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Abstract: This paper examines the distribution dynamics of carbon dioxide (CO2) emissions intensity
across 30 Chinese provinces using a weighted distribution dynamics approach. The results show
that CO2 emissions intensity tends to diverge during the sample period of 1995–2014. However,
convergence clubs are found in the ergodic distributions of the full sample and two sub-sample
periods. Divergence, polarization, and stratification are the dominant characteristics in the distribution
dynamics. Weightings with economic and population sizes have important impacts on current
distributions and hence long-run steady distributions. Neglecting the size of the economy may
underestimate the deterioration in the long-run steady state. The result also shows that conditioning
on space and income cannot eliminate the multimodality in the long-run distribution. However,
capital intensity has an important impact on the formation of convergence clubs. Our findings will
contribute to an understanding of the spatial dynamic behaviors of CO2 emissions across Chinese
provinces, and have important policy implications for CO2 emissions reduction in China.

Keywords: carbon dioxide emissions; weighted kernel estimation; distribution dynamics; conditional
distribution; Chinese provinces

1. Introduction

Under threat of global warming, CO2 emissions abatement has become one of the most important
environmental concerns during the past decades. In 2007 China surpassed the United States to become
the world’s largest CO2 emitter. The huge amount and rapid growth of CO2 emissions in China have
attracted considerable attention from both policy-makers and researchers. Moreover, after decades of
rapid economic growth, income growth has been accompanied by serious environmental deterioration.
Obviously, the development model of the past decades is not sustainable and requires transformation
and upgrading. The Chinese government is facing the problems of environmental degradation and
international pressure to reduce CO2 emissions, and has taken actions to reduce CO2 emissions in
recent development plans. For example, in the 2009 Copenhagen conference, the Chinese government
pledged a CO2 emissions intensity (the ratio of CO2 emissions over GDP) reduction of 40%–45% from
2005 to 2020. In 2014, the government further promised to reach its carbon emissions peak before 2030.

Understanding the transitional dynamics and long-term trend of CO2 emissions is important
for achieving greenhouse gas reduction. The convergence of CO2 emissions is a core concern of
policy-makers. In China, the national CO2 emission reduction target is disaggregated on the provincial
level in terms of emissions intensity. The convergence of CO2 emissions across provinces is expected
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and implies equity in CO2 abatement. Moreover, if the convergence is achieved without policy
intervention, as indicated by the Environmental Kuznets Curve (EKC) paradigm, this implies that high
emitters may reduce their emissions as the economy develops. On the contrary, lack of convergence in
CO2 emissions may suggest inequity in CO2 abatement and cause damage to the credibility of local
and national government in their efforts to reduce CO2 emissions. Moreover, it may also suggest a
lack of technology diffusion across provinces.

The concept of convergence is derived from the neo-classical growth theory, which indicates
that poor countries will catch up with rich countries due to diminished returns for capital.
There are generally three types of convergence, namely σ-convergence, β-convergence, and stochastic
convergence, which are most popularly tested in empirical studies. In terms of CO2 emissions,
σ-convergence measures the dispersion changes in CO2 emission level over time. β-convergence
implies the negative relationship between the initial CO2 emission level and subsequent growth rate,
while stochastic convergence implies that the CO2 emission level in a region is relative to that of the
economy as a whole and has a stationary trend. However, a negative coefficient between the initial
CO2 emissions level and subsequent growth is a necessary but not sufficient condition for convergence.
Thus the distribution dynamics approach suggests investigating the evolutionary trend of the variable
in question. Thus the distribution dynamics use more information to measure the dynamic behavior of
CO2 emissions level across regions. It can be taken as an upgraded examination of convergence.

There are already some studies that focus on the convergence behavior of CO2 emissions across
provinces in China [1–5]. However, due to differences in emission variables (per capita CO2 emissions
or emissions intensity), sample periods, and econometric approaches, the empirical results in the
existing literature remain inherently controversial. For example, Wang et al. found evidence of
divergence in CO2 emissions intensity [3], while many others found evidence of convergence in
per capita CO2 emissions [1,2] and emissions intensity [4,5]. These studies use traditional approaches
to examine the convergence in terms of per capita CO2 emissions or emissions intensity. However,
these traditional approaches, such as σ-convergence, β-convergence, and stochastic convergence, are
based on models for average or representative economies, which help us understand the evolution
of CO2 emissions in general but provide little information for the distribution dynamics of CO2

emissions across provinces [6]. In addition, these approaches provide no information on the entire
shape of the distribution and intra-distribution mobility, namely the relative position changes in terms
of CO2 emissions. Finally, Chinese provinces differ greatly in terms of economy and population
size. For example, the economy and population of Guangdong, a southern province in China, are
43 and 16 times those of Ninxia Province, one of the northwestern Chinese provinces, respectively.
The welfare effect of a one percent reduction in CO2 emissions in Guangdong is much different from
that in Ninxia. To the best of our knowledge, no study has yet examined the importance of the economy
and population size in the convergence analysis of CO2 emissions.

This paper, therefore, aims to investigate the spatial distribution dynamics of CO2 emissions
intensity across 30 Chinese provinces. Our analysis differs from those in the existing literature in
several aspects: First, we adopt a continuous dynamic distribution approach to examine the dynamic
behavior of CO2 emissions in China. The advantage of this approach is that it can provide a dynamic
law for the entire shape of the distribution for CO2 emissions across provinces. For example, it can
provide detailed information about persistence, stratification, and polarization in the distribution
dynamic process. Moreover, we use a net transition probability approach to provide more accurate
measurements for convergence. Second, the impact of economic and population sizes are considered
in the analysis, which is important in policy-making in China. Third, this paper also explores the
factors that may influence the distribution dynamics of CO2 emissions intensity in China using a
combination of a joint distribution approach and a conditional distribution approach. This further
provides information on the formation of convergence clubs.

This paper uses CO2 emissions intensity instead of per capita CO2 emissions in the analysis.
Focusing on CO2 emissions intensity has several advantages. First, as a developing country, achieving
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economic growth and environmental protection are both goals for China in the long run. CO2 emissions
intensity is a better indicator of the trade-off between economic growth and environmental protection
than per capita CO2 emissions. It encourages both economic growth and CO2 emissions reduction
in the production process. Second, CO2 emissions reduction targets in China are based on emissions
intensity rather than per capita emissions. Thus an examination of the distribution dynamics of CO2

emissions intensity will have important policy implications. For example, regions with high emissions
intensity and an increasing tendency in their relative emissions intensity should have more stringent
regulations imposed on them than regions with low emissions intensity. Finally, emissions intensity
can be taken as a measure of emissions efficiency and technology to some degree. Thus the convergence
in CO2 emissions intensity may suggest the existence of technology spillover and a catch-up effect
among Chinese regions. Encouraging technology spillover and efficiency improvement are the most
cost-effective ways to achieve sustainable development targets in China.

The remainder of this paper is organized as follows. Section 2 presents a review of the related
literature. Section 3 presents the methodology. Section 4 describes the data. Section 5 presents the
empirical results and discussions. Section 6 further examines the determinants of the distribution
dynamics using a conditional distribution approach. Section 7 provides concluding remarks and
discussions of policy implications.

2. Literature Review

With the increasing concern about global climate change, whether CO2 emissions converge
or diverge attracts much attention from researchers. However, what is the mechanism behind the
convergence in CO2 emissions? Many studies examine the possible existence of an inverted U-shaped
relationship known as an Environmental Kuznets Curve (EKC) between economic development and
environmental pollution (including CO2 emissions). The rationale behind the EKC is complicated
in terms of underlying driving forces. Improvement in technology and energy efficiency, increased
environmental awareness, and enforcement of environmental regulations are forces that may reduce
environmental pollution [7]. Supposing that EKC exists, it is easy to conclude that CO2 emissions
would converge over time. In the current literature, many theoretical models try to explain the
mechanisms behind EKC [7–9].

The empirical research on the convergence of CO2 emissions focuses heavily on both the
international level across nations and the regional level within a specific country. Strazicich and
List first examine the convergence behavior of CO2 emissions across countries [10]. They investigate
both stochastic and conditional convergences of per capita CO2 emissions across 21 industrial countries
using panel unit root tests and cross-sectional regressions. They find evidence for convergence in these
industrial countries. Following this work, a growing body of literature examined the convergence
of CO2 emissions across countries using different sampling and estimation approaches. The first
strand of literature uses traditional parametric approaches [11–19]. This strand of literature examines
the existence of absolute, conditional, and stochastic convergence. However, the estimation results
are sensitive to the choice of econometric approaches and datasets [17]. Moreover, the traditional
approaches only provide limited information on the convergence. For example, β-convergence shows
what happens to its mean, while σ-convergence only indicates the dispersion. The second strand of
literature adopts nonparametric approaches [20–25]. Compared with the first strand of literature, the
second strand of literature not only provides information for the convergence, but also highlights
the dynamic law of the entire distribution shape for CO2 emissions across countries, in particular the
existence and formation of convergence clubs.

The huge amount of CO2 emissions in China has also attracted a great deal of attention in recent
years. Huang and Meng examine the convergence of per capita CO2 emissions in urban China using a
parametric model with spatial–temporal specifications [1]. Their results show evidence of convergence
for the period 1985–2008. Using the log t test, Wang et al. found evidence for divergence at the country
level and three convergence clubs in terms of CO2 emissions intensity for the period 1996–2011 [3].
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Wang and Zhang studied the β-convergence, stochastic convergence, and sigma convergence of
per capita CO2 emissions in six sectors across 28 provinces in China for the period 1996–2010 [2].
Their results indicated convergence in all sectors across the provinces. Hao et al. examined the
convergence of CO2 emissions intensity with provincial data for the period 1995–2011. They verified
stochastic convergence and β-convergence among Chinese provincial samples [4]. Using a spatial
dynamic panel data model, Zhao et al. examined the convergence of CO2 emissions intensity across
30 provinces for the period 1990–2010. Their results supported the existence of convergence in CO2

emissions intensity [5]. Instead of per capita CO2 emissions and CO2 emissions intensity, Li and Lin
examined the convergence of energy efficiency with CO2 emissions with provincial panel data [26].

The conclusions of existing studies on the convergence of CO2 emissions in China are diverse
due to the different estimation approaches and samples. As mentioned previously, the traditional
convergence approaches have many limitations in estimating the spatial dynamic behavior of CO2

emission distribution across countries or regions. They provide no information on the intra-distribution
dynamics, which may be valuable both theoretically and empirically. For example, multimodality
found in the long-run steady state may imply the existence of multiple equilibria in the evolution of
CO2 emissions. Therefore, instead of a single mechanism of the EKC, models of multiple equilibria are
expected to shed light.

3. Research Method

3.1. Weighted Distribution Dynamics Approach

The distribution dynamics approach was developed by Danny Quah in a series of papers
examining the evolution of income distribution across countries [27–29]. In comparison to the
traditional parametric approaches, the distribution dynamics approach has several advantages. First,
it provides more insights on the law of motion in an entire distribution of the variable in question,
particularly in the formation of convergence clubs. Second, this approach is completely data-driven,
and imposes no assumptions on the model, which helps avoid the estimation bias due to model
assumption in parametric approaches. Third, this approach provides the possibility to account for
economic and population sizes in the convergence analysis.

Let us suppose that cross-province distribution of CO2 emissions intensity x at time t can be
described by the density function ϕt(x). The evolution of the distribution is time-invariant and
first-order, that is, the current distribution ϕt(x) at time t will evolve into the future distribution
ϕt+τ(y) at time t + τ, where τ > 0. Hence the relationship between the current distribution ϕt(x) and
the future distribution ϕt+τ(y) can be described as follows:

ϕt+τ(y) =
∫ ∞

0
gτ(y|x)ϕt(x)dx, (1)

where gτ(y|x) is the conditional density function that maps the transition process of the distribution of
CO2 emissions intensity. Keeping the conditional density function gτ(y|x) unchanged, the distribution
of CO2 emissions intensity will evolve into a long-run equilibrium state, namely, the ergodic
distribution. Therefore, the ergodic distribution ϕ∞(y) can be estimated as follows:

ϕ∞(y) =
∫ ∞

0
gτ(y|x)ϕ∞(x)dx. (2)

To understand the distribution dynamics of CO2 emissions intensity, we need to know both the
transition dynamics described by gτ(y|x) and the long-run equilibrium distribution ϕ∞(y). For this
purpose, a kernel density approach is used to estimate the conditional density function. The joint
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natural kernel estimator of ϕt,t+τ(y, x) and the marginal kernel estimator of ϕt(x) can be defined
as follows:

ϕt,t+τ(y, x) =
1

nhxhy

n

∑
i=1

K(
x− xi

hx
,

y− yi
hy

) (3)

ϕt(x) =
1

nhx
∑n

i=1K(
x− xi

hx
), (4)

where xi is the value of CO2 emissions intensity in a specific province at time t, and yi is the value of
CO2 emissions intensity of that province at t + τ. We use K(·) to denote kernel function. hx and hy

denote the bandwidth of x and y, respectively. In this paper, the bandwidths are estimated using the
method proposed by Silverman [30].

With these definitions, we can further estimate the conditional density with ϕt,t+τ(y, x) and
ϕt(x) through:

gτ(y|x) =
ϕt,t+τ(y, x)

ϕt(x)
. (5)

In order to account for economy or population sizes, we use population or economy sizes
(the share of population or GDP) as weights in the analysis. The weighted kernel density can be
estimated as follows:

ϕ̂t(x) =
1

nhx
∑n

i=1ωiKx(
x− xi

hx
), (6)

where ωi is the share of GDP or population in province i. In this paper, we give both unweighted and
weighted analyses to provide full information on the distribution dynamics of CO2 emissions intensity
for Chinese provinces.

In the discrete approach, the transition dynamics is presented with a transition probability matrix.
However, in the continuous approach, three-dimensional and contour plots are the most popular tools
to show estimated results of transition probability. The three-dimensional plot can show the entire
shape of the transition probability distribution, while a contour plot has the advantage of showing the
deviation from the diagonal. Sometimes we need to know the net mobility tendency at each point.
To gain more insight into the transition probability mass, we estimate the net transition probability
(NTP) values at each point, which is an important index of mobility. The net transition probability
index, denoted by p(x), can be defined as:

p(x) =
∫ ∞

x
gτ(z|x)dz−

∫ x

0
gτ(z|x)dz. (7)

According to this definition, a positive net transition probability value at a point indicates an
increasing trend in CO2 emissions intensity, while a negative net transition probability value at a point
implies a decreasing trend. Following common practice in dynamic distribution approaches, we use
relative CO2 emissions intensity (RCEI), which is the individual province’s CO2 emissions intensity
divided by its yearly average. Therefore, the RCEI values of a specific province correspond to the times
of the CO2 emissions intensity for this province relative to the provincial average.

3.2. Joint Distribution and Conditional Distribution Approach

Traditional convergence analysis always examines the convergence clubs with arbitrarily classified
regional groups. However, spatial proximity is only one possible reason behind convergence clubs.
Other factors, such as income level and capital intensity, may also affect the formation of convergence
clubs. Therefore, new approaches are required to account for the formation of convergence clubs.
This paper thereby adopts the joint distribution approach and the conditional distribution approach to
investigate the determinants of the distribution. The joint distribution approach shows the joint kernel
density distribution of RCEI and explanatory variables of interest, such as relative income or relative
capital. The estimation is similar to that in Equation (3).
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In the conditional distribution approach, we need to pre-filter the data to take out the influence of
the conditioning variables before the analysis. Specifically, the spatial-conditional RCEI is the RCEI
of a province relative to the average of its geographical neighbors. The income and capital intensity
conditional RCEI are RCEI divided by relative income and capital intensity, respectively. For this
reason, the conditional distribution RCEI can be interpreted as the part unexplained by the variable in
question. The greater the difference between the distributions of the unconditional and conditional
RCEIs, the greater the explanatory power of the variable in question.

4. Data

There were 34 provincial level administration units in China, namely 22 provinces, five autonomous
regions, four municipalities, and three special administration regions (i.e., Hong Kong, Macau,
and Taiwan). For simplicity, we use the concept of provinces to denote all the provincial administration
units. Due to the data availability, we use a panel dataset across 30 provinces (without Hong Kong,
Macau, Taiwan, and Tibet) from 1995 to 2014. Our panel data are drawn from official publications
of the Chinese statistical agency. The three major sources are the China Energy Statistical Yearbook
(CESY, various years), China Compendium of Statistics 1949–2008 (CCS), and China Statistical Yearbook
(CSY, various years) [31–33].

4.1. CO2 Emissions

The data for CO2 emissions are not directly available at the provincial level in China. As CO2

emissions are generated by the consumption of energy in provinces, we therefore estimate provincial
CO2 emissions based on energy consumption. We account for eight primary sources of energy
consumptions and CO2 emissions, namely coal, crude oil, coke, gasoline, kerosene, diesel oil, fuel oil,
and natural gas. The formula to estimate CO2 emissions is given by:

CO2 =
n

∑
i=1

Ei × CFi × CCi × COFi ×
44
12

, (8)

where i indicates the categories of energy; Ei, CFi, CCi, and COFi denote the consumption of energy,
the transformation factor, the carbon emissions factor, and the carbon oxidation factor, respectively.
The estimation is based on the criteria published by the Intergovernmental Panel on Climate Change
(IPCC) (2006) [34]. Data for energy consumption in each province can be directly obtained from the
annual China Energy Statistical Yearbook [31].

4.2. Population, GDP, and Capital

Our main source for the nominal GDP and population data used in this paper is the China
Compendium of Statistics 1949–2008, and data after 2008 are from the China Statistic Yearbook
(various years) [32,33]. The capital data are constructed using the same approach as in Wu [35].
The GDP and capital are deflated to the constant price of 1995.

5. Empirical Results

5.1. Preliminary Analysis

5.1.1. The Analysis of Dispersion

The coefficient of variation is always used as an indicator of dispersion in convergence analysis.
Chinese provinces differ greatly in factor endowment, economic structure, climate, and regional
development strategies. Interregional disparity in CO2 emissions is one of the important components
of difference in provincial CO2 emissions. Following most studies, we classify Chinese provinces into
three regions, namely the eastern, central, and western regions. Figure 1 shows the evolution trend
of coefficient of variation and interregional ratios in terms of CO2 emissions intensity for the period
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1995–2014. We can observe that the coefficient of variation has a broadly increasing trend in most
years. However, there are two sub-periods, namely 1999–2002, and 2008–2014, when the dispersion
in terms of CO2 emissions intensity increased sharply. The former is driven by the initiation of the
Western Development Program, while the latter is driven by industry relocation policy in recent years.
During the sample period, the ratio of central/east maintains a relatively steady state, while the ratio
of west/east keeps an increasing trend. Moreover, the evolution trend of ratio of west/east is quite
similar to that of the coefficient of variation. This may imply that the increase of dispersion is mainly
driven by the diversion of CO2 emissions intensity in the western region from the other two regions.
This further proves that regional preferential policy has a significant impact on the spatial distribution
of CO2 emissions.
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Figure 1. The coefficient of variation and ratio of the western region and central region to the eastern
region in terms of CO2 emissions intensity.

5.1.2. Analysis of the Distributions in Critical Years

The coefficient of variation can only provide information on the dispersion of CO2 emissions
intensity across provinces. To get more information about the entire shape of the spatial distribution,
Figure 2 plots the unweighted kernel density distribution of RCEI in three representative years, namely,
1995, 2005, and 2014. All three distributions show significant multimodality, with a major peak below
mean RCEI, and several small peaks in the high RCEI end. Moreover, all three distributions are
significantly right-skewed. This indicates that most provinces are concentrated in the region below
the mean RCEI values; only a small number of provinces are located in the high RCEI end. The major
peak in the distribution increases over time in our sample period. However, the distribution of RCEI
shrinks slightly at both ends for the period 1995–2005, while it increases significantly at the high end
for the period 2005–2014. This suggests a divergence of CO2 emissions intensity across the Chinese
provinces, which is consistent with the results of coefficient of variation. Moreover, in comparison to
the distribution in 1995, the distribution in 2014 shows more polarization and stratification.

As indicated in the previous section, Chinese provinces differ greatly in terms of economy
and population size, which may have significant impacts on CO2 emissions. Figure 3 shows the
economic- and population-weighted distribution in three representative years. In all the three years’
distributions, all economic- and population-weighted distributions shrink the small peaks in the high
RCEI end, but increase the major peak in the low RCEI end. However, weighting by economy size
shifts the distribution more to the low RCEI than weighting by population size. This indicates that
provinces with high CO2 emissions intensity tend to have smaller economies and population sizes,
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while provinces with low CO2 emissions intensity tend to have larger sizes. Therefore, neglecting
economy and population size may bias the estimation of the real distribution of CO2 emissions intensity
across Chinese provinces. For example, Ninxia, which is the second smallest province in terms of
both economy and population (second only to Tibet), has the highest CO2 emissions intensity, while
Guangdong, which is the largest in terms of both economy and population size, has the lowest CO2

emissions intensity.
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5.2. Distribution Dynamics in Chinese Provinces

5.2.1. The Full Sample

Figure 4 shows the distribution dynamics of RCEI for the period 1995–2014 with annual transitions.
The three-dimensional plot in Figure 4a shows the distribution of the transitional probability mass
with which a region with a specific RCEI value at time t could evolve into each value of RCEI at time
t + 1, while the contour plot in Figure 4b is a top down view of the three-dimensional plot. To interpret
this graph, suppose we choose a specific point (RCEI value of 2 for example) on the axis marked t,
and then slice the plot from this point parallel to axis marked t + 1; this slice shows the probability
distribution of a province with an RCEI value of 2 transitioning into each value of RCEI at time t + 1.
In both plots, the concentration of probability mass along the diagonal implies higher persistence and
immobility in relative position changes among provinces, while a deviation from the diagonal implies
higher mobility in relative positions. In comparison with a three-dimensional plot, the contour plot
shows the deviation from the diagonal line more clearly. Moreover, distinct peaks along the diagonal
imply the existence of convergence clubs.

The three-dimensional plot in Figure 4a shows three peaks along the diagonal, implying the
existence of convergence clubs in the long-run distribution. The contour plot in Figure 4b shows
the deviation of transition probability mass from the diagonal line. It is observed that the transition
probability mass is distributed along the diagonal in the low RCEI end, but there are more deviations
from the diagonal line in the high RCEI end. This indicates higher persistence in the provinces with
low RCEI values, while there is relatively high mobility among provinces with high RCEI values.

Net transition probability can provide more accurate information on the convergence of RCEI
among provinces. Suppose that low-RCEI provinces have positive net transition probability, while
high RCEI provinces have negative net transition probabilities; this will imply strong convergence
in RCEI. Figure 4c shows the net transition probability for RCEI of Chinese provinces. Three regions,
namely those with RCEI values less than 0.85, [1.65, 1.98], and [2.8, 3.5], have positive net transition
probability, implying that provinces with RCEI values in these regions have a tendency to increase their
CO2 emissions intensity. From the policy perspective, these provinces should have more stringent CO2

reduction targets imposed. Considering that the net transition probability is much higher in regions
with an RCEI value of around 3, the central government should pay more attention to provinces with
three times the average CO2 emissions intensity. Differing from some existing studies [4,5], our results
indicate divergence rather than convergence in CO2 emissions intensity across Chinese provinces.

Figure 4d presents the ergodic distribution of RCEI based on the transition dynamics of RCEI for
the period 1995–2014. Multimodality can be observed in the long-run steady distribution, with one
major peak around the RCEI value of 3.5, and two small peaks around RCEI values of 1 and 2.
Keeping the transition dynamics unchanged, Chinese provinces will converge into three clubs
differentiated according to their CO2 emissions intensity levels in the long run. This result is similar to
that of Wang et al., who also find three convergence clubs among Chinese provinces [3]. Moreover,
the ergodic distribution is heavily left-skewed, which differs greatly from the current distribution in
Figure 2. The ergodic distribution has important implications for policy-making: the stratification
of provinces in terms of CO2 emissions intensity suggests that the government should take policy
measures, such as encouraging interregional technology spillover and assigning tougher reduction
targets to those provinces clustering into high RCEI clubs, to promote convergence among provinces.

As indicated in the previous section, neglecting province heterogeneity may bias the estimation of
welfare effect in some cases. Figure 4e,f shows the weighted versions of net transition probability plot
and ergodic distribution plot. For comparison, the unweighted curves are also included in the plots.
In Figure 4e, weighting by economy and population size reduces the net transition probability for RCEI
values less than 2, but increases net transition probability in regions with an RCEI value greater than 2.
Moreover, weighting by economy size reduces the net transition probability more in the low-RCEI
end than weighting by population size. Correspondingly, Figure 4f shows that weighting by economy
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and population size does not change the multimodality in the ergodic distribution, but significantly
reduces the small peaks in the low-RCEI end while increasing the major peak in the high-RCEI end.
This indicates that some relatively larger provinces tend to converge into high CO2 emissions intensity
club in the long run.
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5.2.2. Distribution Dynamics in Two Sub-Periods

Before 2005, the Chinese government did not impose tight regulations on CO2 emissions.
However, facing serious environmental deterioration and international pressure, the Chinese
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government imposed stringent energy consumption and CO2 emissions intensity targets in the 11th
and 12th Five Year Plans (2005–2010 and 2011–2016, respectively). These policy changes may have
impacted distribution dynamics before and after 2005. Therefore, the analysis is further conducted on
two sub-periods, namely 1995–2005 and 2005–2014.

Figure 5 shows the distribution dynamics of RCEI with annul transition for the sub-period
1995–2005. Panels (a) and (b) show the unweighted three-dimensional and contour plots of transition
probability mass distribution, while panels (c) and (d) show the net transition probability and the
ergodic distribution plots. Although some small differences can be observed in the shapes of the
distributions for transition probability compared with those in Figure 4, the distribution of transition
probability mass in Figure 5 is generally similar to that in Figure 4. The ergodic distribution of
unweighted RCEI for the period 1995–2005 (the solid line in Figure 5d) is significantly multimodal,
with two large peaks around the RCEI value of 0.8 and 2, and a small peak around the RCEI value
of 3.5. The three peaks in the ergodic distribution for the period 1995–2005 are more symmetrical
than those for the full sample period. Compared with the current distribution for 1995 in Figure 2,
a considerable number of provinces have a tendency to shift to the high CO2 emissions intensity end.
Moreover, weighting by economy and population size significantly increases the peaks around RCEI
values of 0.8 and 3.5, but reduces the peak around the RCEI value of 2. Weighting by economy size has
more impact on the ergodic distribution than weighting by population size. This implies that Chinese
provinces have more disparity in economy size than in population size.
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Figure 6 shows the distribution dynamics for RCEI across Chinese provinces with annual
transitions for the sub-period 2005–2014. The distributions of transition probability mass in Figure 6a,b
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are significantly different from those in Figure 5. This implies that the transitional dynamics of RCEI
in the sub-period 1995–2005 is different from that in the sub-period 2005–2014. The net transition
probability curve in Figure 6c also exhibits some differences from that in Figure 5. There is only one
region around the RCEI value of 2.8 that has positive net transition probability in the above-average
region. Significant multimodality, with two small peaks around the RCEI value of 0.8 and 2, and a
large peak around the RCEI value of 3.1, can be observed in the long-run distribution in Figure 6d.
Compared with the right-skewed ergodic distribution in the sub-period 1995–2005, the ergodic
distribution in the sub-period 2005–2014 is significantly left-skewed. If the distribution dynamics
were kept unchanged in this sub-period, more provinces would converge into the high CO2 emissions
intensity clubs. In comparison to that in the sub-period 1995–2005, this implies more serious
deterioration in the intra-distribution dynamics of RCEI in the sub-period 2005–2014. However,
weighting by economy and population size has almost an opposite effect on the ergodic distribution
in this sub-period. Weighting by economy size reduces the peaks in the low-RCEI end, but increases
the peak in the high-RCEI end. On the contrary, weighting by population size increases the peaks
in the low-RCEI end, but reduces the peak in the high end. This may imply that provinces with a
larger economy tend to shift to the high-RCEI end more than average, while provinces with a larger
population size have fewer tendencies to shift up.
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6. The Determinants of Spatial Distribution Dynamics

Most studies on the convergence of CO2 emissions only focus on the convergence itself.
Few studies try to examine what factors affect the distribution dynamics of CO2 emissions.
Different from existing studies, this paper uses a new framework to analyze how geographical location,
income level, and capital accumulation influence the distributional dynamics of RCEI with pre-filtered
data. For simplicity, we only consider the unweighted analysis in this section.

6.1. The Dynamics of Spatial Conditional CO2 Emissions Intensity

The joint distribution approach means that if the RCEI value of a specific province is close to
its neighbor’s mean value, then the joint probability mass should distribute along the diagonal line.
However, the three-dimensional plot (Figure 7a) and contour plot (Figure 7b) show that the joint
probability mass deviates significantly from the diagonal line. This indicates that spatial location is not
a significant factor in the formation of convergence clubs.
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Figure 7 also shows the distribution dynamics of space conditional RCEI with annual transitions
for the period 1995–2014. As a comparison, we also include the unconditional curves in the net
transitional plot (Figure 7e) and ergodic distribution plot (Figure 7f). The three-dimensional plot
(Figure 7c), contour plot (Figure 7d), and net transitional probability plot (Figure 7e) show that
the transition dynamics of the space-conditional RCEI exhibits some differences to those in the
unconditional case in Figure 4. More importantly, multimodality still exists in the ergodic distribution
of space conditional RCEI. Conditioning on neighbor’s mean value does not eliminate convergence
clubs in the long-run steady state. The distribution of conditional RCEI can be considered as the
part unexplained by the variable in question. Hence, the above result indicates that the convergence
clubs in the ergodic distribution of RCEI cannot be explained by geographical proximity. This result
differs from that in Wang et al. [2], who found regional convergence clubs with a parametric approach.
However, the parametric approach only provides the statistic result of “representative economy”. It is
much less discriminating in finding the determinants of convergence clubs. Our result is more intuitive
with more details than in previous studies.

6.2. The Dynamics of Income Conditional CO2 Emissions Intensity

As discussed previously, income level is an important factor that may influence CO2 emissions.
The inverted U-shaped relationship between CO2 emissions and income level, known as the
“environmental Kuznets curve” (EKC), has been well documented in many studies. However,
Bassetti et al. indicate that the nexus of income level and CO2 emissions may be more complex than
that predicted by the EKC paradigm [36]. For convenience, this paper employs relative income (RI)
normalized to the yearly average in the analysis.

Figure 8a,b shows three-dimensional and contour plots of the joint distribution between RCEI
and RI. It is observed that the probability mass distributes along two axes. Although most provinces
are located in the highest peak in low income and low CO2 emissions intensity regions, there is still a
considerable number of provinces concentrated in the peaks along the two axes. “Low income, high
pollution” provinces co-exist with “high income, low pollution” ones in China. This phenomenon
cannot be explained by the EKC theory.

Figure 8c,d shows the distributions of transition probability mass for income-conditional RCEI
with annual transitions for the period 1995–2014. There are some differences in the distribution of
transition probability between the income-conditional RCEI in Figure 8 and the unconditional one
in Figure 4. The net transition probability curve of conditional RCEI (the solid line in Figure 8e)
also differs from that of unconditional RCEI (the dashed line in Figure 8e). Conditioning on income
shows that income may have some impact on the distribution dynamics of CO2 emissions intensity.
However, the multimodality can still be observed in the ergodic distribution of income-conditional
RCEI (the solid line in Figure 8f). Conditioning on income cannot eliminate the convergence clubs
observed in the unconditional distribution.
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6.3. The Distribution Dynamics of Capital Conditional CO2 Emissions Intensity

High capital intensity is always related with high energy consumption and hence high CO2

emissions. In this subsection, we focus on the relationship between CO2 emissions intensity and capital
intensity using a joint distribution approach and a conditional approach. Figure 9a,b shows the joint
distribution of RCEI and relative capital (RK). As most of the density is concentrated in the below
average area, no simple relationship can be observed in the joint distribution.

Figure 9c,d shows the distribution of transition probability mass for capital conditional RCEI with
annual transitions for the period 1995–2014. In comparison with the unconditional case in Figure 4,
the distribution dynamics of capital conditional RCEI differs from the unconditional one. The ergodic
distribution for the conditional RCEI is bimodality, which is different from the multimodality of
unconditional RCEI. The highest peak in the ergodic distribution disappears and the density mass
is concentrated around the average. This indicates that capital intensity is an important factor in the
formation of convergence clubs, the high CO2 emissions intensity club in particular. These results
have important policy implications. In China, the government plays an important role in capital
investment. Hence, the government can promote convergence in CO2 emissions intensity through
capital investment policy.
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7. Conclusions and Policy Implications

This paper examines the distribution dynamics of CO2 emissions intensity across 30 provinces for
the period 1995–2014. Different from existing studies, this paper adopts a weighted distribution
dynamics approach, accounting for both economy and population size. Moreover, we use a
combination of a joint distribution approach and a conditional distribution approach to examine
the determinants of the distribution dynamics of CO2 emissions intensity.

The result shows that Chinese provincial CO2 emissions intensity has a dispersion trend in
general. This dispersion is mainly driven by the increase of CO2 emissions intensity in the western
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region relative to the eastern and central regions. The paper finds more persistence in provinces
with low CO2 emissions intensity and more mobility in provinces with high CO2 emissions intensity.
Convergence clubs can be observed in the long-run steady state. The intra-distribution dynamics
shows that most provinces converge into the high CO2 emissions intensity end. This indicates the
deterioration in the evolution trend of CO2 emissions intensity. In general, different from existing
studies [1–5], our findings show that divergence, polarization, and stratification are the dominant
characteristics in the distribution dynamics of CO2 emissions intensity across Chinese provinces.
Weighting by economy and population sizes has a significant impact on the distribution dynamics of
CO2 emissions intensity. It increases the peak in the high CO2 emissions intensity end, but reduces
the peak in the low CO2 emissions intensity end. Neglecting economic and population sizes may
underestimate the deterioration in the long-run steady state. The analysis of the two sub-periods
shows that the deterioration is more significant in the sub-period 2005–2014 than in the sub-period
1995–2005. The conditional analysis indicates that conditioning on space and income cannot eliminate
the multimodality in the ergodic distribution, implying that the convergence clubs in the long-run
steady state are not determined by space and income in general. However, the result shows that capital
intensity has a significant impact on the formation of convergence clubs in the high CO2 emissions
intensity end.

The results of this paper have important policy implications. First, the lack of convergence
and the existence of convergence clubs in the distribution of CO2 emissions intensity show that the
market itself cannot automatically reduce environmental pollutants. Policies focused on technological
spillover and industry upgrading are required to promote convergence in CO2 emissions intensity.
For example, Ninxia, which had the highest CO2 emissions intensity in recent years, has a large share
of heavy industries, such as coal mining, metallurgy, and mechanical industry. Therefore, technological
progress and industry upgrading are the most efficient way to reduce CO2 emissions intensity. Second,
in China, CO2 emissions reduction targets are assigned at the provincial level. However, provinces
differ greatly in terms of their economy and population sizes. Hence, economy and population sizes
should be considered in policy-making. Considering the deterioration in the intra-distribution of
CO2 emissions intensity, the central government should assign tougher targets to those provinces that
have a tendency to increase their relative CO2 emissions intensity, particularly those with a high CO2

emissions intensity.
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