sold
to achieve the break-even point. In the first scenario, hypothesizing an early start-up stage, where
the creators can run the project without remuneration (i.e., no employees’ wages), the break-even
is reached by selling at least 7 units per year. Therefore, to achieve profitability the company must
sell more than 7 units annually; after the 8th unit sold annually, the revenue will be sufficient to
generate remuneration for the software and hardware developers and profits for the company. In our
second scenario, simulating a more advanced start-up stage, three people work full-time on this
project, operating in all of the firm’s roles, earning an annual salary of $50,000. In this scenario,
the break-even point is reached with the production of 68 units per year (Table 3). Therefore, from the
69th unit produced onwards, the company will be generating a profit. According to a recent study [34],
3D printing is profitable for niche markets, like mobile forensics, where production runs in the range
of 50 to 5000 units. Our research confirms this assertion. The break-even point of units sold represents
a reasonable annual forecast, when initially focusing on the USA, because the potential consumer
market size is expanding exponentially. Moreover, by reducing the price the number of potential users
and purchasers will increase. The production approach postulated in this research facilitates scalability
and global reach.
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Table 3. Net present value analysis for the commercialization of CellIntel, in the hypothesis of three waged
employees. Reported below is the break-even point of units sold. Parentheses indicate negative values.

Units 68

Cost of capital 7.64%
Taxes 40%
Price $999
Cost $200

Year 0 1st 2nd 3rd

Revenues $67,932 $67,932 $67,932
Cost of unit sold $(13,600) $(13,600) $(13,600)

Salary costs $(50,000) $(50,000) $(50,000)
Depreciation $(3333.33) $(3333.33) $(3333.33)

Earnings Before taxes $998.66 $998.66 $998.66
Taxes $(399.33) $(399.33) $(399.33)

Depreciation added back $3333.33 $3333.33 $3333.33
Initial capital expenditure ($10,000)

Free cash flow to operations ($10,000) $3932.53 $3932.53 $3932.53
Net Present Value $200.71

6. Limitations

With the aforementioned integrated approach, we evaluated the economic and practical feasibility
of a cheaper and sustainable mobile forensics imaging device, which is ready to enter the marketplace
for general consumption. However, some limitations impact our prototype. Understandably,
the CellIntel prototype developed for this research cannot support many inexpensive phones models,
which are running less reputable mobile operating systems. Nevertheless, this functional limitation
also exists in well-known mobile device imagers. Additionally, there is no support for Blackphones or
BlackBerry, although their market share is dwindling. Additionally, Windows smartphones cannot be
imaged using traditional methods (i.e., through a USB cable) [82–84].

Moreover, the community of researchers and students, employed on this project, must continually
maintain and update the software and the hardware for the device to ensure support for new mobile
devices coming to market.

Finally, as this study presents the first empirical evidence of a successful application of our
integrated approach for innovative products, the application of this methodology to other sectors is
critical for increased generalizability of the outcomes.

7. Conclusions

This paper provides empirical evidence for the technical viability, economic feasibility, and enhanced
sustainability of a product developed with an integrated approach based on open innovation and peer
production with the use of 3D printing. The relevance of the study is in demonstrating the benefits of
utilizing these three growing trends [24,29,30,32,34,35], when adopted in concert, in terms of improved
sustainability and start-up opportunities. Empirical testing of this integrated approach was conducted
in the mobile forensics sector. Because mobile forensics tools are comprised of integrated software and
hardware, both hardware and software can benefit from the aforementioned approach. Additionally,
mobile forensics is a suitable sector for testing these production techniques, as it is a niche market
with low production volumes. Moreover, the market for mobile forensics tools is growing for both
private and public sectors globally. Consequently, there is potential for global scalability of this product.
The incumbents offer expensive products, yet smaller law enforcement agencies are in need of cheaper
and more portable solutions. This research offers the opportunity to provide the market with cheaper
products. Therefore, while more expensive devices with similar features already exist in the mobile
forensics market, the methodology, implementation, and motivation of this research are original.
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More specifically, the open approach is used for the design of hardware and software components,
so that individuals can collaborate with the researchers, via the Web, and develop a new product.
The use of 3D printing technology and peer production enables the device to be produced locally,
thereby significantly reducing total costs and purchase price, while lowering energy consumption
and decreasing pollutant emissions, and ultimately promoting sustainability [37,85]. Thus, this
methodology addresses the current environmental and social needs to reduce energy consumption and
emissions, which are fundamental global goals for all sectors, whether mandated or incentivized [68].
It is crucial for start-ups to recognize the number of required units to be sold annually to be competitive
and exceed the break-even point, and this is why we used the NPV methodology. The estimated
number of units sold per year is a reasonable amount for the growing mobile forensics market. We have
provided evidence for the economic feasibility of the product with this integrated approach, while
offering the product for a lower purchase price in furtherance of economic sustainability. Finally,
the experimental testing that was conducted on our prototype demonstrated the technical viability of
the integrated approach to deliver a state-of-the-art product.

Considering the aforementioned results, this research provides empirical evidence for the
successful implementation of the OSI paradigm, while addressing factors that include sustainability,
technical viability, and economic feasibility. The prototype developed in this study allows entrepreneurs
to successfully begin a new venture while reducing the purchase price for consumers, and lowering
energy usage and pollutants emissions. Therefore, it is possible to simultaneously promote the
three facets of sustainability (i.e., economic, societal, and environmental), thereby benefiting all the
stakeholders [42,65,86].

The integrated approach proposed in this research could be a game-changing concept, not only
in the mobile forensics context, but could also be tested in other niche sectors as a new standard to
deliver cheaper products in a more sustainable way, while simultaneously being able to compete with
market incumbents. Future research will be focused on small batch production and field-testing by
practitioners in an effort to verify the efficacy of the mobile forensics imager developed in this research.
These professionals would be subsequently surveyed and their feedback will be used to improve
the device. Moreover, in this research we carried out preliminary estimates of energy and emissions
reductions. Once the product goes to market, further research will be conducted, utilizing Life Cycle
Assessment, to quantify more precisely energy consumption and emissions reductions resulting from
our integrated approach.
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