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Abstract: The deteriorating air quality in the Yangtze delta region is attracting growing public
concern. In this paper, seasonal estimation models of the surface particulate matter (PM) were
established by using aerosol optical thickness (AOT) retrievals from the moderate resolution imaging
spectro-radiometer (MODIS) on board NASA’s Terra satellite. The change of the regional distribution
of the atmospheric mixed layer, relative humidity and meteorological elements have been taken
into account in these models. We also used PM mass concentrations of ground measurements to
evaluate the estimation accuracy of those models. The results show that model estimation of PM2.5

and PM10 mass concentrations were in good agreement with the ground-based observation of PM
mass concentrations (p < 0.01, the R2 value of the PM2.5 concentrations experimental model for four
seasons are 0.48, 0.62, 0.61 and 0.52 respectively. The R2 value of PM10 concentrations experimental
model for four seasons are 0.57, 0.56, 0.64 and 0.68 respectively). At the same time, spatial and
temporal variations of PM2.5 and PM10 mass concentrations were analysed over the Yangtze delta
region from 2000 to 2013. The results show that PM2.5 and PM10 show a trend of increase in the
Yangtze delta region from 2000 to 2013 and change periodically. The maximum mass concentration of
PM2.5 and PM10 was in January–February, and the minimum was in July–August. The highest values
of PM2.5 and PM10 mass concentration are in the region of urban agglomeration which is grouped to
a delta-shaped region by Shanghai, Hangzhou and Nanjing, while the low values are in the forest far
away from the city. PM mass concentration over main cities and rural areas increased gradually year
by year, and were increasing more quickly in urban areas than in rural areas.
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1. Introduction

Atmospheric aerosol has been one of the most important branches of atmospheric environmental
scientific research for its important role in not only global climatic change but also in changes to the
environment [1,2]. Atmospheric aerosol particles, particularly PM2.5 (particle matter, PM) and PM10

which can cause the decrease of visibility and are serious hazards to human health, are important
indexes to evaluate air quality. Since 1980s, with the development of social industrialization and
economy, the demand of energy is increasing, which results in more serious air pollution problems.

Routine measurements of ground-level PM concentration by air quality monitoring networks can
give the change of PM concentrations with time. This information has high accuracy and continuous
monitoring advantages, but its spatial coverage is limited. Satellite remote sensing can be an important
tool to complement ground-level measurement. The relevant satellite-derived parameter is AOT,
which quantifies the extinction of solar radiation at a given wavelength due to presence of aerosols
in an atmospheric column. There is a correlation between AOT and PM concentrations near the
surface [3–11]. The satellite-derived AOT is a measure of light attention in the column that is affected
by ambient conditions (e.g., variable humidity, vertical profile and chemical composition etc.) [12],
while PM concentration is a measure near the surface after it has dried.

Studies on the correlation between AOT and PM concentration near the surface after vertical
correction and humidity correction have been conducted, respectively. Also, some studies found that
the correlation between AOT and PM concentration is impacted by meteorological conditions [13–19],
boundary layer height [20–22], land use [23] and geographical location, [24] etc. Recently, researchers
developed approaches using various statistical methods, from linear regression models [25,26] to
more complex multiple regression and neural network techniques [13,27], generalized additive mixed
models (GAMs) [23,28], and mixed effects models [29,30].

Air pollution has become an increasingly serious concern in parts of China, especially in three
economic zones. The Yangtze River delta has been one of the several areas affected by haze in
China [31]. At present, the monitoring and analysis of PM concentrations over the Yangtze delta is
rarely reported. Therefore, using MODIS AOT to estimate PM concentration and analyzing its spatial
and temporal variation is of important practical significance for scientific prediction and effective
control of atmospheric PM pollution over the Yangtze delta.

2. Data and Methods

2.1. Study Area

The Yangtze delta region is situated in the lower reaches of the Yangtze river, East China.
The central geographical coordinates are approximately 120.5◦E, 30.5◦N. This region is affected by
a marine monsoon and continental monsoon climate in summer and winter, respectively. Therefore,
the Yangtze delta has a marine monsoon subtropical climate, and the weather is generally warm and
humid. The region is a major industrial and commercial hub in China. Because of rapid economic
development over the last two decades, high concentrations of aerosols with diverse properties are
being emitted in the region. These pollutants may play a more significant role in urban regions and
provide a unique opportunity for understanding the impact of environmental change on climate
systems, especially in urban areas (Figure 1).
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the error is about 15% over land [32]. For the applicability of the aerosol product over the Yangtze 
delta region, we used ground-based observation data obtained by a sun photometer for validation. 
Fourteen years (2000–2013) of MODIS Terra AOT550 data (collection 6) were downloaded from the 
MODIS website [33]. 
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PM2.5 and PM10 concentrations data for the Yangtze delta region are obtained from the China 
National Environment Monitoring Centre. We obtained hourly PM2.5 and PM10 mass concentrations 
from 53 air quality ground-based observation sites (Figure 1). The time of the MODIS Terra satellite 
overpass in China is 10:30 a.m. In order to make PM concentrations of ground-based observation data 
match with MODIS AOT data, we selected the mean of 10:00 a.m. to 12:00 p.m. noon air quality 
ground-based observation data. 

AOT ground-based observation data was obtained using the French CIMEL manufactured 
automatic tracking and scanning sun photometer (CE-318). The CE-318 is an important instrument 
for atmospheric aerosol observations. It is used by NASA of the United States as the main instrument 
in its global aerosol observation network (AERONET). In this study we used data from six AERONET 
sites equipped by CE-318 sun photometers located in Yangtze delta region: Shanghai_Minhang 
(SHM), Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), LA-TM (LA), Ningbo (NB) and Qiandaohu 
(QDH) (shown in blue in Figure 1). Since AERONET provides AOT data at 500 nm, these values have 
been interpolated at 550 nm in order to coincide with MODIS AOT550 using the following equation: 

AOT550 = AOT500/exp[aln(λ1/λ2)] (1) 

where a is the AE estimated between 440 and 675 nm, λ1 is 500 nm, and λ2 is 550 nm. 
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2.2. Data

2.2.1. MODIS Data

The Moderate-Resolution Imaging Spectroradiometer (MODIS) of the U.S.’s NASA (National
Aeronautics and Space Administration) has multispectral, wide coverage and high temporal resolution.
It is carried on two satellites (Terra and Aqua) and is widely used to monitor atmospheric aerosols.
Currently, NASA releases a daily land atmospheric MODIS AOT product obtained using a dark
pixel algorithm. The spatial resolution of the product is 10 km, the wavelength is 0.55 µm, and the
error is about 15% over land [32]. For the applicability of the aerosol product over the Yangtze delta
region, we used ground-based observation data obtained by a sun photometer for validation. Fourteen
years (2000–2013) of MODIS Terra AOT550 data (collection 6) were downloaded from the MODIS
website [33].

2.2.2. Ground-Based Observation Data

PM2.5 and PM10 concentrations data for the Yangtze delta region are obtained from the China
National Environment Monitoring Centre. We obtained hourly PM2.5 and PM10 mass concentrations
from 53 air quality ground-based observation sites (Figure 1). The time of the MODIS Terra satellite
overpass in China is 10:30 a.m. In order to make PM concentrations of ground-based observation
data match with MODIS AOT data, we selected the mean of 10:00 a.m. to 12:00 p.m. noon air quality
ground-based observation data.

AOT ground-based observation data was obtained using the French CIMEL manufactured
automatic tracking and scanning sun photometer (CE-318). The CE-318 is an important instrument for
atmospheric aerosol observations. It is used by NASA of the United States as the main instrument in
its global aerosol observation network (AERONET). In this study we used data from six AERONET
sites equipped by CE-318 sun photometers located in Yangtze delta region: Shanghai_Minhang (SHM),
Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), LA-TM (LA), Ningbo (NB) and Qiandaohu (QDH)
(shown in blue in Figure 1). Since AERONET provides AOT data at 500 nm, these values have been
interpolated at 550 nm in order to coincide with MODIS AOT550 using the following equation:

AOT550 = AOT500/exp[aln(λ1/λ2)] (1)

where a is the AE estimated between 440 and 675 nm, λ1 is 500 nm, and λ2 is 550 nm.
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2.2.3. Meteorological Data

Meteorological data were obtained from the China Meteorological Data Sharing Service System.
We obtained the daily meteorological data including relative humidity, wind speed, atmospheric
pressure, atmospheric temperature, dew point temperature and cloud cover for 58 meteorological
observation sites in the Yangtze delta region from 1 January 2000 to 31 December 2013. We obtained
the spatial data of every meteorological parameter by using the common ANUSPLIN interpolation
software in meteorology [34].

2.3. Method

In order to create estimation model to predict PM concentrations, five main stages have undergone.
First, check the quality of satellite-retrieved AOT measurements.
Next, get the surface aerosol extinction coefficient by vertical correlation based on AOT and

mixture layer height data.
Next, get PM concentration by humidity correction using ground-level PM measurement and

relative humidity data.
Next, create a multiple linear regression model considered the influence of ground-level

temperature, ground-level pressure and wind speed.
Finally, verify the accuracy of the estimation model.

2.3.1. Correction of Vertical Elevation

AOT is the most important data for estimating PM concentrations near the ground by using remote
sensing retrieval and is a columnar measurement of aerosol light extinction. Under the assumption of
a plane parallel atmosphere, AOT is the integration of the extinction coefficient at all altitudes along
the vertical direction [35].The relationship between AOT and PM concentrations is therefore affected
by the vertical distribution of aerosols. Aerosol particle concentration is negatively exponentially
decreased with height because of the influence of the Earth’s gravity [36] (Equation (2)).

τa (λ) =
∫ ∞

0
κa (λ, z) dz (2)

where τa (λ) is AOT, κa (λ, z) is the aerosol extinction coefficient at the height of z. z represents vertical
height. Assuming that the vertical direction changes of κa (λ, z) are the negative exponential form,
we can get the equation (Equation (3)):

κa (λ, z) ≈ κa,0 (λ) exp
(
− z

HA

)
(3)

where κa,0 (λ) is the surface aerosol extinction coefficient, and HA is the aerosol scale height, which is
the key parameter to reflect aerosol vertical height distribution. We obtain the following relationship
between atmospheric AOT and the surface aerosol extinction coefficient (Equation (4)):

τa (λ) ≈ κa,0 (λ)
∫ ∞

0
exp

(
− z

HA

)
dz = κa,0 (λ)× HA (4)

where τa (λ) is the AOT, κa,0 (λ) is the surface aerosol extinction coefficient, and HA is the aerosol scale
height. As a result of Equation (4), based on satellite-retrieved AOT, we can get the surface aerosol
extinction coefficient for each pixel, just by obtaining aerosol scale height of each pixel (Equation (5)).

κa,0 (λ) ≈
τa (λ)

HA
(5)

In the practical applications, the aerosol scale height can be replaced by the thickness of mixed
layer or atmospheric boundary layer height [37,38]. In this study, we used the mixed layer height to
replace aerosol scale height, and mixed layer height is calculated using the Nozaki method based on
ground observation meteorological data [39,40].
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2.3.2. Correction for Relative Humidity

Under a certain height and the size distribution of PM, there is a positive correlation between PM
concentrations and the aerosol extinction coefficient [10,41,42], because water vapor has a significant
impact on the physical and optical characteristics of aerosol particles, such as the complex refractive
index and extinction cross section [43].Therefore, the “wet” aerosol extinction coefficient needs to
be corrected, to become a “dry” aerosol extinction coefficient after correction, and this has a higher
correlation with PM concentrations. The influence of air humidity on the extinction coefficient can be
described by the hygroscopic growth factor (ƒ (RH), RH is the relative humidity). Its value is equal to
the ratio of the “wet” aerosol extinction coefficient and “dry” aerosol extinction coefficient under the
same conditions. In this paper, we use the empirical relation of White and Roberts [44] to obtain the
hygroscopic growth factor (Equation (6)).

f (RH) =
1

1 − RH
(6)

Using Equations (1) and (4), the “dry” surface aerosol extinction coefficient (ka,dry (0, λ)) can be
calculated by Equation (7):

ka,dry(0, λ) ≈ τa(λ)

HA f (RH)
(7)

where ka,dry (0, λ) is the surface aerosol extinction coefficient of the surface PM after drying.

2.3.3. Statistical Model

In this paper, we estimated PM concentrations on a daily basis and used a multivariable linear
regression model which was constructed by PLS (Partial Least Square) method. Since relative humidity,
aerosol scale height and meteorological conditions influence the PM–AOT relationship, we select
aerosol scale height, relative humidity, temperature, pressure and wind speed as influence factors to
join statistical model construction in order to improve the prediction accuracy of model. We find that
PM concentrations can be calculated by Equation (8):

PM = F
(

ka,dry (0, λ) , T, P, W
)

(8)

where ka,dry (0, λ) is the “dry” aerosol extinction coefficient near the ground, T is ground-level
measurement temperature, P is ground-level measurement pressure, and W is ground-level
measurement wind speed. We express their relation by a multiple linear equation, Equation (9):

PM = a0 + a1ka,dry (0, λ) + a2T + a3P + a4W (9)

where the coefficients a0, a1, a2, a3 and a4 are determined by multivariate linear fitting based on
monitoring data.

The sources of aerosols differ greatly in different seasons (spring, summer, autumn, winter) over
the Yangtze delta region. In the Yangtze delta region, spring and winter are affected by the continental
monsoon climate which brings mainly dust aerosols. The main aerosols are sea salt and black carbon
aerosol in summer. Since aerosols from different sources exhibit different physical, chemical and optical
characteristics which affect the aerosol vertical correction and humidity correction, the correlation with
meteorological variables is different. Consequently we expect to find different sets of values for the
coefficients a0, a1, a2, a3 and a4 for different seasons.

2.3.4. Model Validation

We obtained PM2.5 and PM10 concentrations data from a total of 53 air quality ground-based
observation sites over the Yangtze delta region in 2013. We chose 36 air quality ground-based
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observation sites in the study region (shown in red in Figure 1) to provide data of relatively spatial
uniform distribution and continuous monitoring to determine the values of the coefficients, a0, a1, a2,
a3 and a4 in the model. Then we chose 17 sites (shown in green in Figure 1) to provide data on air
quality in the remaining ground observation sites to validate the model and determine the accuracy of
the PM2.5 and PM10 model.

3. Results and Analysis

3.1. Validation of MODIS AOT Products

MODIS AOT products were validated using ground-based observation data (sun photometer)
for each of six locations. Data from the sun photometer coincides to the MODIS data within 30 min
of MODIS satellite overpass time, and the MODIS data were averaged over a 3 by 3 pixels area
centred at the ground observation sites. The results of the linear regression analysis are shown
in Figure 2. The correlation R2 values for the six locations are also given in Table 1 and range from 0.86
to 0.62. The results show that the MODIS AOT is in good agreement with the data obtained from
the 6 ground-based AERONET sets of sun photometer readings. The results show that MODIS AOT
products have good applicability in this study area, and provide a guarantee of the accuracy of the
data for us to estimate PM concentrations based on MODIS AOT.
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Figure 2. Linear regression analysis of daily AOT from CE-318 and MODIS AOT products.

Table 1. The coefficient value of linear regression analysis of daily AOT from CE-318 and MODIS
AOT products.

Observation Site Longitude (◦) Latitude (◦) Slope Intercept R2 p

SHM 121.397 31.131 1.13 0.030 0.78 <0.01
HZC 120.083 30.263 0.96 0.096 0.86 <0.01
HZZ 119.745 30.416 0.98 −0.120 0.77 <0.01
NB 121.583 29.867 0.77 0.290 0.76 <0.01

QDH 119.012 29.550 0.75 −0.030 0.71 <0.01
LA 119.442 30.317 0.62 −0.004 0.62 <0.01
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3.2. PM Estimation Model and Accuracy Validation

We determine the coefficients in Equation (9) based on aerosol extinction coefficients after
vertical elevation and relative humidity correction, PM concentrations of ground observation and
meteorological factors according to different seasons. Table 2 shows that the R2 of seasonal
experimental models of PM2.5 concentrations is 0.48, 0.62, 0.61, 0.52, respectively, and the R2 of
seasonal experimental models of PM10 concentrations is 0.57, 0.56, 0.64, 0.68, respectively.

Table 2. The coefficient value of experimental models of PM2.5 and PM10 concentrations in
different seasons.

a0 a1 a2 a3 a4 R2 p STD

PM2.5

Spring 366.69 179.55 −0.51 −0.28 −19.72 0.48 <0.01 17.15
Summer 0.00 106.4 −4.73 1.23 −15.83 0.62 <0.01 11.80
Autumn 0.00 258.74 3.03 3.73 −50.27 0.61 <0.01 15.21
Winter 0.00 356.42 8.6 6.98 −86.07 0.52 <0.01 21.59

PM10

Spring 33.39 325.96 1.07 0.03 −22.89 0.57 <0.01 22.17
Summer 0.00 204.6 −11.59 2.57 −23.17 0.56 <0.01 15.40
Autumn 0.00 302.97 7.76 8.3 −80.18 0.64 <0.01 18.15
Winter 0.00 341.07 20.14 8.2 −93.91 0.68 <0.01 25.50

Experimental models were validated using ground-based PM concentration data. The linear
regression analysis is shown in Figures 3 and 4. The results show that the estimate of PM2.5 and PM10

concentrations is in good agreement for ground-based observation data. The correlation R2 values
of estimated PM2.5 concentrations and ground-observation data for the seasons of spring, summer,
autumn and winter were 0.45, 0.50, 0.58, 0.52, respectively. The correlation R2 values of estimated
PM10 concentrations and ground-based observation data for the seasons of spring, summer, autumn
and winter were 0.72, 0.76, 0.77, 0.72, respectively. The results show that using these estimate models
to estimate air PM concentrations has good applicability.

Sustainability 2016, 8, 932  7 of 14 

3.2. PM Estimation Model and Accuracy Validation 

We determine the coefficients in Equation (9) based on aerosol extinction coefficients after 
vertical elevation and relative humidity correction, PM concentrations of ground observation and 
meteorological factors according to different seasons. Table 2 shows that the R2 of seasonal 
experimental models of PM2.5 concentrations is 0.48, 0.62, 0.61, 0.52, respectively, and the R2 of 
seasonal experimental models of PM10 concentrations is 0.57, 0.56, 0.64, 0.68, respectively. 

Table 2. The coefficient value of experimental models of PM2.5 and PM10 concentrations in different seasons.  

  a0 a1 a2 a3 a4 R2 p STD 

PM2.5 

Spring 366.69 179.55 −0.51 −0.28 −19.72 0.48 <0.01 17.15 
Summer 0.00 106.4 −4.73 1.23 −15.83 0.62 <0.01 11.80 
Autumn 0.00 258.74 3.03 3.73 −50.27 0.61 <0.01 15.21 
Winter 0.00 356.42 8.6 6.98 −86.07 0.52 <0.01 21.59 

PM10 

Spring 33.39 325.96 1.07 0.03 −22.89 0.57 <0.01 22.17 
Summer 0.00 204.6 −11.59 2.57 −23.17 0.56 <0.01 15.40 
Autumn 0.00 302.97 7.76 8.3 −80.18 0.64 <0.01 18.15 
Winter 0.00 341.07 20.14 8.2 −93.91 0.68 <0.01 25.50 

Experimental models were validated using ground-based PM concentration data. The linear 
regression analysis is shown in Figures 3 and 4. The results show that the estimate of PM2.5 and PM10 
concentrations is in good agreement for ground-based observation data. The correlation R2 values of 
estimated PM2.5 concentrations and ground-observation data for the seasons of spring, summer, 
autumn and winter were 0.45, 0.50, 0.58, 0.52, respectively. The correlation R2 values of estimated 
PM10 concentrations and ground-based observation data for the seasons of spring, summer, autumn 
and winter were 0.72, 0.76, 0.77, 0.72, respectively. The results show that using these estimate models 
to estimate air PM concentrations has good applicability. 

 
Figure 3. Linear regression analysis of estimated PM2.5 concentrations and ground-based observation 
PM2.5 concentrations. 

Figure 3. Linear regression analysis of estimated PM2.5 concentrations and ground-based observation
PM2.5 concentrations.



Sustainability 2016, 8, 932 8 of 14

Sustainability 2016, 8, 932  8 of 14 

 

 
Figure 4. Linear regression analysis of estimated PM10 concentrations and ground-based observation 
PM10 concentrations 

3.3. Spatial and Temporal Variation of Air PM Concentrations over the Yangtze Delta Region 

3.3.1. Temporal Variation of Air PM Concentrations over the Yangtze Delta Region 

We obtain the monthly and seasonal mean of PM2.5 and PM10 concentrations from March 2000 to 
December 2013 by using Equation (9). Figures 5 and 6 show the monthly mean PM2.5 and PM10 
concentrations variation for the Yangtze delta region from March 2000 to December 2013. From 
Figures 5 and 6, we find that mean values of PM2.5 and PM10 concentrations averaged over the 53 
stations. This is because the 53 stations are located in urban and suburban areas, and PM 
concentrations in urban and suburban areas are generally higher than other regions due to human 
activities and anthropogenic pollutants. We used a sine function to fit the regional monthly mean 
PM2.5 and PM10 concentrations data. The result presents an obvious one year cycle variation, and 
shows a marked seasonal variation. The largest value often appears in January and February, and the 
smallest often appears in July or August, but in 2013 the largest value appeared in December. This 
pattern may relate to the local meteorological conditions. The trend line (slope is 0.045 μg·m−3·year−1, 
R2 is 0.52) in Figure 5 represents the variation trend of PM2.5 concentrations over the region. The trend 
line (slope is 0.074 μg·m−3·year−1, R2 is 0.55) in Figure 6 represents the variation trend of PM10 
concentrations over the region. From the slope value of the trend line, we can draw the conclusion 
that the PM2.5 and PM10 concentrations increased with temporal evolution from 2000 to 2013, and 
PM10 concentrations increased faster than PM2.5 concentrations over the Yangtze delta region. Table 
3 shows the regional seasonal mean PM2.5 and PM10 concentrations from 2000 to 2013. From Table 3, 
we find that the mean seasonal value of PM concentrations of winter is the highest, and that of 
summer is the lowest in four seasons.  

Figure 4. Linear regression analysis of estimated PM10 concentrations and ground-based observation
PM10 concentrations.

3.3. Spatial and Temporal Variation of Air PM Concentrations over the Yangtze Delta Region

3.3.1. Temporal Variation of Air PM Concentrations over the Yangtze Delta Region

We obtain the monthly and seasonal mean of PM2.5 and PM10 concentrations from March 2000
to December 2013 by using Equation (9). Figures 5 and 6 show the monthly mean PM2.5 and
PM10 concentrations variation for the Yangtze delta region from March 2000 to December 2013.
From Figures 5 and 6, we find that mean values of PM2.5 and PM10 concentrations averaged over
the 53 stations. This is because the 53 stations are located in urban and suburban areas, and PM
concentrations in urban and suburban areas are generally higher than other regions due to human
activities and anthropogenic pollutants. We used a sine function to fit the regional monthly mean PM2.5

and PM10 concentrations data. The result presents an obvious one year cycle variation, and shows a
marked seasonal variation. The largest value often appears in January and February, and the smallest
often appears in July or August, but in 2013 the largest value appeared in December. This pattern may
relate to the local meteorological conditions. The trend line (slope is 0.045 µg·m−3·year−1, R2 is 0.52)
in Figure 5 represents the variation trend of PM2.5 concentrations over the region. The trend line (slope
is 0.074 µg·m−3·year−1, R2 is 0.55) in Figure 6 represents the variation trend of PM10 concentrations
over the region. From the slope value of the trend line, we can draw the conclusion that the PM2.5 and
PM10 concentrations increased with temporal evolution from 2000 to 2013, and PM10 concentrations
increased faster than PM2.5 concentrations over the Yangtze delta region. Table 3 shows the regional
seasonal mean PM2.5 and PM10 concentrations from 2000 to 2013. From Table 3, we find that the mean
seasonal value of PM concentrations of winter is the highest, and that of summer is the lowest in
four seasons.
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Table 3. Variation of seasonal mean PM2.5 and PM10 concentrations over the Yangtze Delta Region
from 2000 to 2013. Units (µg·m−3).

Year
PM2.5 PM10

Spring Summer Autumn Winter Spring Summer Autumn Winter

2000 47.17 21.74 29.01 0.00 78.49 39.25 42.07 0.00
2001 47.12 20.75 38.77 51.85 78.97 37.68 41.19 86.77
2002 34.28 22.42 52.46 53.84 57.54 40.86 72.29 93.54
2003 39.40 34.17 40.64 58.52 63.16 52.36 58.11 99.30
2004 46.80 30.80 50.04 66.95 77.57 56.33 69.80 113.20
2005 47.06 29.79 46.69 55.28 77.64 54.38 65.30 100.60
2006 54.20 27.24 44.97 57.15 90.86 49.51 63.15 97.17
2007 54.93 30.42 49.68 59.28 92.16 56.17 69.07 101.13
2008 52.81 28.36 48.65 73.49 88.29 52.40 71.91 123.65
2009 49.88 31.73 44.37 56.81 82.69 58.98 62.51 98.71
2010 40.10 28.43 41.44 56.85 65.82 52.08 64.25 103.01
2011 61.27 25.67 45.19 73.47 102.44 47.15 63.62 125.77
2012 41.72 25.47 51.43 58.65 68.61 46.03 72.44 102.71
2013 47.97 22.85 41.58 64.55 79.22 39.53 61.04 107.61

3.3.2. Spatial Variation of Air PM over the Yangtze Delta Region

Figures 7 and 8 represent the spatial distributions of annual mean of PM2.5 and PM10 concentrations
over the Yangtze delta region from 2000 to 2013. It shows that to the north of the Yangtze delta region,
there is a plain and urban centralized distribution of which PM concentrations are higher. In the
mountainous south where forest coverage rate is high, PM concentrations are lower. In the triangular
region of urban agglomerations, composed of Nanjing (NJ), Shanghai (SH) and Hangzhou (HZ),
PM concentrations are highest. Atmospheric PM concentrations have increased gradually year by year.
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The yearly increasing trend of PM in cities over plains is larger than in those cities in mountainous
areas, and the increasing PM in urban areas is also faster than that in rural areas. The largest values
appear in big cities, and the smallest values appear in forest areas. The reason for the increase is the
human activity associated with anthropogenic pollutants, and that is more apparent in urban areas.
Pollutants include aerosol particles, anthropogenic emissions (industrial waste gas, automobile exhaust
gas and the burning of fossil fuels) and urban construction. We consider that there are two reasons
for the low PM concentrations in forest areas. The first reason is that there is less human activity in
forested areas, and the second reason is that forest has a good purification effect against air PM.
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3.3.3. Variation of Atmospheric PM Concentrations over Typical Cities in the Yangtze Delta Region

We chose Hangzhou (HZ), Nanjing (NJ) and Shanghai (SH) as typical cities to analyse the variation
of annual mean of PM concentrations over the Yangtze delta region from 2000 to 2013. Figure 9 shows
the variation of PM2.5 and PM10 concentrations from 2000 to 2013. From Figure 9, we find that the
annual mean PM2.5 and PM10 concentrations of the three cities show a growth trend, and the rate of
growth of PM10 concentrations is greater than the PM2.5 concentrations. PM concentrations in Shanghai
have the highest value and the highest growth rate (slope of PM2.5 is 1.28 ug·m−3·year−1, slope of
PM10 is 2.00 ug·m−3·year−1 (as shown in Figure 9)) compared with the other cities. We found that
human activity has a great influence on PM concentrations. The statistical yearbook for the three cities
shows that population density, quantity of coal combustion, quantity of gasoline combustion, quantity
of diesel fuel combustion, power consumption and the expansion of the city in Shanghai are greater
than in Hangzhou or Nanjing.
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4. Conclusions

(1) We validated the MODIS AOT data based on ground-based monitoring AOT data; the results
show that aerosol optical characteristic research and atmospheric PM concentration estimate by
using satellite remote sensing retrieved MODIS AOT data has applicability over the Yangtze delta.

(2) We developed seasonal estimation model of PM2.5 and PM10 mass concentration based on satellite
remote sensing. The precision validation suggest that we can monitor PM2.5 and PM10 on region
scale by using satellite remote sensing.

(3) PM concentrations over the Yangtze delta presented an obvious one year cycle variation from
2000 to 2013. The largest value often appeared in January–February, and the smallest often
appeared in July–August, but in 2013 the largest value appeared in December. The mean seasonal
value of PM concentrations has the highest and lowest value in winter and summer, respectively.
PM concentrations over main cities and rural areas have increased gradually year by year, and PM
concentrations are increasing faster in urban areas than in rural areas.
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