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Abstract: Extreme weather can have negative impacts on crop production. In this study, we
statistically estimate the impacts of dry days, heat waves, and cold days on maize yield based
on household survey data from 1993 to 2011 in ten villages of Shanxi province, China. Our results
show that dry days, heat waves, and cold days have negative effects on maize yield, although these
effects are marginal if these extreme events do not increase dramatically. Specifically, a one percent
increase in extreme-heat-degree-days and consecutive-dry-days results in a maize yield declines of
0.2% and 0.07%, respectively. Maize yield also is reduced by 0.3% for cold days occurring during the
growing season from May to September. However, these extreme events can increase dramatically in
a warmer world and result in considerable reduction in maize yields. If all the historical temperatures
in the villages are shifted up by 2 degrees Celsius, total impacts of these extreme events would lead to
a reduction of maize yield by over 30 percent. The impacts may be underestimated since we did not
exclude the offset effect of adaptation measures adopted by farmers to combat these extreme events.

Keywords: agriculture; climate change; consecutive dry days; heat waves; degree days; food security

1. Introduction

Extreme weather events are expected to be more frequent because of global warming [1] with
negative impacts on crop yield and threats to food security [2]. Recent studies have focused on extreme
heat effect on crop yield (e.g., [3–6]). In this study, we statistically estimate the impact of extreme
weather, including dry days, heat, and cold days, on maize yield based on household survey data from
1993 to 2011 in ten villages evenly spread out in Shanxi province, China.

Previous statistical studies on climate change impact on crop yield in China have explored
impact of air temperature and precipitation on crop yield based on provincial panel data (e.g., [7,8]).
These studies did not estimate extreme weather impact on crop yield since the extreme weather events
always took place in a smaller area within a province of China and have trivial impacts on provincial
crop production. In a specific year, extreme weather events may damage crop production in one area
of a province while good weather helps the crop production in another area of the same province.
Hence, the impact of extreme weather events is unlikely to be observed at the provincial level. As such,
it seems more suitable to analyze the impact of extreme weather based on several smaller scale data.
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This study adopts household data from ten villages from the Shanxi province of China.
The household-level data allow for marked improvement of the significance of our estimated
parameters since each household is a yearly observation in a village where the weather condition
is the same in a given year. The heterogeneity of household characteristics and operation patterns
can provide additional information in order to identify the impact of climate variables, especially for
extreme weather events. If instead we adopt mean yearly maize yield and land area at the village
level, the statistical significance of estimated parameters is reduced due to the missing information
associated with household observations.

In this study, we use degree days (or heat units), which are calculated from daily maximum and
minimum temperatures, since degree days are considered a better indicator of temperature for crop
production (e.g., [9]). The role of extreme-heat-degree-days for crop production has been recognized
by some statistical studies on regions other than China (e.g., [5,6,10]). To our knowledge, no previous
study has explored the issue for China. Hence, this study will provide evidence on the issue based
on household level data in Shanxi. Moreover, we consider simultaneously the impacts of extreme
cold days and consecutive dry days (Box 2.4, Chaper 2, [11]) on crop production. In China, among
the three main cereal crops of wheat, rice, and maize, maize production is the most sensitive one to
climate change, and Shanxi is one of the provinces where maize production is the most vulnerable
to climate change among the three crops [12,13]. Hence, we explore the case of maize production in
Shanxi province in this study.

We organize the remainder of the paper as follows. The next section describes the study regions,
data, and methodology. Section 3 reports the results estimated from statistical regression models and
offers a discussion on issues related to the main results. The last section concludes the paper.

2. Material and Methods

2.1. Study Regions

The study region is ten villages evenly located in Shanxi province of North China between latitude
34◦34′–40◦44′ north and longitude 110◦15′–114◦32′ east (Figure 1). In 2013, the rural population
accounts for 47.4% of the total population of 36.3 million in Shanxi [14]. The provincial economy with
coal extraction as a major industry has been growing at a lower rate than the national economy over
the last three decades. However, in 2013, per capita income in Shanxi was still slightly above 80% of
the average in China [14]. Maize is the major cereal crop in Shanxi province. In 2015, Shanxi produced
8.6 million tons of maize from 1.677 million ha land [15].

The climate in Shanxi is continental monsoon with most of the rainfall occurring in the summer.
The province lies largely within the Loess Plateau. The Loess soils are still fertile and suitable for
agricultural production [16] although the soils are vulnerable to wind and water erosion [17], leading
to damages to agricultural production during at least 3000 years of history [18]. The main cereal crops
are winter wheat and maize [19]. According to our data, maize is the major crop in the ten villages
included in this study (Figure 1). On average, the households planted maize on 85% of their cropland
during 2011. Heat waves and droughts are considered the main extreme weather events in the area.
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Figure 1. Distribution of the ten villages in Shanxi province of China. 

2.2. Data 

Data on maize production was collected annually through a household survey in the ten villages 
from 1993 to 2011, and was conducted by the Office of China Rural Fixed Observation Points 
(CRFOP), Ministry of Agriculture, China. Since 1984, CRFOP has operated a longitudinal survey 
system and recruited local villagers to survey rural households annually on their economic activities. 
The survey system covered about 350 villages in 30 provinces in 2012. In this study, we utilized the 
data for Shanxi province in the surveys from 1993 to 2011 since maize production data are not 
included in the surveys before 1993.  

Climate data on temperature and precipitation are collected at 756 ground-based meteorological 
stations distributed throughout China (of which 19 are in Shanxi Province) by the China 
Meteorological Administration (http://data.cma.gov.cn). We estimated the daily village climate data 
using an algorithm presented by Thornton, Running, and White [20] that interpolated the climate 
data based on the observations from the closest meteorological station to each of the ten villages. The 
interpolated climate has been published in former studies (e.g., [21]). Based on the village climate 
data, we calculated degree days (DD) during the maize growing months from May to September. 
Following Matthews and Hunt [22], hourly temperature ( ௛ܶ) is expressed by a cosinusoidal function 
assuming the maximum temperature occurs at 14:00, 

௛ܶ = ௠ܶ௜௡ + ௠ܶ௔௫2 + ௠ܶ௔௫ − ௠ܶ௜௡2 cosሺ 12ߨ ሺℎ − 14ሻሻ (1) 

where ௠ܶ௜௡ and ௠ܶ௔௫ are minimum and maximum daily temperatures, respectively; and ℎ is time of 
day taking integers from 1 to 24. 

Moderate degree days (MDD) are calculated as the sum of degree days above the lower 
threshold temperature of 8 °C [23] and below the upper threshold temperature of 29 °C [10,24]. In 
mathematical form, MDD can be expressed by  ܦܦܯ =෍ ෍ ௛ଶସ௛ୀଵଵହଷௗୀଵܦܦ , ௛ܦܦ	݁ݎℎ݁ݓ = ቊ0 ݂݅ ௛ܶ < ௟ܶ௢௪ ݎ݋ ௛ܶ ≥ ௨ܶ௣௣ሺ ௛ܶ − ௟ܶ௢௪ሻ/24 ݂݅ ௟ܶ௢௪ ൑ ௛ܶ < ௨ܶ௣௣													 (2) 

where ܦܦ௛ is hourly degree days within a day; ݀ is a day during maize growing months; and ௟ܶ௢௪ 
and ௨ܶ௣௣ are the lower and upper threshold temperatures, respectively. 

Temperatures above the upper threshold can lead to considerable damage to maize growth 
according to [3,5]. These extreme temperatures are represented by extreme heat degree days (EHDD), 

Figure 1. Distribution of the ten villages in Shanxi province of China.

2.2. Data

Data on maize production was collected annually through a household survey in the ten villages
from 1993 to 2011, and was conducted by the Office of China Rural Fixed Observation Points (CRFOP),
Ministry of Agriculture, China. Since 1984, CRFOP has operated a longitudinal survey system and
recruited local villagers to survey rural households annually on their economic activities. The survey
system covered about 350 villages in 30 provinces in 2012. In this study, we utilized the data for Shanxi
province in the surveys from 1993 to 2011 since maize production data are not included in the surveys
before 1993.

Climate data on temperature and precipitation are collected at 756 ground-based meteorological
stations distributed throughout China (of which 19 are in Shanxi Province) by the China Meteorological
Administration (http://data.cma.gov.cn). We estimated the daily village climate data using an
algorithm presented by Thornton, Running, and White [20] that interpolated the climate data
based on the observations from the closest meteorological station to each of the ten villages.
The interpolated climate has been published in former studies (e.g., [21]). Based on the village climate
data, we calculated degree days (DD) during the maize growing months from May to September.
Following Matthews and Hunt [22], hourly temperature (Th) is expressed by a cosinusoidal function
assuming the maximum temperature occurs at 14:00,

Th =
Tmin + Tmax

2
+

Tmax − Tmin
2

cos (
π

12
(h− 14)) (1)

where Tmin and Tmax are minimum and maximum daily temperatures, respectively; and h is time of
day taking integers from 1 to 24.

Moderate degree days (MDD) are calculated as the sum of degree days above the lower threshold
temperature of 8 ◦C [23] and below the upper threshold temperature of 29 ◦C [10,24]. In mathematical
form, MDD can be expressed by

MDD = ∑153
d=1∑

24
h=1DDh, where DDh =

{
0 i f Th < Tlow or Th ≥ Tupp

(Th − Tlow)/24 i f Tlow ≤ Th < Tupp
(2)

where DDh is hourly degree days within a day; d is a day during maize growing months; and Tlow and
Tupp are the lower and upper threshold temperatures, respectively.

http://data.cma.gov.cn
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Temperatures above the upper threshold can lead to considerable damage to maize growth
according to [3,5]. These extreme temperatures are represented by extreme heat degree days (EHDD),

EHDD = ∑153
d=1∑

24
h=1DDh, where DDh =

{
0 i f Th < Tupp

(Th − Tupp)/24 i f Th ≥ Tupp
(3)

Notice that hourly degree days (DDh) are calculated differently from that for MDD.
To consider the role of temperatures below the lower threshold, we calculated extreme cold degree

days (ECDD), which are always negative,

ECDD = ∑153
d=1∑

24
h=1DDh, where DDh =

{
0 i f Th ≥ Tlow
(Th − Tlow)/24 i f Th < Tlow

(4)

Since our model specifications are double-log, we introduce a dummy variable to represent
whether extreme cold days occurred during maize growing seasons,

COLD =

{
0 i f ECDD = 0
1 i f ECDD < 0

(5)

Besides temperature variables, we also considered the role of precipitation, with a particular focus
on consecutive dry days (Box 2.4, Chaper 2, [11]), which is calculated as the maximum number of
consecutive days with daily precipitation less than one millimeter (mm). All the variable definitions
and descriptive statistics are summarized in Table 1. Figure 2 presents the variability of maize yield (a)
and EHDDs (b) during the period from 1993 to 2011.

Table 1. Variable definitions and descriptive statistics.

Variable Definition Sample Size Mean Std. Dev. Min Max

Y Maize yield of a household (kg/mu) 12,354 404.3 188.2 2.5 1176.5

LAND Sown land for maize of a household
(mu, i.e., 1/15 ha) 12,354 4.1 5.7 0.1 480.0

Degree days (DD) from May to September (◦C-days)

EHDD Extreme heat degree days 12,354 14.8 14.7 0.1 141.1

MDD Moderate degree days 12,354 1620.4 82.2 1326.2 1788.4

ECDD Extreme cold degree days 12,354 −6.4 7.9 −49.1 0.0

COLD Dummy of extreme cold days 12,354 0.9836 0.1271 0 1

GDD Growing degree days 12,354 1789.7 158.6 1331.5 2406.4

Precipitation variables from May to September

DRY

Consecutive dry days, i.e., the
maximum number of consecutive

days when daily precipitation is less
than one millimeter (days)

12,354 17.0 5.2 8.0 45.0

PRCP Total precipitation (mm) 12,354 383.8 90.4 175.7 626.3

Notes: In the data, we have 12,354 valid observations excluding 1994 when the household survey was
not conducted. Over time, changes in households in a village lead to differences in yearly observations.
Sources: Maize production data are obtained from household surveys 1993–2011 organized by the Office of
China Rural Fixed Observation Points at the Ministry of Agriculture (see http://www.rcre.moa.gov.cn/jizn/
jgsz/ncgdgcd/ for a Chinese introduction of the office: Nongcun Guding Guanchadian). Climate data are
collected from China Meteorological Administration.

http://www.rcre.moa.gov.cn/jizn/jgsz/ncgdgcd/
http://www.rcre.moa.gov.cn/jizn/jgsz/ncgdgcd/
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Figure 2. Variability of maize yield (a) and extreme heat degree days (EHDDs) (b) in Shanxi province 
of China during the period from 1993 to 2011. 

2.3. Statistical Methods 

In this study, we statistically estimated the following model of maize yield, 
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where ௜ܻ௧ is maize yield of household ݅ in time ݐ. Independent variables include three variables of 
degree days during maize growing season: extreme heat degree days (EHDD), a dummy of extreme 
cold degree days (COLD, 0 if no extreme cold days during maize growing seasons), and moderate 
degree days (MDD); two variables of precipitation during maize growing season: consecutive dry 
days (DRY) and total precipitation (PRCP); land sown for maize (LAND); village-specific dummies 
to capture unobservable time-invariant village characteristics (߱௩) such as soil type and other village-
specific production conditions; time-specific dummies to capture non-linear time trends (∅௧); and ߝ௜௧ 
is the contemporaneous additive error term.  

Following Wei et al. [8], we adopted a double-log specification in our regressions such that 
estimated coefficients can be interpreted as elasticities, measuring proportional responsiveness of 
maize yield to changes in corresponding independent variables. To capture potential non-linear 
effects of independent variables, we estimated other models by including squared terms for 
independent variables. With these specifications, elasticities are not constant and must be calculated 
for a specific value of an independent variable. Hausman [25] tests were utilized to determine 
whether the village- and time-specific effects should be considered fixed or random. For all our 
regressions, the tests fit the fixed effects model. 

In the nonlinear case of Model 2 presented below, the elasticity is associated with a given value 
of a climate variable and only indicates the direction and possible impact on maize yield when the 
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Figure 2. Variability of maize yield (a) and extreme heat degree days (EHDDs) (b) in Shanxi province
of China during the period from 1993 to 2011.

2.3. Statistical Methods

In this study, we statistically estimated the following model of maize yield,

Yit = β1EHDDvt + β2COLDvt + β3DRYvt + β4MDDvt + β5PRCPvt + β6LANDit + ωv + ∅t + εit, (6)

where Yit is maize yield of household i in time t. Independent variables include three variables of
degree days during maize growing season: extreme heat degree days (EHDD), a dummy of extreme
cold degree days (COLD, 0 if no extreme cold days during maize growing seasons), and moderate
degree days (MDD); two variables of precipitation during maize growing season: consecutive dry days
(DRY) and total precipitation (PRCP); land sown for maize (LAND); village-specific dummies to capture
unobservable time-invariant village characteristics (ωv) such as soil type and other village-specific
production conditions; time-specific dummies to capture non-linear time trends (∅t); and εit is the
contemporaneous additive error term.

Following Wei et al. [8], we adopted a double-log specification in our regressions such that estimated
coefficients can be interpreted as elasticities, measuring proportional responsiveness of maize yield to
changes in corresponding independent variables. To capture potential non-linear effects of independent
variables, we estimated other models by including squared terms for independent variables. With these
specifications, elasticities are not constant and must be calculated for a specific value of an independent
variable. Hausman [25] tests were utilized to determine whether the village- and time-specific effects
should be considered fixed or random. For all our regressions, the tests fit the fixed effects model.

In the nonlinear case of Model 2 presented below, the elasticity is associated with a given value
of a climate variable and only indicates the direction and possible impact on maize yield when the
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variable changes marginally. To estimate impact on maize yield when a climate variable changes
considerably, we adopted the estimated parameters of Model 2 to derive the average maize yield for
all the ten villages from 1993–2011 in logarithm form

lnY = α+ ∑C[β11lnC + β12(lnC)2] + β2COLD (7)

where C represents the climate variables including EHDD, MDD, DRY, and PRCP; and β11 and β12 are
corresponding parameters estimated in Table 2.

Table 2. Estimates for Models of Maize Yields in Shanxi based on data 1993–2011.

Model 1 Model 2 Model 3

EHDD −0.0688 *** −0.0271 * −0.0266 *
(0.00858) (0.0128) (0.0128)

EHDD squared −0.0284 *** −0.0286 ***
(0.00337) (0.00338)

MDD 1.841 *** 65.94 ** 66.04 **
(0.204) (21.68) (21.68)

MDD squared −4.457 ** −4.466 **
(1.472) (1.472)

COLD −0.320 *** −0.299 *** −0.297 ***
(0.0711) (0.0712) (0.0712)

DRY −0.103 *** 0.544 * 0.546 *
(0.0206) (0.222) (0.222)

DRY squared −0.108 ** −0.108 **
(0.0388) (0.0388)

PRCP 0.311 *** 3.724 *** 3.707 ***
(0.0372) (0.938) (0.938)

PRCP squared −0.299 *** −0.297 ***
(0.0791) (0.0791)

LAND −0.0498 *** −0.0552 *** −0.0666 ***
(0.00612) (0.00614) (0.0107)

LAND squared 0.00555
(0.00425)

Constant −8.154 *** −249.2 ** −249.4 **
(1.563) (80.41) (80.41)

Fixed village effects Yes Yes Yes
Fixed time effects Yes Yes Yes

Observations 12354 12354 12354
R2 0.597 0.602 0.602

Adjusted R2 0.596 0.601 0.601
NRMSE 0.438 0.435 0.435

Notes: The dependent variable is maize yield (kg per mu, 1/15 ha). All parameters are estimated by ordinary
least squares (OLS) regression where the dependent variable and independent variables excluding dummies
are taken in their logarithm forms. Standard deviations are reported in parentheses. * p < 0.05, ** p < 0.01,
*** p < 0.001. NRMSE refers to normalized root-mean-square error. Sources: Maize production data are obtained
from household surveys from 1993–2011 organized by the Office of China Rural Fixed Observation Points at the
Ministry of Agriculture (see http://www.rcre.moa.gov.cn/jizn/jgsz/ncgdgcd/ for a Chinese introduction of the
office: Nongcun Guding Guanchadian). Climate data are collected from China Meteorological Administration.

http://www.rcre.moa.gov.cn/jizn/jgsz/ncgdgcd/
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In the results reported in Section 3.1, we did not consider labor inputs as one independent variable
since our data did not separate labor input of a household into maize production for the whole
period. In addition, previous studies have shown its insignificant effect on crop yield due to labor
surplus in rural China (e.g., [7,8,26]). We introduced fixed capital as an independent variable in the
regressions, but obtained insignificant estimates of the effect while trivial disturbance on estimates of
other parameters appeared in the regressions. Hence, we did not report these results in this study.

The above model is based on a data-driven approach. Compared with other statistical models
that include only mean growing season temperature or precipitation, our model includes many climate
extreme variables such as EHDD, COLD, and DRY, which were used to capture the extreme climate
signals. When compared with process-based crop models, our model needs much less exogenous
parameters. A process-based model requires many parameters that we cannot provide at the regional
level, for example, crop cultivars are unknown. This constrains the use of process-based model on the
regional scale.

3. Results and Discussion

3.1. Estimated Parameters

The estimated main results are shown in Table 2. Model 1 is linear in independent variables and
the other two models consider additional squared terms of independent variables. Model 3 differs
from Model 2 by adding the squared term of land sown for maize. The fitness of these three models is
almost similar as indicated by adjusted R2 (~0.6) and normalized root-mean-square error (NRMSE
~0.436). Model 2 is the most suitable model since it captures the non-linear effects of independent
variables and excludes the squared land term whose parameter is statistically insignificant, as shown
by Model 3, although there is no statistical difference between Models 2 and 3. In all the three models
in Table 2, the estimated parameters for climate variables are statistically significant at the 5% level
at the very least. In the linear Model 1, they are all significant at the 0.1% level, indicating the strong
effects of temperature and precipitation on maize yield.

We also calculated the elasticities of climate variables for Models 1 and 2 in Table 3. The elasticities
for Model 2 are calculated at the means of the independent variables and may differ considerably
if the independent variables deviate from their means. Hence, these elasticities are only valid
in a small range around the means of the independent variables. The elasticities for the linear
Model 1 are reported in Table 3 in order to highlight their differences from the elasticities of Model 2.
In comparison with Model 2, the linear Model 1 tends to underestimate the negative effect of
extreme-heat-degree-days, overestimate the negative effect of consecutive dry days, and overestimate
the effects of moderate-degree-days and total precipitation.

Table 3. Estimates of elasticities for the means of climate variables.

Model 1 Model 2

EHDD −0.0688 −0.180
MDD 1.841 0.0617
DRY −0.103 −0.068

PRCP 0.311 0.166

Our results confirm the negative effect of Extreme heat (EHDD) on maize yield. The marginal
negative effect increases with additional EHDD according to non-linear specification of Model 2.
The elasticities in Table 3 indicate that a one-percent change in EHDD leads to 0.18 percent decrease in
maize yield according to Model 2, respectively. As the average EHDD is around 15 degree-days, these
results imply that one additional EHDD can result in 1.2 percent decreases in maize yield. Figure 3
illustrates how maize yield is affected by changes in EHDD.
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Figure 3. The effect on maize yield of extreme heat degree days (EHDD) based on Model 2. The 
triangle point corresponds roughly to the average case from 1993 to 2011 while the diamond point 
represents approximately the case where all temperatures from 1993 to 2011 were increased by 2 °C. 

By contrast, the moderate degree days (MDD) have a positive effect on maize yield. At the mean 
of MDD, a one-percent change in MDD, or an additional 16 degree-days, can increase maize 
production by 0.06 percent according to Model 2. The positive effect diminishes with additional 
MDD. This is understandable, since the additional MDD can come only from higher temperatures in 
certain days of a limited number of days during the maize growing seasons. The negative effect of 
extreme hot days (EHDD) seems a natural continuation of the diminishing effect of growing degree 
days (GDD). The occurrence of extreme cold degree days (ECDD) can reduce maize yield. In all the 
three models, maize yield with occurrence of ECDD is around 0.3 percent lower than that without 
ECDD according to the estimated parameter for COLD in Table 2. 

Dry days reduce maize yield in Shanxi and the negative effect enhances with more dry days. 
According to Model 2, a one percent change in dry days (DRY) can reduce maize yield by 0.062 
percent on average. In other words, an additional dry-day from the mean can reduce maize yield by 
0.36 percent. By contrast, more precipitation improves maize production although the positive effect 
is diminishing with additional precipitation (PRCP). A one-percent increase in precipitation, or 
around 4 mm additional rainfall, increases maize yield by 0.17 percent at the mean case according to 
Model 2. 

We include only one non-climatic variable, namely land area sown for maize. Our results show 
that more land area is accompanied with less maize yield since marginal productivity of land is 
diminishing.  

3.2. Impact When Temperature Increases 

It seems that these extreme weather events have limited negative impacts on maize production, 
and, as such, that we do not need to worry about overall maize production. However, the impacts 
considered in Subsection 3.1 are marginal assuming small deviations of climate variables from the 
original ones. In a warming world, extreme weather events may increase dramatically even if the 
temperature increases slightly. For example, if all the temperatures in our dataset increase by 2 °C, 
extreme weather events may appear more frequently than expected. 

3.2.1. Heat Waves and Extreme Cold Days 
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temperatures can lead to dramatic increases in heat waves (e.g., nearly triple of the frequency of 
historical high waves). Although the marginal impact of heat waves on maize yield is small, the 

Figure 3. The effect on maize yield of extreme heat degree days (EHDD) based on Model 2. The triangle
point corresponds roughly to the average case from 1993 to 2011 while the diamond point represents
approximately the case where all temperatures from 1993 to 2011 were increased by 2 ◦C.

By contrast, the moderate degree days (MDD) have a positive effect on maize yield. At the mean
of MDD, a one-percent change in MDD, or an additional 16 degree-days, can increase maize production
by 0.06 percent according to Model 2. The positive effect diminishes with additional MDD. This is
understandable, since the additional MDD can come only from higher temperatures in certain days
of a limited number of days during the maize growing seasons. The negative effect of extreme hot
days (EHDD) seems a natural continuation of the diminishing effect of growing degree days (GDD).
The occurrence of extreme cold degree days (ECDD) can reduce maize yield. In all the three models,
maize yield with occurrence of ECDD is around 0.3 percent lower than that without ECDD according
to the estimated parameter for COLD in Table 2.

Dry days reduce maize yield in Shanxi and the negative effect enhances with more dry days.
According to Model 2, a one percent change in dry days (DRY) can reduce maize yield by 0.062 percent
on average. In other words, an additional dry-day from the mean can reduce maize yield by
0.36 percent. By contrast, more precipitation improves maize production although the positive effect is
diminishing with additional precipitation (PRCP). A one-percent increase in precipitation, or around
4 mm additional rainfall, increases maize yield by 0.17 percent at the mean case according to Model 2.

We include only one non-climatic variable, namely land area sown for maize. Our results
show that more land area is accompanied with less maize yield since marginal productivity of land
is diminishing.

3.2. Impact When Temperature Increases

It seems that these extreme weather events have limited negative impacts on maize production,
and, as such, that we do not need to worry about overall maize production. However, the impacts
considered in Subsection 3.1 are marginal assuming small deviations of climate variables from the
original ones. In a warming world, extreme weather events may increase dramatically even if the
temperature increases slightly. For example, if all the temperatures in our dataset increase by 2 ◦C,
extreme weather events may appear more frequently than expected.

3.2.1. Heat Waves and Extreme Cold Days

If all the temperatures are assumed to increase by 2 ◦C, then all the temperatures above 27 ◦C
in the historical data would move from the calculation of MDDs to be an additional part of EHDDs.
On average, a two-degree increase in temperature implies an additional 25 EHDDs, or nearly
170 percent of the historical mean EHDDs in our dataset from 1993 to 2011. This implies that the
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increase in temperatures can lead to dramatic increases in heat waves (e.g., nearly triple of the frequency
of historical high waves). Although the marginal impact of heat waves on maize yield is small, the
dramatic increase in heat waves can considerably damage maize production. Based on Equation (7),
a two-degree increase in temperature would lead to an 18.5 percent decrease in maize yield if we
consider the change in EHDDs alone.

The increase in EHDDs also means a trivial decrease in MDD (e.g., about 1.5 percent decrease in
MDD), which leads to a reduction of maize yield by only 0.2 percent. When temperature increases,
the occurrence of extreme cold days decrease by 8.9 percent which increases maize production by
2.6 percent. The impacts of changes in both MDD and extreme cold days are positive, although small.

3.2.2. Consecutive Dry Days

It is hard to tell how the frequency of the consecutive-dry-days events might occur in the case of a
2 ◦C increase in temperatures. However, as shown by the RCP8.5 experiment in the Coupled Model
Intercomparison Project phase 5 (CMIP5) model ensemble [27], the uncertainties concerning regional
precipitation are much larger than the uncertainty concerning temperature, which may indicate higher
frequency of droughts and floods at a regional level. Hence, we conservatively assume that the
consecutive dry days happen to the same extent as the EHDDs (i.e., the dry days events are assumed
to happen at nearly three times the historical occurrence 1993–2011). This assumption alone leads to a
15.7 percent decrease in maize yield by Equation (7).

3.2.3. Total Impact with a 2 ◦C Increase in Temperature

Total impact on maize yield of consecutive dry days, heat waves, and cold days would be
considerable (i.e., a reduction in maize yield by 31.8 percent if all temperatures increase by 2 ◦C and
total precipitation (PRCP) does not change). The maize yields would still experience about a 16 percent
reduction even if the impact of the dry days was excluded.

Notice that our analysis does not explicitly include variables such as the maize variety, soil type,
irrigation status, and overall management of the maize crop (agronomic issues), although effects of
these variables are partially captured by village and time dummies. For example, different maize
varieties may be used by households in a village in a given year and thus lead to various impacts of
the same climate variables in the year. More importantly, farmers are rational and they adapt over time
to the local environment. Therefore, they do not use the same maize variety if it is increasingly affected
by the prevailing climatic conditions in their location. Farmers may also utilize certain irrigation
systems to mitigate the negative effect of consecutive dry days. Hence, our analysis may underestimate
the negative impacts of extreme weather events since these impacts can be reduced by adaptation
measures practiced by farmers.

Notably, compared to crop growth models, our analysis does not distinguish the variable effect of
extreme weather events depending on stages of maize growth and development. For example, the
flowering stage can be very sensitive to extreme high and low temperatures as well as dry days.

3.3. Why Not GDD?

A traditional indicator of heat units is growing degree days (GDD), which is different from MDD
by including hourly degree days of DDh = (Tupp − Tlow)/24 in the extreme heat hours (i.e., when
Th ≥ Tupp). We have tried to replace MDD with GDD, but obtained significant negative effects for
its parameter in all the regressions. Meanwhile, we also noticed that the parameter of EHDD was
not estimated to be significant. This indicates high collinearity between EHDD and GDD. If we
run a regression with EHDD as the only independent variable, then the adjusted R-squared is 0.65
for GDD and only 0.029 for MDD. Hence, GDD capture too much of the effect of EHDD. In fact,
nearly all the GDD can be explained by both MDD and EHDD (adj R2 = 0.97) if we run a linear
regression. To eliminate the collinearity problem, we dropped GDD as an independent variable in all
our regressions.
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3.4. Household-Specific Fixed Effect

In Table 2, a household in a year is treated as one observation independent on the household
in another year. This may raise an issue of household-specific fixed effect, which might be captured
by climate variables. To identify whether this is a serious problem for our estimates, we re-ran the
models listed in Table 2 with village-level panel data where maize yield and land sown of households
in a village were calculated as means of corresponding variables of all households in the village.
We obtained the same signs of estimates for parameters of all independents but COLD and LAND as
in Table 2, although the estimates of all parameters became statistically insignificant. The generation of
insignificant estimates was likely due to limited observations at the village level. Hence, the results
confirmed that the household-specific fixed effect should not be a serious issue for our estimates.

3.5. Sensitivity Analysis

We would obtain similar results to that in Section 3.1 if the upper threshold temperature was
replaced by 27, 28, or 30 ◦C for the linear Model 1. However, we obtained insignificant estimates
for MDD for nonlinear Model 2 in all the three alternatives and for EHDD in the cases of the upper
thresholds of 27 and 28 ◦C. We would get a negative effect of MDD if the upper threshold became
31 ◦C even for the linear Model 1, thereby indicating too high of an upper threshold temperature.

On the other hand, if the lower threshold temperature was replaced by 6, 7, 9 or 10 ◦C, we would
obtain similar results to that in Section 3 for all the alternatives. Maize yield seems insensitive to the
choice of the lower threshold temperature.

4. Conclusions

In this study, we have statistically estimated the impacts of consecutive dry days, heat and
cold days on maize yield based on household survey data from 1993 to 2011 in ten villages of
Shanxi province, China. Our results show that dry days, heat and cold days have negative effects
on maize yield and these effects are marginal if these extreme events do not increase dramatically.
Specifically, a one percent increase in extreme-heat-degree-days and consecutive-dry-days results in a
maize yield decline of 0.2% and 0.07%, respectively. Maize yield also is reduced by 0.3% for cold days
occurring during the growing season.

However, these extreme events can increase dramatically in a warmer world and may result in
considerable reductions in maize yields. If all the historical temperatures in the villages are shifted up
by 2 degrees Celsius, then the heat waves indicated by EHDD would increase by 170 percent and the
occurrence of extreme cold days would be reduced by nearly 10 percent. If we assume that consecutive
dry days increase at the same extent as heat days, then the total impact of these extreme events would
lead to a reduction of maize yield by over 30 percent. The impacts may be underestimated since we
did not exclude the offset effect of adaptation measures by farmers to combat the impacts of these
extreme events. Our simplified method ignores the potential changes in climate variability, and the
combination of the changes in different climate variables. However, it would be possible to improve
the estimates by adopting data of climate variables from downscaled climatic change scenarios.
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