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Abstract: This study developed a multi-criteria approach to spatially assess the robust water resource
vulnerability in sub-basins and applied it to the Han River basin. The Intergovernmental Panel
on Climate Change (IPCC) suggested three factors of vulnerability; namely, exposure, sensitivity
and adaptive capacity were used in this study with respect to water quantity and quality. In this
study, 16 water quantity indicators and 13 water quality indicators were selected to identify the
vulnerability using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method. Environmental and socioeconomic data were obtained from the national statistics database,
and hydrological data were simulated using the calibrated Soil and Water Assessment Tool (SWAT)
model. Expert surveys and Shannon entropy method were used to determine subjective and objective
weights for all indicators, individually. As a result, water quantity-vulnerable sub-basins were
associated with high water use and water leakage ratios. Water quality-vulnerable sub-basins
were associated with relatively high values of maximum consecutive dry days and heatwave days.
The water quantity indices of both weighting methods showed relatively similar spatial distributions,
while the distribution of water quality indices was distinct. These results suggest that considering
different weighting methods is important for assessing the robust water resource vulnerability
of sub-basins.

Keywords: Han River basin; Shannon entropy; TOPSIS; robust water resource vulnerability

1. Introduction

The Han River basin in South Korea is home to 24 million people and includes the densely
populated Seoul metropolitan area; thus, there is high water usage/demand in the region. The Han
River supplies the cities along its course with water for industrial, agricultural and domestic uses.
The upper course of the river, which is located in a mountainous region, is used to generate
hydroelectric power. As a larger population increases water demands and extreme droughts occur due
to climate change, water shortages are expected to diminish the reliability of the water supply. Hence,
it is vital for the water supply to be assessed quantitatively to minimize the risk of water scarcity.
The water quality of the Han River basin has continued to decline due to the increasing economic
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activities in the basin, and the alteration of the landscape has an extensive influence on watershed
hydrology. Water quality issues not only deteriorate river ecosystems but also threaten public health
and socioeconomic sustainability. In that context, the water quality and hydrologic characteristics in
the Han River basin play important roles in the spatial dynamics of a range of ecological patterns
and processes that are often key components of river health assessments. Therefore, assessing water
resource vulnerability in the Han River basin in terms of water quantity/quality is of vital importance
for the implementation of efficient water quantity and quality strategies.

However, the national budget to protect the water quantity depletion and mitigate the water
quality deterioration is always limited in the study region. Thus, the government has suffered from
the severe conflicts among stakeholders including residents, citizens, local governments and central
department of governments. In the meantime, many important projects on water quantity and quality
have not been decided and had been postponed. So, first of all, the consensus building among all
stakeholders should be necessary to prioritize the proper sites or areas through any democratic and
systematic procedures. Therefore, many studies [1–6] have used vulnerability as a tool to objectively
derive the spatial priority of sub-regions for the large study region.

Vulnerability is commonly used to describe a weakness or flaw in a system and its susceptibility
to a specific threat or harmful event. Spatial water resource vulnerability, including water quantity
and quality issues, has been frequently assessed in various quantitative manners [7–13]. Vulnerability
is a function of the exposure and sensitivity of a system to a climate hazard and the ability to adapt
to the effects of the hazard [10,14]. The United Nations International Strategy for Disaster Reduction
(UNISDR) defines vulnerability as the conditions determined by physical, social, economic and
environmental factors or processes that increase the susceptibility of a community to the impact of
hazards [11], whereas the Intergovernmental Panel on Climate Change (IPCC) defined vulnerability
as a function of the character, magnitude and rate of climate variation to which a system is exposed,
its sensitivity and its adaptive capacity [8]. We use the IPCC definition of vulnerability in this study.

Nevertheless, “vulnerability” means different things to different researchers. From a water
resource perspective, vulnerability has been defined as “the characteristics of a water resource system’s
weaknesses and flaws that make the system difficult to function in the face of socioeconomic and
environmental change” [15,16]. Hence, the assessment of water resource vulnerability is a systematic
and analytical process used to evaluate the sensitivity of a water resource system to potential threats
and identify challenges in mitigating the risks associated with negative impacts [17–19]. Furthermore,
a study [20] improved the concept of IPCC vulnerability to comprehensively assess vulnerability of
water resources system by integrating severity and potential severity with exposure, sensitivity and
adaptive capacity. To assess vulnerability in a quantitative manner, key indicators must be selected to
represent vulnerability, and multiple indicators are often aggregated to form a composite index [10],
which is often used to assess human and environmental security and vulnerability to various hazards,
as embodied in various well-known national-level indices such as the Human Development Index [21].
However, there are limited vulnerability studies that use any objective methods for the derivation of
weights to vulnerability indicators.

Therefore, this study developed an indicator-based multi-criteria approach to assess water
resource vulnerability in sub-basins and applied the approach in the Han River basin using
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach [22].
The integrated vulnerability indices were quantified to identify potential risks and to analyze specific
aspects that contribute to overall water resource risks. To determine the weight of each criterion,
the Delphi weight [23] and Shannon entropy [24] methods were used to consider various views.
Since decision making can best be implemented with a clear knowledge of both quantitative and
quality studies, this research demonstrates the necessity of using both subjective and objective weights
in terms of water quantity/quality in order to guide or help decision makers in management aspects
related to vulnerability of water resources.
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2. Materials and Methods

2.1. Description of the Study Area

The Han River basin is the second largest river basin (34,428 km2) in South Korea, occupying
approximately a quarter of the country. It is located in the middle of the Korean peninsula at
36◦03′–38◦55′ N and 126◦24′–129◦02′ E and includes part of North Korea (Figure 1). The basin
consists of two metropolitan cities (Seoul and Incheon) and four provinces (Gyeonggi-do, Gangwon-do,
Chungcheongbuk-do and Gyeongsangbuk-do). As shown in Figure 1, the Han River basin was divided
into four sub-regions: Imjin River (R1), North Han River (R2), South Han River (R3) and Han River
(R4). This study identified 237 unit sub-basins across the Han River basin. Because the northern part of
the Han River basin is located in North Korea, where socioeconomic data are not available, 205 of these
unit sub-basins were analyzed with the proposed indicators, which will be detailed in the next section.
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Figure 1. Map of study area (Han River basin).

2.2. Indicator-Based Vulnerability Framework

This study used the IPCC-based vulnerability framework proposed in [25]. It suggests that the
vulnerability of any system at any scale reflects the exposure and sensitivity of that system to hazardous
conditions and the ability, capacity or resilience of the system to cope, adapt or recover from the effects
of those conditions. Differently from previous studies, this paper defines the exposure not only from
climate change and variability perspectives but also from environmental exposure such as pollution
sources for water quality. Exposure, sensitivity and adaptive capacity are briefly explained below.

• Exposure (E)—The anticipated frequency, magnitude and duration of potentially harmful events
is referred to as exposure. Since exposure generally only accounts for those risks that can be
quantified using probabilistic statistics, this concept introduces the prospect of overestimating
certainty in vulnerability assessments.

• Sensitivity (S)—Assuming a constant level of exposure, the vulnerability of a system may increase
or decrease with changes to the internal conditions. Such internal threshold changes represent
a capacity to cope that is referred to as sensitivity.
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• Adaptive capacity (AC)—Adaptive capacity represents the ability of a system to evolve and change
to reduce vulnerability, the nature of which depends on the degree to which unsafe conditions
have been transformed into harm or disaster by triggers.

Mathematically, vulnerability (V) can be defined as follows:

V = α× E + β× S− γ× AC, (1)

where α, β and γ are the weights of E, S and AC, respectively.
To assess climate exposure, sensitivity and the adaptive capacity of a system, key indicators or

proxy variables that quantify, measure and communicate relevant information must be identified for
use in the assessment or model [26]. These indicators should simplify or summarize a number of
important properties rather than focus on the isolated characteristics of the system. Indicators must be
measurable, or at least observable, and the methodology used to construct them should be transparent
and understandable [27,28].

This study consists of four steps, as shown in Figure 2. Step 1 is to select all available and
appropriate vulnerability indicators that objectively describe the hydrologic conditions. Step 2 is to
construct all sub-basins datasets for all the indicators. Step 3 is to derive the objective and subjective
weighting values using the entropy and Delphi methods, respectively. Step 4 is to quantify the
vulnerability of the quantity and quality of water using the TOPSIS method and the combined
weighting value sets with objective and subjective values.
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2.3. Subjective and Objective Weights

In a typical Multiple-Criteria Decision Making (MCDM) approach, the weights of the criteria
reflect their relative importance in the decision-making process, and weighting methods can be
grouped into subjective and objective methods [29]. Therefore, two representative weights are used
in this study: objective weights from the Shannon entropy method and subjective weights from the
Delphi method. Subjective methods determine weights based on the preferences or judgments of
the decision makers, whereas objective methods determine weights by solving mathematical models
without considering the decision makers’ preferences. It is noted in [30] that objective weighting is
particularly applicable if reliable subjective weights cannot be obtained.

In physics, the word “entropy” has important physical implications regarding the level of disorder
in a system [24]. The entropy associated with an event is a measurement of the degree of randomness
of the event. Entropy has also been used as a measurement of fuzziness. In the entropy-based
weighting approach, greater entropy values result in smaller entropy weights, smaller differences in
alternatives for a specific criterion, less information provided by a specific criterion and less importance
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associated with a criterion in the decision-making process. In this study, we use Shannon entropy-based
weights [29] in the objective weighting approach. Shannon entropy-based weights are determined
using Equations (2)–(4). For the MCDM problem with alternative Ai (i = 1, . . . , m) and criteria
Cj (j = 1, . . . , n), the best x+i and worst x−i values of all of the criteria functions are determined
according to the benefit and cost functions.

Then, the normalized performance can be calculated using Equation (2) [24].

rij =
xij − x−i
x+i − x−i

(2)

The entropy of the jth criterion is defined as follows:

Hj = −k∑m
i=1 fij ln fij, (3)

where fij = rij/ ∑m
i=1 rij and k = 1/ ln m. fij ln fij = 0 is also assumed when fij = 0. The entropy-based

weight of the jth criterion can be defined as follows:

Wj =
1− Hj

n−∑n
j=1Hj

, ∑n
j=1Wj = 1, (4)

where 0 ≤Wj ≤ 1.

2.4. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Approach

TOPSIS was developed to solve MCDM problems in which preference information is not available.
It is based on the concept that the ideal alternative provides the best values for all attributes, whereas the
negative ideal is the alternative that includes all of the worst attribute values. The chosen alternative
should have the “shortest distance” from the ideal solution and the “farthest distance” from the
“negative ideal”. A TOPSIS solution is defined as the alternative that is simultaneously farthest from
the negative ideal solution (NIS) and closest to the positive ideal solution (PIS) [22,31].

Given the normalized performance matrix in Equation (4), the weighted normalized value vij is
calculated as follows.

vij = Wj × rij, (5)

Then, the weighted normalized matrix V =
[
vij
]

m×n is constructed. Next, PIS A+ and NIS A−

are calculated as follows:

A+ =
(
v+1 , v+2 , . . . , v+n

)
& A− =

(
v−1 , v−2 , . . . , v−n

)
, (6)

where v+j = max
i

vij and v−j = min
i

vij.

Here, the PIS (NIS) for each criterion is the maximum (minimum) of weighted normalized
values regardless of benefit and cost criteria, as they are considered in the normalization process.
Then, the Euclidean distances of each alternative from PIS and NIS and the relative closeness RCi of
each alternative with respect to PIS are calculated as follows:

d+i =

√
∑n

j=1(vij − v+j )
2 & d−i =

√
∑n

j=1(vij − v−j )
2 (7)

RCi =
d−i

d+i + d−i
, (8)

where RCi ranges from 0 to 1. The larger the value is, the better the performance of the alternative.
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3. Water Quantity and Quality Simulations with Soil and Water Assessment Tool (SWAT)

The vulnerability assessment requires the indicator data to be simulated with the model,
and a detailed selection of indicator data will be presented in Section 4. This study uses the formulated
Soil and Water Assessment Tool (SWAT) model for the Han River basin. Because [26] extensively
documented model formation, calibration, and validation for the Han River basin, this study briefly
summarizes these processes below.

3.1. SWAT Formulation

The SWAT model requires spatial and meteorological data. The spatial data include a Digital
Elevation Model (DEM) and land use and soil maps. In this study (Figure 3), the Han River basin
was divided into 237 sub-basins and 1987 Hydrologic Response Units (HRUs) based on topography,
land use and soil texture. The 90 m Shuttle Radar Topography Mission (SRTM) DEM data are used
for topography. A watershed soil map from the Korea Rural Development Administration (RDA)
contained texture, depth and drainage attributes. It was rasterized to a 90 m grid size from a 1:25,000
scale vector map. A map of watershed land use from 2008 was obtained from the Korea Ministry of
Environment (ME). It included nine classes: coniferous forest, deciduous forest, mixed forest, paddy
rice, upland crop, urban, grassland, bare field and water. The dominant land use in the Han River
basin is forest (73%), followed by cultivated cropland in fertile lowland areas.
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Daily meteorological data over 31 years (from 1984 to 2014) were collected from 19 weather
stations operated by the Korea Meteorological Administration (KMA). The meteorological data include
daily precipitation, maximum and minimum temperature, relative humidity, wind speed and solar
radiation. Furthermore, the calibration and validation processes require hydrologic data such as dam
inflow, dam outflow, dam storage, evapotranspiration and soil moisture. We obtained daily dam inflow,
outflow and storage volume data for multipurpose dams from 2005 to 2014. We used data from three
water level stations (HSD, SYD and CJD) monitored by the Korea Water Resources Corporation and
one water level station (PDD) monitored by the Korea Hydro and Nuclear Power Co., Ltd. (Gyeongju,
North Gyeongsang, Korea). In addition, we obtained daily dam inflow, outflow and storage volume
data measured by three multifunction weirs (KCW, YJW and IPW) from 2012 to 2014. These weirs
were monitored by the Korea Water Resources Corporation and used for dam operation.

3.2. Calibration and Validation

The SWAT model was calibrated and validated in seven locations (HSD, SYD, CJD, PDD, KCW,
YJW and IPW) in the main river reaches. In the calibration, we used daily inflow and storage volume
data for the dams and weirs from 2005 to 2009. Then, validation was performed using data from
2010 to 2014.

In addition, the model was spatially calibrated and validated using evapotranspiration,
soil moisture and groundwater levels over five years (2009–2013). The dam inflow calibration
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at seven points was performed for the hydrologic cycle. The parameters are related to runoff,
evapotranspiration, soil moisture, interflow, groundwater and reservoir operation processes.
These parameters were calibrated by trial and error until sufficient model performance was achieved.
And then, 20 of the most influential parameters were selected for calibration (Table 1).

Table 1. Descriptions of calibrated parameters in Soil and Water Assessment Tool (SWAT) [32].

Parameter Definition Range
Adjusted Value (Average)

Dams Weirs

Surface runoff

CN2 SCS curve number for moisture conditions 35–98 +12.5 +7
CNCOEF Plant ET curve number coefficient 0.5–2 2 2
SURLAG Surface runoff lag coefficient 1–24 4 4

OV_N Manning’s “n” value for overland flow 0.01–30 0.14 0.14
CH_N(1) Manning’s “n” value for tributary channels 0.01–30 0.014 0.014

Evapotranspiration ESCO Soil evaporation compensation coefficient 0–1 0.9125 0.95

Soil water
SOL_AWC Available water capacity 0–1 0.135 0.14

SOL_K Saturated hydraulic conductivity (mm/hr) 0–2000 25.8 25.8

Ground water

GW_DELAY Delay time for aquifer recharge (days) 0–500 29 31

GWQMN Threshold water level in a shallow
aquifer for baseflow (mm) 0–5000 1375 1000

ALPHA_BF Baseflow recession constant 0–1 0.725 0.048

REVAPMN Threshold water level in a shallow
aquifer for “revap” (mm) 0–1000 750 750

GW_REVAP Groundwater “revap” coefficient 0.02–0.2 0.02 0.02

Reservoir

RES_ESA Reservoir surface area of the emergency
spillway (km2) - 48.25 4

RES_EVOL
Volume of water needed to fill the reservoir

storage Volume of the emergency
spillway (106 m3)

- 1495.25 13.667

RES_PSA Reservoir surface area of the
principal spillway (km2) - 43 3

RES_PVOL Reservoir storage volume of the
principal spillway (106 m3) - 1257.25 11.33

RES_VOL Initial reservoir volume (106 m3) - 674.75 9

RES_K Hydraulic conductivity of the
reservoir bottom (mm/hr) 0–1 0.2 0.3

EVRSV Lake evaporation coefficient 0–1 0.525 0.6

Figure 4 compares the observed and simulated daily dam inflow values at seven locations
(HSD, SYD, CJD, PDD, KCW, YJW and IPW) over the ten-year period (2005–2014). The observed
and simulated values agreed reasonably well at seven locations. The four multipurpose dams and
three multifunction weirs in the main reach of the Han River basin represent not only the significant
hydrological controls in the main reach but also major diversions of water resources for agricultural
and other activities. Therefore, optimizing the SWAT model for accurate prediction of the storage
volume of dams and weirs is important.

Two performance measures were used to evaluate how well the optimized parameters fit
observations based on the Nash-Sutcliffe coefficient (NSE) [33] and coefficient of determination (R2).
NSE and R2 values can range from 0 to 1, where 0 indicates no correspondence and 1 corresponds
to a perfect match between the simulations and observations. Reference [34] suggested that model
performance can be evaluated as “satisfactory” if NSE > 0.50. The average NSE values for the calibration
(2005–2009) and validation (2010–2014) periods were 0.59 at HSD, 0.78 at SYD, 0.61 at CJD, 0.80 at PDD,
0.79 at KCW, 0.77 at YJW and 0.88 at IPW. The statistical results associated with the daily dam inflow
and storage volume for model calibration and validation are summarized in Table 2.
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Table 2. Comparison of the calibration and validation results for dam inflow at calibration points [32].

Point
NSE R2

Cal. Val. Cal. Val.

HSD 0.61 0.57 0.82 0.84
SYD 0.78 0.78 0.90 0.89
CJD 0.63 0.58 0.81 0.74
PDD 0.83 0.76 0.92 0.88
KCW 0.78 0.79 0.90 0.63
YJW 0.77 0.76 0.91 0.62
IPW 0.81 0.95 0.93 0.59

Cal.: Calibration period (HSD, SYD, CJD and PDD: 2005–2009; KCW, YJW and IPW: 2013); Val.: Validation
period (HSD, SYD, CJD and PDD: 2010–2014; KCW, YJW and IPW: 2014).

4. Results

4.1. Selection of Vulnerability Indicators

In this step, the key indicators of two sectors of water resources, i.e., water quantity and water
quality, are identified based on the IPCC vulnerability concept. After a series of discussions with
researchers and civil servants, 16 key indicators of water quantity and 13 water quality indicators
were identified to quantify the vulnerability. Because these indicators were not determined objectively,
they were screened by a group of 16 experts, including hydrologists, water resource managers and
climate change experts.

For water quantity, the 16 key indicators were included, as shown in Table 3. For climate
and environmental exposure, effective precipitation, i.e., precipitation, actually added and stored
in the soil, simulated using the SWAT model was chosen to represent seasonal variations in water
availability in winter and spring (dry season in South Korea). Furthermore, the percentages of cropland
and impervious surface were selected to represent the stresses on the sub-basin environments with
higher runoff. For sensitivity, indicators that influenced the probability of damages due to water
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supply limitations were chosen, and for adaptive capacity, indicators representing the socioeconomic
capacity to cope with damages associated with water supply issues were selected. Indicators such as
the financial independence of the local government from the national government, number of civil
servants for water management, gross regional domestic product (GRDP) and the number of civil
servants related to water resources and the environment were used to represent the adaptive capacity
of the water resource systems.

Table 3. Descriptions of water quantity indicators.

Criteria Indicator Description Data Source Period

Exposure

Climate A1 Effective
precipitation (mm)

Amount of precipitation that is
actually added and stored

in the soil
SWAT simulated

Watershed
environment

A2 Cropland (%) Percentage of land on which
crops are grown

ME 2008

A3 Impervious
surfaces (%)

Percentage of urbanized area,
including impermeable areas

Sensitivity

Society
A4 Total population

(persons)
Total number of persons

inhabiting an area
WAMIS 2011

A5 Population density
(persons/km2)

A measurement of the population
per unit area

Water supply

A6 Water leakage
ratio (%)

Percentage of the amount of water
loss from the water supply system ME 2013

A7
Moderate water

use (m3/m3)

Ratio of water use
(sum of residential, industrial,

agricultural) to runoff
(can be used continuously)

WAMIS 2013

SWAT simulated

A8 Groundwater
levels (m)

Depth to the water table
from the surface MOLIT 2013

Water use

A9 Residential water
use (106 m3)

Total amount of water used in
water/non-water supply areas

and groundwater use

WAMIS 2011A10 Industrial water
use (106 m3)

Total amount of water used in
manufacturing and industry

A11 Agricultural water
use (106 m3)

Total amount of water used to
grow fresh produce and

sustain livestock

Adaptive
capacity

Water supply
A12 Waterworks

distribution rate (%)
Ratio of the population receiving

the waterworks supply
ME 2013

A13 Water reuse
(106 m3)

Amount of water reuse of treated
wastewater for beneficial purposes

Economy A14 Fiscal self-reliance
ratio (%)

Ratio of the local
government’s revenue to its
total revenue expenditure

MOI 2015

A15 GRDP (108 won) Gross regional domestic product KOSIS 2013

Governance A16

Number of officials
for water

management
(person/km2)

Number of officials
for water management

(Waterworks and Sewerage)
ME 2013

Simulated: SWAT modeling result; ME: Ministry of Environment; WAMIS: Water Management Information
System; MOLIT: Ministry of Land, Infrastructure and Transport; MOI: Ministry of the Interior; KOSIS: Korean
Statistical Information Service.

For water quality, 13 key indicators were considered, as shown in Table 4. The indicators for
climate and environmental exposure include climate-related indicators such as consecutive dry days
and heatwave days, as well as pollution-related indicators such as nitrogen and phosphorus loadings.
Here, climate-related indicators were chosen, as environmental phenomena such as heatwaves and
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droughts can potentially cause water quality problems. For sensitivity, the indicators were related to
the probability of water quality deterioration and mainly included indicators representing the pollutant
sources and transport. Except for the forest area ratio, all proxies for sensitivity were positively related
to vulnerability. The forested areas generally minimized surface runoff, soil erosion and sediment
transport and exhibited the highest resilience to climate change and variability. For adaptive capacity,
the indicators include indicators related to the socioeconomic aspects of coping with water quality
problems, such as the waterworks distribution ratio.

Table 4. Descriptions of water quality indicators.

Criteria Indicator Description Data Source Period

Exposure

Climate
B1 Consecutive dry

days (day)

Maximum number of
consecutive days with daily

precipitation <1 mm KMA 2010–2014

B2 Heatwave
days (day)

Number of days with maximum
temperature >33 ◦C

Pollution
sources

B3 Nitrogen loading
(kg/km2/day) Nitrogen pollutant load

KEI 2009–2011
B4 Phosphorus loading

(kg/km2/day) Phosphorus pollutant load

B5 Sediment loading
(g/m2·yr) Amount of potential soil loss

B6 BOD loading
(kg/km2/day) Biochemical oxygen demand

Sensitivity

Watershed
environment B7 Forest (%) Percentage of forest area ME 2008

Water supply
B8 Sewerage

distribution rate (%)
Percentage of the population

receiving sewerage system services ME 2013

B9 River water use (%)
Ratio of the annual water demand

to average annual runoff
MOLIT 2011

Simulated

Adaptive
capacity

Water supply B10 Waterworks
distribution rate (%)

Percentage of the population
receiving the waterworks supply ME 2013

Economy
B11 Fiscal self-reliance

ratio (%)

Ratio of the local government’s
revenue to its total

revenue expenditure
MOI 2015

B12 GRDP (108 won) Gross regional domestic product KOSIS 2013

Governance B13

Number of officials
for water

management
(person/km2)

Number of officials
for water management

(Waterworks and Sewerage)
ME 2013

KMA: Korea Meteorological Administration; KEI: Korea Environment Institute; ME: Ministry of Environment;
WAMIS: Water Management Information System; MOLIT: Ministry of Land, Infrastructure and Transport;
Simulated: SWAT modeling result; MOI: Ministry of the Interior; KOSIS: Korean Statistical Information Service

4.2. Collection and Standardization of Indicator Data

The indicators identified in Section 4.1 were collected from various sources, as shown in Tables 3
and 4. The indicators of social and economic factors were based on statistical data from country reports
at administrative district scale. As introduced in Section 3, the hydrologic data such as runoff and
water quality were obtained from the SWAT simulation results.

The values of the selected indicators cannot be directly compared because of their different
units. Therefore, values of indicators were individually normalized, as shown in Figures 5 and 6.
According to their distributions, the raw data were logarithmically transformed. Then we performed
min-max normalization for each indicator. The lists of log-transformed indicators are shown in
Tables 3 and 4. The vulnerability was calculated according to standardized indicators based on the
maximum vulnerability (1.0).
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For quantity indicators, total population and water use were concentrated in the metropolitan area.
Additionally, the waterworks distribution rate for the entire watershed was generally high, but the
water leakage ratio was high in mountainous areas (Figure 5). For the water quality, total watershed
except the mountainous area had high value of consecutive dry days and heatwave days. Moreover,
the pollutants are the cause of major water quality degradation, and the pollutant loads were higher at
downstream than upstream (Figure 6).
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4.3. Derivation of Objective and Subjective Weights

The weighting factors for key indicators and vulnerability components were determined using
two approaches: expert survey and entropy-based estimation of subjective and objective weights.
For the subjective weights, we conducted expert surveys and estimated the average weight of each
indicator (Figure 7). The distributions of weights for each indicator show variable patterns; in some
cases, weights are distributed around the mode, but in other cases, weights are divided into two
extremes. Many experts noted the importance of effective precipitation to the water quantity and the
forest ratio to the water quality.
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For the objective weights, the Shannon entropy-based method was employed to estimate the
weights using the indicator data and no expert opinions. Based on the entropy concept, all indicators
of exposure and groundwater level were found to be relatively important factors for water quantity
vulnerability. For water quality vulnerability, the percentage of forest and phosphorus loading were
determined to be relatively important proxies.

4.4. Water Resource Vulnerability Using Integrated Weighting Values

For each normalized index, subjective and objective weight data were used in TOPSIS techniques
to incorporate all indicators according to the water quantity and quality. The vulnerability indices of
all sub-basins were calculated, and their rankings were compared, as shown in Figure 8. The rankings
of water quantity vulnerability in the downstream area of R3 show relatively similar distribution
differences in some basins, including in R2, based on the weighting method. The most vulnerable
basins are located in the upstream regions of R2 and R3, which have high water leakage ratios and
water use. High adaptive capacity in metropolitan areas, such as the high waterworks distribution
rate (Figure 5, A12), exhibited low vulnerability. In addition, effective rainfall (Figure 5, A1) can be
advantageous for the utilization of water in some areas, such as R3.
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(b) water quality.

The rankings of water quality vulnerability exhibited differences that were similar to those of the
quantity vulnerability ranking based on the weighting method, and most differences were observed in
metropolitan areas. The subjective weights yielded higher vulnerability in metropolitan areas, except
in Seoul, where the objective weights displayed conflicting results based on the weighting method.
In some areas, vulnerabilities were highest in metropolitan areas, including in Seoul, as shown in
Figure 8. Thus, it was confirmed that metropolitan areas were the most vulnerable.

The middle Han River basin experienced numerous periods of consecutive dry days (Figure 6, B1)
with high maximum temperatures, which can cause water quality degradation and ecosystem
deterioration. Additionally, relatively high contaminant loads were observed, as shown in Figure 6
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(B3–B6). The high rate of forested area in some sub-basins, such as in the upstream regions of R2
and R3, or low river water utilization, led to low vulnerability in areas of high water penetration.
In addition, the results clearly indicate that all indicators of exposure and groundwater level are
relatively important factors associated with water quantity vulnerability.

Table 4 shows the climate-related indicators of environmental phenomena such as heatwaves and
droughts, and these indicators could potentially cause water quality problems. In the case of sensitivity,
the indicators were related to the potential for water quality deterioration, mainly including indicators
representing the pollutant sources and transport, as shown in Table 4. As expected, forested areas
minimized surface runoff, soil erosion and sediment transport and exhibited the highest resilience to
climate change and variability.

Figure 9 is divided into four different results from four different sub-regions of R1, R2, R3 and R4.
The water quantity sector shows the difference index based on the weight, and R4 has higher maximum
difference in the exposure index than in adaptive capacity index. That means the R4 region has lower
vulnerability than R1–R3. The subjective weights have higher exposure and sensitivity index values
compared to those of the objective weights. Regardless of the weighting methods, R2 shows a higher
vulnerability associated with water quantity compared to that in R4. The water quality exhibits
different results depending on the basin. The adaptive capacity index is highest in R4. Additionally,
the sensitivity and adaptive capacity index values are low compared to those in other basins. In terms
of the ranking of water quality vulnerability, R2 has the highest based on the subjective weights,
whereas R4 has the highest based on the objective weights.
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4.5. Vulnerability Correlation of the Weighting Method

We calculated the Spearman correlation coefficient of water resource vulnerability in accordance
with the results of the two weighting methods. Table 5 shows the rank correlation of the weighting
methods in different sub-regions. The water quantity vulnerabilities exhibited relatively similar
distributions, with a rank correlation estimate of 0.80 in average. However, the water quality
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vulnerabilities exhibited relatively low correlation compared to that of the water quantity, with a value
of 0.51 in average. In the case of assessing the water quality vulnerability based on the entropy
weights, the sensitivity index was highly weighted. The large difference between the indicator values
is reflected by the exposure and sensitivity classification values with low correlation. In addition,
the water quantity vulnerability difference between the two weighting methods was larger than that
for water quantity. The weights of approximately half of the sub-basins exhibited low correlations,
reflecting relatively large differences.

Table 5. Rank correlation analysis of weighting methods.

Classification R1 R2 R3 R4

Water quantity 0.89 0.59 0.30 0.81
Water quality 0.43 0.56 0.79 −0.01

5. Conclusions

This study evaluated the vulnerabilities associated with water quantity and quality in the Han
River basin. We collected environmental and socioeconomic data from the national statistics database
and used the Soil and Water Assessment Tool (SWAT) model to simulate water quantity and quality
data. To estimate the weights of all indicators, expert surveys and the Shannon’s entropy method
were used to determine subjective and objective weights, respectively. By comparing the vulnerability
rankings and analyzing the rank correlation between the two methods, we evaluated the integrated
hydrologic vulnerabilities of the Han River basin. In terms of water quantity, vulnerable sub-basins
exhibited high water use and high water leakage ratios. For water quality, vulnerable sub-basins
showed relatively high values of maximum consecutive dry days and temperature.

The water quantity indices from both weighting methods showed relatively similar spatial
distributions, but the distribution of water quality indices was distinct based on the weighting methods.
The water quantity vulnerability rankings with two weighting methods showed some differences
between basins, and the rank correlation estimate was 0.80. Also, the correlation estimate for the
water quality vulnerability was 0.51, which is significantly lower than the water quantity vulnerability.
This result suggests that considering different weighting methods is important for reliably assessing
robust water resource vulnerability.

This study provides useful information for water managers, hydrologists and environmentalists
by suggesting the critical factors that should receive more focus in order to improve sustainable water
management. These will help society better adapt to changes in climate or water quantity/quality in
watersheds through development of strategies to be implemented in vulnerable areas. In addition,
this study could be further applied to estimating vulnerabilities in future socioeconomic, environmental
and climate scenarios. Furthermore, this study points out the importance of considering both
stakeholders’ opinions and data-driven factors for a robust decision-making process. However,
these approaches do not necessarily have to be implemented in parallel as presented in this
study; rather, they could be implemented successively throughout the decision-making process:
i.e., the stakeholders’ opinions could play a crucial role in a preliminary stage of project evaluation
before utilizing the data-driven factors.
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