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Abstract: The introduction of the Huff model is of critical significance in many fields, including
urban transport, optimal location planning, economics and business analysis. Moreover, parameters
calibration is a crucial procedure before using the model. Previous studies have paid much attention
to calibrating the spatial interaction model for human mobility research. However, are whole
sampling locations always the better solution for model calibration? We use active tracking data of
over 16 million cell phones in Shenzhen, a metropolitan city in China, to evaluate the calibration
accuracy of Huff model. Specifically, we choose five business areas in this city as destinations and
then randomly select a fixed number of cell phone towers to calibrate the parameters in this spatial
interaction model. We vary the selected number of cell phone towers by multipliers of 30 until
we reach the total number of towers with flows to the five destinations. We apply the least square
methods for model calibration. The distribution of the final sum of squared error between the
observed flows and the estimated flows indicates that whole sampling locations are not always better
for the outcomes of this spatial interaction model. Instead, fewer sampling locations with higher
volume of trips could improve the calibration results. Finally, we discuss implications of this finding
and suggest an approach to address the high-accuracy model calibration solution.

Keywords: big data; mobile phone location data; spatial interaction model; human dynamics

1. Introduction

The introduction of the Huff model is of critical significance in urban transport, economics and
business areas, which can help us understand the accessibility, business opportunities, source and
distribution of customers, and give suggestions to the optimal location planning of new trading
areas [1–5]. Besides, there are already many methods to analyze trading areas, such as the Ring
model [6], regression model [7,8], the analog model [9], the Huff model, and so on. Among all
these methods, the Huff model is a quantitative method widely used to explore the interactions
in urban environment [10,11]. Before applying the Huff model, the high-accuracy calibration of
the model is a crucial procedure to apply [12]. Previous studies have paid much attention to the
calibration of the model [13–15]. Traditionally, the calibration of the spatial interaction model in human
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mobility research is dependent on survey or questionnaire, which has a few disadvantages, such as
being labor-intensive, time-consuming, and error-prone; usually having a poor response rate [16,17];
and, sometimes, lacking proper sampling mechanisms. Improper sampling methods may lead to some
biases or non-representative issues [18–22], thus may influence the calibration of spatial interaction
model [23,24]. Besides, the number of sampling locations is also one of the concerns in many studies.
For example, Zhou et al. [25] investigates how many samples are needed for a good performance of
road selection and finds that only a small number (e.g., 50–100) of training samples is needed, while
Zhao et al. [26] indicates that sparse sampled call detail records data introduce some biases to human
mobility research. Thus, one of the main tasks of this paper is to investigate the effects of different
numbers of sampling locations for calibrating the Huff model.

Recently, researchers prefer to use larger multi-source datasets to find their better solution.
Fortunately, the advent of information and communication technology (ICT) aids the acquisition
of human trajectory data by lowering the cost of collecting, storing, processing, and sharing data
and information [27,28]. Large volume data (such as GPS tracking data, mobile phone location data,
social media check-in data, and so on), give new insights and a better understanding of human mobility
and behaviors [29,30]; community detection [31–33]; urban activity space and dynamics [34,35];
and spatial interaction and modeling [36,37]. Regarding the calibration of spatial interaction model,
most use all sampling locations to calibrate. For example, Yue et al. [38] and Markham et al. [39] use
the whole datasets to calibrate spatial interaction models, but whether a small part of the datasets
contributes to more accurate calibration results remains unresolved.

Besides, among all the big geodata, mobile phone location data are very special data because
mobile phones have an extremely high penetration rate, which can be over 94% in Asian countries
such as China [40], and people usually take their cell phone with them. Thus, some researchers
view this type of data as a reasonable source to describe human mobility and model spatial
interactions [29,31,33–35,37], and many valuable findings regarding human dynamics in the era of big
data have been explored from this kind of data. For example, Gao et al. [31] propose an alternative
modularity function which incorporates a calibrated gravity model to discover the clustering structures
of spatial-interaction communities generated by massive mobile phone users. Liang et al. [41] analyze
the collective intra-urban mobility using a modified spatial interaction model, and Simini et al. [42]
propose a radiation model which predicts mobility patterns in good agreement with observed data
when compared with the calibrated gravity model by using different data sources including mobile
phone data. Whether the models were well calibrated to “best fit” the observed data needs to be
answered before comparison and application. If so, another question is how to derive the more
valuable sampling locations to get high-accuracy calibration results. Additionally, Vij et al. [43] exhibit
a neutral attitude towards the volume of big data, pointing out that high quality but small volume
data may be better than big data, and small volume datasets represent not only dimension reduction
but also noise elimination from big data.

The calibration methodology has been widely discussed [44–46], and is not the main focus of this
paper. However, we investigate the effects of sampling locations by calibrating a spatial interaction
model as a case study, using mobile phone location data from the big data era, and attempt to answer
the following questions:

(1) Does using all sampling locations always perform better than small volume of sampling locations
to calibrate the Huff model?

(2) If not, what kinds of sampling locations are more effective for calibrating this model?

There are several contributions of this study. Firstly, the results of this paper show that small
volume of sampling location dataset may perform more effective for the calibration of the Huff model
than large sampling locations, which could help utilize big data better for human mobility modeling;
Secondly, we propose a method to select the more effective locations from massive mobile phone
towers to improve the model calibration, which could be used to guide surveys or questionnaire for



Sustainability 2017, 9, 159 3 of 18

trading area analysis in real scenes. This method could save both survey time and expense in many
related areas of research while achieving high-quality model calibration results. To the best of our
knowledge, this is the first work to discuss whether large sampling locations are always more effective
for calibrating spatial interaction model and apply business area analysis to location data from mobile
phone users, opening a new area for business applications.

The rest of this paper is organized as follows. Section 2 introduces the mobile phone location
dataset and the study area. Section 3 describes the method to extract the trips to business areas and the
strategy to calibrate the spatial interaction model. Section 4 discusses the analysis results. Section 5
summarizes our findings and discusses future research directions.

2. Study Area and Dataset

The study area of our research is Shenzhen, one of the largest cities in China. This section provides
background information of the selected largest business areas in Shenzhen and the actively tracked
mobile phone location dataset.

2.1. Study Area

The study area is the city of Shenzhen, China. Shenzhen is one of China’s mega-cities and has an
area of approximately 2000 km2. Shenzhen is located in the southern Guangdong Province and across
the border from Hong Kong (Figure 1). As a Special Economic Zone, Shenzhen has become the fourth
largest economic city in China, after Shanghai, Beijing, and Guangzhou, and has developed into an
influential international city [47]. The prosperous socioeconomic status of Shenzhen makes it a good
choice for business area analysis in China.
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area that is interconnected with over one hundred shops. The Renmin-nan Commercial Area 
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25 years ago. Famous shopping malls were integrated to form the first walking “air corridor” in 
Shenzhen. The Huaqiang-bei Commercial Area (referred to as “H”) is the most prosperous shopping 
area in Shenzhen. It is not only a business circle for electronic products but also a center for 
department stores and restaurants. The Overseas Chinese Town (referred to as “O”) is located in the 
heart of the city. There are many specialty food streets, a sound system supermarket, a bar street, a 
Western fast food restaurant, a bookstore, a drugstore and other stores in the area. The Nanshan 
Commercial Area (referred to as “N”) is the home to the Haiya department store, the Children’s 
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Figure 1. Location of Shenzhen (maps.google.com).

This paper uses the five biggest and most influential commercial areas in Shenzhen [48], as shown
in Figure 2. The Dongmen Commercial Pedestrian Street (referred to as “D”), is one of the oldest
commercial centers in Shenzhen. It is not a department store, rather it is an open-air shopping area
that is interconnected with over one hundred shops. The Renmin-nan Commercial Area (referred
to as “R”) was the first commercial business zone when Shenzhen began its development 25 years
ago. Famous shopping malls were integrated to form the first walking “air corridor” in Shenzhen.
The Huaqiang-bei Commercial Area (referred to as “H”) is the most prosperous shopping area in
Shenzhen. It is not only a business circle for electronic products but also a center for department
stores and restaurants. The Overseas Chinese Town (referred to as “O”) is located in the heart of the
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city. There are many specialty food streets, a sound system supermarket, a bar street, a Western fast
food restaurant, a bookstore, a drugstore and other stores in the area. The Nanshan Commercial Area
(referred to as “N”) is the home to the Haiya department store, the Children’s World Nanshan Store,
Sundan electronic appliances, HOBA International Furniture Plaza, and the Wanjia Department Store.
The total area of each commercial area is shown in Table 1.
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Table 1. The total area of each commercial area.

Commercial Area D R H N O

Area (1000 m2) 279.10 729.20 1567.79 1155.95 1569.92

These commercial areas are patronized not only for working and purchasing goods but also for
recreation. The goods include famous high-class trademark items as well as new fashions. Additionally,
some areas provide cinemas and game centers. All five of these regions are well served by public
transportation. These five commercial areas are the most prosperous and attractive and were used as
the study areas for our research.

2.2. Data Description

The mobile phone location data used in this research are active tracking data, as shown in Table 2.
Extensive work has been conducted using mobile phone location data to analyze human mobility
patterns [29,49]. Data in this study are provided by a telecommunications company in Shenzhen,
China, for research purposes. Each location record was generated when a mobile phone user sent or
received a phone call/text message. Different from CDRs, the location of most mobile phone users in
this dataset was recorded approximately every 60 min as the latitude and longitude of a nearby cell
tower. In total, this actively tracked mobile phone location dataset contains location information from
over 16 million anonymous phone numbers from a Friday in 2012.

For privacy concerns, this study did not obtain any personal information. Each mobile phone
number was assigned a unique user ID. In addition, all mobile phone location data were collected at
the mobile phone tower level such that the specific activity locations were not revealed. The density of
mobile phone towers varied in different parts of the study area. Overall, cell phone towers are densely
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distributed in the center of the city or areas with large populations; therefore, resulting in higher data
accuracy. In suburban areas, cell phone towers are sparsely distributed and result in lower position
accuracy. Nevertheless, mobile phone location data can be a reasonable data source to describe human
mobility [49].

Table 2. Example of mobile phone records during the data collection period.

ID Date Time Longitude Latitude

User1 2012/**/** 07:39:27 114. ***** 22. *****
User1 2012/**/** 08:21:36 114. ***** 22. *****
User1 2012/**/** 08:53:36 114. ***** 22. *****

. . . . . . . . . . . . . . .
User2 2012/**/** 03:28:41 114. ***** 22. *****

. . . . . . . . . . . . . . .

The sign ***** ignores the minutes of a Longitude or a Latitude, and the sign **/** ignores the exact month and day
due to privacy protection.

3. Methodology

In this section, we introduce how to extract O/D pairs from commercial areas and the method
for calibrating the spatial interaction model. The trajectory is defined as the location sequence of
an individual in space and time. Ideally, the space-time trajectory of moving objects is continuous.
However, the records of mobile phone location data are not continuous due to the low temporal
sampling frequency. Thus, a group of discrete location records sequenced in space and time is used to
represent the trajectory of an individual.

Tr = {(x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn)}, (1)

where n is a set describing the spatial-temporal discrete location records. Each element (xi, yi, ti)
represents the coordinates (xi, yi) of the latitude and longitude of a nearby cell tower of this individual
at time ti.

3.1. Extracting Trips towards Commercial Areas

Before calibrating the spatial interaction model, the trips to each commercial area should be
extracted. Three basic elements should be considered: the polygon scope of the commercial area,
the time entering the polygon (tA), and the time leaving the polygon (tL).

In this paper, if an individual remained in the polygon scope of a commercial area no less than a
certain time threshold, then a “stay” is formed. We set this time threshold to 1 hour due to the time
resolution of our dataset. Since most of the shopping centers are open from 9:00 a.m. to 11:00 p.m.,
we assigned the following rules to extract the trips to commercial areas:

Rule 1: Stay duration is no less than 1 h
Rule 2: The arrival time is after 9:00 a.m.
Rule 3: The leave time is before 11:00 p.m.

If a stay meets these requirements, the location record before entering the commercial area is
treated as the origin of the trip. Following the approach described above, attracted trips from cell
phone towers to each commercial area were extracted. Many previous studies have used mobile
phone location data to investigate the spatial interactions in complex urban environment [31,41,42].
There may be some uncertainties in the extraction of origins/destinations from mobile phone data.
The location records are quite sparsely distributed in space and time from the individual perspective,
due to the uneven distribution of people’s phone activities [50].

However, there were zero trips from some of the origin cell phone towers to some commercial
areas (called zero interactions). Thus, if the total number of trips originating from a tower was greater
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than 5, then the zero interaction was added by 1. Otherwise, this cell phone tower was not considered
in the study [51]. A total of 2621 cell phone towers were selected for the calibration of the spatial
interaction model (hereafter, cell phone towers means these 2621 towers). Due to the requirement of
dataset provider, it is not allowed to show the spatial distribution of point-based cell phone towers
(hereafter, the distributions of cell phone towers are all presented by kernel density). The spatial kernel
density distributions of the cell phone towers and the valid cell phone towers are shown in Figure 3.
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3.2. Randomly Calibrate the Huff Model

The Huff model [52,53] is a spatial interaction model that seeks to describe in a spatially explicit
manner the flow of people across space to a fixed set of locations to access goods or services. The Huff
model is formulated as follows:

Tij =
sα

j d−β
ij

∑J
k sα

k d−β
ik

, (2)

where Tij (varies from 0 to 1) is the probability of residents at origin i interacting with business area
j. In the Huff model, the polygon size of the commercial area (s) is used to represent the attraction
according to many previous studies [3,11,38,54]; and the trip distance (d) is used as the cost; α and β are
the sensitivity parameters that associate Tij with attraction variable s and cost d (both of the parameters
will be calibrated); and J is number of commercial areas. The Huff model is based on Newton’s law of
universal gravitation. Before using the Huff model to evaluate the interactions between locations and
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facilities, the parameters α and β need to be calibrated to ensure the estimated flows are best fit to the
observed data.

The most common methods used for Huff model calibration are the maximum likelihood
method and ordinary least square regression. The descriptions of these two methods can be found in
Fotheringham and O’Kelly [51]. They note that although the criteria of these two methods are different,
the parameter estimates are similar, which is also verified by our study. Therefore, this paper will only
choose one calibration method that uses the least square regression method derived by Fotheringham
and O’Kelly [51] to calibrate the spatial interaction model.

To investigate the impacts of sampling points on the calibration of the Huff model, multiples
of 30 phone towers (such as 30, 60, 90, etc.) are randomly selected due to the reason that some spatial
analysis are reliable if the input samples are at least 30 [55]. For each multiple of 30 selected phone
towers, we randomized the selection 500 times, as shown in Figure 4. Then, the least square regression
is performed. Each random sample can derive a group of parameters, which are used to evaluate the
bias between observed probability (Pij) and estimated probability (Tij) of all the 2621 cell phone towers.
The sum of squared errors (SSE) is frequently used to measure the bias [56,57].

SSE = ∑
i

∑
j
(Tij − Pij)

2, (3)

This paper uses the Huff model, one type of spatial interaction model, as an example to examine
the effects of different locations and sizes of cell phone tower samples on the calibration of the model
parameters. We vary the selected number of cell phone towers by multiples of 30 until we reach the
total number of towers with flows to the five destinations, to calibrate the spatial interaction model
and gradually answer the questions we have proposed.
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4. Results

4.1. Distribution of SSE

We calculated the distribution of SSE under each calibration parameter, as shown in Figure 5.
The SSE of all the 2621 cell phone towers can be quite different with different numbers of randomly
selected cell phone towers.
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Figure 5. Distribution of SSE.

Firstly, as the number of random cell towers grows, the value of SSE is less fluctuant and closer
to 1205, which is the total sum of squared errors (TSSE) when all cell towers were used for calibration.
In particular, when more than 900 cell phone towers were used, the SSE is between 1180 and 1220.
As the number of towers increases, the interval of the SSE decreases.

Secondly, the fewer random cell towers used, the more the SSE fluctuates. When the number
of cell phone towers is low (such as 150 cell phone towers), we can obtain both a better and a worse
calibration result than when using all cell phone towers for calibration. For example, when using
30 cell towers for calibration, the SSE can fluctuate from approximately 1150 to 1318. When the random
dataset is 30, the selected towers can provide both a better and a worse calibration result. Some cell
phone towers may appear more than once in all of the random combinations. Later, we will investigate
the general characteristics of these best-performing towers.

Most importantly, few random sampling locations have the ability to improve the calibration
results compared to many random sampling locations. We can conclude that it is not always that
more sampling locations lead to the better solutions for calibrating spatial interaction models. In other
words, when we conduct surveys or questionnaires, the locations are very important; or when we use
large location data for the calibration of the spatial interaction model, not all sampling locations are
valuable for calibration. The fluctuation of SSE is greatest when using 30 towers for calibration. In the
next section, we use a random sample of 30 towers to investigate the hidden patterns of these better
performing calibrations due to the most fluctuant SSE distribution when using this random sample.

4.2. Finding Out Which Cell Phone Towers Best Fit Each Commercial Area

Previously, we assumed that there were some common characteristics between better performing
towers. Firstly, this paper measured the similarity between the estimated percentage (Tij) from a
location to each commercial area and the observed percentage of trips (Pij) towards each commercial
area. The most similar pair is considered to belong to that commercial area. The similarity index (SI) is
measured by,

SI =
2 ·min(Tij, Pij)

Tij + Pij
(4)

where Tij is the estimated percentage of flows from tower i to commercial area j, and Pij is the
observed percentage of flows. After each cell phone tower is tagged with their best fit commercial
area, we determine whether this tower is within the tagged commercial area’s Thiessen polygon
(the Thiessen polygon is derived from the center of each commercial area). Due to a large number of
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random selections, some towers may be selected more than once. In this case, the maximum number
of the best-fit commercial area is assigned as its tagged commercial area.

Finally, each cell phone tower is classified by its best fit commercial area, as shown in Figure 6.
Combined with its affiliated Thiessen polygon, we obtain the following statistical Table 3. This table
illustrates that, except for “D”, the other four commercial areas have a maximum percentages of best
fit towers within their scope, especially for “R”, “H” and “N”, where the percentage of best-fit towers
within their scope are 70.22%, 62.37%, and 61.35%, respectively.Sustainability 2017, 9, 159  9 of 18 
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Table 3. Percentages of best-fit cell phone towers to the five commercial areas.

Cell Phone Towers Fit D Fit R Fit H Fit O Fit N Total

In Polygon D 23.61% 34.84% 37.70% 2.24% 1.54% 100%
In Polygon R 14.89% 70.22% 11.70% 1.06% 2.13% 100%
In Polygon H 11.99% 15.72% 62.37% 3.86% 6.05% 100%
In Polygon O 12.77% 19.70% 12.99% 28.58% 25.98% 100%
In Polygon N 3.38% 8.82% 8.26% 18.20% 61.35% 100%

However, the highest percentage of best fit towers is not always within the areas scope.
For example, the percentage of best fit towers in “D” is only 23.61%, but 34.84% and 37.70% of
towers in “D” are best fit for “R” and “H”, respectively, which are higher than “D” itself. At the same
time, although the percentage of best fit towers within polygon “O” is the highest (28.58%), 61.42% of
towers are best fit for other nonadjacent commercial areas.

For most cases (“R”, “H”, “O” and “N”), the highest percentage of best fit towers are within their
polygon scope, which reveals that this characteristic of spatial adjacency can play a role when choosing
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the random sample. Next, we attempt to choose towers that best fit their adjacent commercial areas to
further reveal the attributes (distance and flows) of these towers.

4.3. High-Accuracy Calibration by Using Spatial Adjacency

The distance in this paper was represented by the spatial adjacency [58]. To determine whether
the tower’s best fit commercial area is consistent with the tower’s most adjacent commercial area,
this paper divides the 2621 cell phone towers into two clusters. The two clusters are as follows:

(1) Set A: The tower’s best fit commercial area is consistent with the tower’s most adjacent commercial
area. This subset account for 45.64% of the 2621 cell phone towers, as shown in Figure 7a.

(2) Set B: The tower’s best fit commercial area is not consistent with the tower’s most adjacent
commercial area. This subset account for 54.36% of all the 2621 cell phone towers, as shown in
Figure 7b.
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Therefore, Set A is a complementary set of Set B. Both of the sets consist of the 2621 cell phone
towers. The spatial distributions of these two sets are shown in Figure 7. It is evident that Set A and
Set B are mixed in spatial distribution.

To investigates the different effects of the two sets on the calibration of the Huff model, multiples
of 30 phone towers or its integer times (60, 90, etc.) are randomly selected from each set. Each multiple
of 30 or its integer times of selected phone towers were randomly selected 500 times. Each time,
the bias between observed Pij and estimated Tij of the total 2621 cell phone towers are estimated by
SSE. The distributions of the SSE of the two sets are shown in Figure 8. The average value of all SSE
and the percentage of times that SSE fell below 1205 and above 1205 are calculated, as shown in Table 4.
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Table 4. Statistic result of the two sets.

Cell Phone Towers Counts/Percentage Average Below 1205 Above 1205

Set A 1196 (45.64%) 1189.3 96.2% 3.8%
Set B 1425 (54.36%) 1205.4 9.2% 90.8%

It is obvious from Table 4 that the average of SSE from Set A is 1189.3, which is lower than the
TSSE (1205). When using Set B to calibrate the Huff model, the average of SSE is 1205.4, which is nearly
equal to TSSE (1205). Moreover, by using Set A, the percentage of random times that SSE is better than
TSSE is 96.2%, which is significantly higher than when using Set B (with only 3.8% of random times
better than TSSE). Therefore, using Set A (the tower’s best fit commercial area is consistent with the
tower’s most adjacent commercial area) can result in a more effective calibration.

Until now, how to directly distinguish this kind of dataset was still unknown. From a spatial
distribution point of view, Set A and Set B are well mixed. Moreover, the percentage of cell phone
towers in Set A and Set B are 45.64% and 54.36%, respectively, which are both near 50%. Thus, how
to easily distinguish Set A from Set B needs to be resolved. To distinguish these two sets directly,
the volume of flows of each set is calculated, as shown in Table 5.

Table 5. Volume of flows of towers in each set.

Average ≥150 [100, 150] [50, 100] [0, 50]

Set A 370 31.9% 5.9% 10.9% 51.1%
Set B 150 19.7% 6.5% 12.5% 61.3%

It is obvious from Table 5 that the average number of flows from each cell phone tower in Set A
is 370, which is much higher than the average number of flows from each cell phone tower in Set B,
150. Further, the percentage of cell phone towers with more than 150 trips in Set A is 31.9%, which is
also much higher than the percentage of cell phone towers with more than 150 trips in Set B, which is
only 19.7%. Thus, the volume of trips from each tower plays a major role in distinguishing the better
performing towers from all of the 2621 cell phone towers. In the next section, we will investigate how
the volume of trips affects the calibration results.

4.4. High-Accuracy Calibration by Volume of Attracted Tirps

4.4.1. Calibration by Using Top 30 Cell Phone Towers with Highest Trips

According to the previous experiments, we know that volume of trips from each cell phone tower
is a criterion to distinguish the better performing towers from all the 2621 cell phone towers. In this
section, we select the top 30 cell phone towers with the highest number trips to the five commercial
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areas. The spatial distribution of the top 30 cell phone towers is shown in Figure 9. Then, the model
parameters are calibrated by these 30 towers and SSE is 1165.1, which is much lower than the TSSE
(using all the towers to calibrate the model).Sustainability 2017, 9, 159  12 of 18 
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Each cell phone tower has five different distances to the five commercial areas. We divide the
urban space into multiple of 3 km according to the distance of cell phone towers to five commercial
areas. Each cell phone tower may be within one commercial area’s 3 km buffer scope while also
within another commercial area’s 6 km buffer scope. If a cell phone tower is located within at least one
commercial area’s 3 km scope, we define it as is in the commercial area’s 3 km scope. Then, we calculate
whether the bias of each cell phone tower is below (better than) average or above (worse than) the
average bias. The average bias is the mean value of SSE of the 2621 cell phone towers. As shown in
Table 6, by using the top 30 cell phone towers with the highest number of trips to calibrate the model,
76.8% of the 961 cell phone towers in the commercial area’s 3 km buffer scope will behave better than
average and only 23.20% of cell phone towers behave worse than average. For the 742 cell phone
towers in the 3 to 6 km scope, 52.07% perform better than average. When the buffer scope is over 9 km,
more than 81% of cell phone towers in that scope behave worse than average, but the total number of
towers within that scope is much less than within 6 km.

Table 6. Effects on towers with a different distance.

Distance (km) Below Average Above Average Counts

[0, 3] 76.80% 23.20% 961
[3, 6] 52.07% 47.93% 742
[6, 9] 27.92% 72.08% 351
[9, 12] 11.42% 88.58% 254

[12, 15] 5.74% 94.26% 122
[15, 18] 9.72% 90.28% 72
[18, 21] 9.09% 90.91% 44
[21, 24] 3.23% 96.77% 31
≥24 18.18% 81.82% 44

Selecting cell phone towers with a large volume of trips for calibration can significantly benefit the
model when towers are located within 6 km. In the text section, we will verify the effects on calibration
of cell phone towers with a different volume of trips.
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4.4.2. Calibration by Using Selected Towers with Higher Volume of Flows

From the previous experiments, we can conclude that the effects of spatial proximity are reflected
by flows. The best fit towers within the areas polygon scope have higher flows and perform better.
In particular, the top 30 towers with highest number of trips also behave better. Thus, we use different
volumes of flow to test the effects of flows on the parameters calibration.

We select cell phone towers with more than 10 trips in multiples of 10. The distribution of the
percentage of cell phone towers with specified lower bounds of trips is shown in Figure 10. As the
lower bound of trips increases, cell phone towers with a small number of trips are gradually excluded.
In each case, we randomly select 30 cell phone towers 500 times to calibrate the Huff model. Then,
the calibrated parameters are used to calculate the SSE for the total 2621 cell phone towers. Each SSE
is compared with the TSSE. Finally, we determine the percentage of random times where the SSE is
lower than TSSE, as shown in Figure 11. The horizontal axis represents the low bound of trips, namely,
the trips of selected towers that are higher than the specified value. The vertical axis represents the
percentage of times where the SSE is lower than TSSE for all 500 random selections. The maximum of
the low bound of trips is set to 500 because there are only 10% of towers with more than 500 trips.
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From Figure 11, it is clear that the percentage of times where the SSE is lower than TSSE changes
significantly from 76% to 95% when the low bound of trips is increased from 10 to 70. Particularly,
when the low bound of trips is higher than 70, the percentage of times where the SSE is lower than
TSSE is steadily greater than 95%. This result indicates that the probability of obtaining better results
is greater when using a large volume of trips from cell phone towers to calibrate the spatial interaction
model. However, the question, what are the effects of the calibrated parameters on small cell phone
towers when using big volume trips of cell phone towers, remains. In the next section, we will verify
this effect.

4.4.3. Effects on Towers with “Small” Volume of Trips

From the experiment above, the probability of obtaining better results is higher when using a
large volume of trips from cell phone towers to calibrate the spatial interaction model. However, the
SSE is the overall measurement of the bias between the observed and estimated probability. When
we choose the high volume of trips to calibrate the model, the effect on the small volume of trips is
ignored. It may be that the overall better result is built at the expense of the small volume of trips.
In this part, we select the towers with more than 10 trips as the whole candidate set to evaluate the
SSES of towers with less than 70 trips. The number of towers with less than 70 trips is 1641. Thus,
the SSES is the estimated and observed probability bias of these 1641 cell phone towers. We consider
these 1641 towers as ones with a small volume of trips because when the low bound of trips is higher
than 70, the percentage of times where the SSE is lower than TSSE is steadily greater than 95%.

Thus, we get the distributions of SSES, as shown in Figure 12. The horizontal axis represents the
low bound of trips, namely, the trips of selected towers are higher than the specified value. The vertical
axis represents the SSES in all 500 random selections. The maximum low bound of trips is also set
as 500.
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It is evident from the figure above that SSES is steadily distributed between 297 and 348 no matter
whether the low bound of trips is greater than 10 or greater than 500. At each low bound, the SSES
maintains a similar interval (the interval length is approximately 51). Thus, when choosing the large
volume of trips to calibrate the model, the bias of the small volume of trips evaluated by SSE is not
affected; that is, the concern that the small number of trips from cell phone towers may be sacrificed to
get overall best results can be eliminated. Finally, using high volume trips from cell phone towers to
calibrate the spatial interaction model is a good choice not only for obtaining better results but also for
reducing computational demand.
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5. Conclusions

Advancements in information and communication technology over the past two decades have
produced massive and various kinds of big location data, which encourages novel insights for studies
of human travel and activity patterns and other perspectives of research. However, “are large volume
of sampling locations effective for calibrating spatial interaction model” is still a question for mobility
research. This paper attempts to answer this question in the perspective of Huff model calibration,
by using massive mobile phone location data, and some conclusions can be drawn as follows.

On the one hand, for the calibration of the Huff model, it is not “the more sampling locations are,
the better calibration result is”. When we take all the cell phone towers into calibration, the SSE is
not the lowest. Moreover, the fewer random cell towers, the more fluctuant the SSE. However, small
random sampling sizes have the ability to improve calibration results than large random samples.
In the calibration of the spatial interaction model, too much sampling locations may be just as bad as
too little. Some special locations hidden in the large location data are more urgent and should be used
and analyzed to provide some new insights into data science.

On the other hand, when we examined the characteristics of these better performing towers, the
towers that are a best fit to their adjacent commercial area are good choices, which illustrates that
spatial proximity plays a role when selecting the random sample. Besides, cell phone towers with
this characteristic have a larger volume of trips than the other towers. Thus, the volume of flows
from cell phone towers is the measurement to distinguish the valuable locations from the poorly
performing locations. When we randomly selected 30 towers with more than 70 trips, the percentage
of times where the SSE is lower than TSSE is steadily higher than 95%. Moreover, when choosing the
big volume of trips to calibrate the model, the bias of small volume of trips evaluated by SSE is not
affected, that is, the concern that the small trips of cell phone towers may be sacrificed to get overall
best results can be eliminated. Thus, using sampling locations with high volume trips to calibrate the
spatial interaction model is a good choice not only for obtaining better results but also for reducing
computational demand.

However, we do note several limitations and challenges of this research, such as:

(1) In this paper, we adopted the Huff model to define business area, and only used size to represent
the attractiveness. This simplification created a mismatch between the predicted attracted areas
and the observed data. Other factors such as the number of POIs, parking conditions, price level
and types of companies, malls in business areas may also influence the attractiveness. In the
future, additional research is needed to identify the detailed attractiveness factors and a proper
spatial interaction model to better depict the relationships.

(2) Another limitation is that we have not noted the social characteristics of these better performing
locations. The combinations of other factors, such as resident distribution, income, land use type
and so on, may reveal the social aspects of these better performing locations, which can provide
better guidance to surveying or sampling.

(3) In this paper, we investigated the effects of sampling locations on the calibration of spatial
interaction model between urban environment and commercial areas. However, our findings
may or may not be applicable to other land use types due to the reason that different land use
patterns also play a role in the model calibration.

(4) There may be some uncertainties in the extraction of origins/destinations from mobile phone
data. It is possible that the “origins” used in this paper were just some passing-by locations,
due to the reason that the footprints of mobile phone subscribers were sparsely sampled in space
and time [50], so it is hard to limit the “origin” as a “stay” where the subscribers have spent a
certain time duration. In the future, dataset like GPS tracking data could be used to reduce the
potential uncertainty in extracting the origins or destinations.
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