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Abstract: China’s rapid urbanisation has led to ecological deterioration and reduced the land
available for agricultural production. The purpose of this study is to develop an urban development
boundary delineation (UDBD) model using the high-tech manufacturing area of Xinbei in the
District of Changzhou as a case study, and by applying remote sensing, GIS, and other technologies.
China’s UDBD policies are reviewed, spatiotemporal changes since 1985 are documented, and
future expansion is modelled to 2020. The simulated urban-growth patterns are analysed in relation
to China’s policies for farmland preservation, ecological redlines protection areas, and housing
developments. The UDBD model developed in this study satisfies regional farmland and ecological
space protection constraints, while being consistent with urban development strategies. This study
provides theoretical references and technological support for the implementation of land management
policies that will optimize land allocations for urban growth, agriculture, and ecological protection.
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1. Introduction

China is the world’s most populous and rapidly developing country, and negative impacts of
urban growth are already apparent. Due to a lack of urban expansion policies, this development has
been uncontrolled [1,2] and the associated land use changes are affecting ecosystem structures and
services, environmental quality, and lifestyles dependent on urban residency. Urban problems—such
as haze, traffic congestion, and environmental pollution—have resulted from a severe reduction to
the ecological green spaces characteristic of farmlands and woodlands, increasingly homogenised
urban landscapes, and the fragmentation of spatial patterns [2–5]. Boundaries are urgently needed
to constrain urban growth, in order to protect agricultural land areas and sensitive ecological
environments [6].

Long-term studies have revealed that the delineation of urban development boundaries (UDBs)
has a profound influence on sustainable urban development [7]. Zoning delineates where urban
growth is permitted, which ecological areas are to be protected, and where agricultural production
can occur, and permits the implementation of differentiated land management policies. With this
objective in mind, China’s Central Urbanisation Work Conference in December 2013 proposed the
rapid implementation of UDBs specific to each Chinese city, and especially China’s large cities, to affect
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urbanisation in a natural setting, while preserving the country’s lush mountains and clean waters for
the benefit of urban residents. The conference also noted that urban-development boundaries would
limit urban development to clearly defined geographical areas. Limiting the spatial extent of urban
growth has become a priority for China, which is facing the question of how the country can meet the
needs for both socioeconomic development and ecological and environmental protection in areas with
different levels of urban development, and different regional environmental requirements.

This study uses remote sensing (RS) and GIS technologies to document urban land use, and
constructs a spatiotemporal time series of urban boundaries to advance the implementation of
land management policies. Findings with regard to trends in urban expansion and socioeconomic
development are used to make scientific forecasts for limits to the scope of urban development, and
with regard to the direction of this expansion; the study’s findings also delineate boundaries for
urban expansion, with a view to providing theoretical and scientific references for regional urban
management and development.

2. Literature Review

2.1. Methodological Reviews

Urban development boundary delineations (UDBDs) are comprised of four parts: the extraction
of time-series land use change information, land use change simulations, and the extraction of and
revisions to the UDBs. The most crucial aspects are the land use change information extractions
and simulations.

Changing land use over time can be documented by analysing the land used for urban
development. Domestic and international scholars have used RS technologies to extract
urban development land use data, due to the high speed and low costs associated with this
type of computerized land use classification. In recent years, different methods such as the
spectrum-photometric method, the rule-based spectral difference method, a combination of textural
information and decision-tree-classifier-based extraction methods, and different indexes—such as the
normalized difference vegetation index (NDVI), the normalized difference built-up index (NDBI),
the soil-adjusted vegetation index (SAVI), the normalized difference water index (NDWI), and
the residential ratio index (RRI)—have been used to extract urban land use information [8–12].
Meanwhile, some scholars have used high-frequency road information for their study of urban
building land use information extraction [13]. Overall, of the available urban development land
use information extraction techniques, supervised classification is the technique used most often,
while semi-supervised classification techniques are gradually gaining the respect of scholars in
the field [14,15]. Their contribution is to simulate urban sprawl by providing very accurate land
use information.

The simulation of urban growth has a relatively long history, with academics in western countries
having initiated research on the growth of urban areas in the 1960s [16]. The cellular automata (CA)
model has been widely used in research on urban land use change; the CA model enjoys the benefits
of being simple and natural, and capable of representing changes in urban land structures at a very
detailed scale, thus achieving a good deal of popularity among Chinese and international scholars [17],
while improving the CA model’s capacity to simulate the trend of rising temperatures associated with
the growth of urban land use [7,18]. In recent years, the CA model and its derivative models, such
as the SLEUTH (slope, land-use, exclusion, urban extent, transportation, and hillshade) model and
the Markov-CA model, have become mainstream models for simulating changes in land use [19–22].
Among them, the SLEUTH model, first proposed by Professor Clarke, is a classic CA model [23]. It is
constructed using historical urban development data, and takes urban traffic, terrain, and other factors
into consideration to set the appropriate parameters. Because the model has good universality and
portability, and places fewer restrictions on the input data, it is widely used in urban spatial growth
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simulation experiments [24]. It has been proven that the SLEUTH model has great potential in urban
dynamic simulations, and that it can achieve higher precision in large-scale simulations [25].

2.2. Conceptual Review of Boundary Growth and Delineation

Little research has been conducted on UDBs since this idea was first proposed in 2013 [24,26],
so this idea is still very similar to the urban growth boundary (UGB). The UGB concept was introduced
with urban sprawl, but from the beginning it has been constrained within the rigid limits of urban land
construction, and it has not been considered from a regional perspective. In response to the so-called
‘hollow cities’ and unrestricted urban sprawl, scholars have proposed some new measures for urban
planning and management. For instance, the ‘Greenbelt’ has been designed in the United Kingdom to
limit urban sprawl, and ‘new urbanism’ and ‘smart growth’ as well as other theories are used to restrict
the scale of urban expansion in America [27–29]. Currently, the focus of the UGB is on problems such
as the following: (1) how to provide the land resources needed to accommodate urban population
growth and improve the efficient use of existing urban and marginal areas; (2) how to pay more
attention to the development of energy, economic, environmental, and social impacts; and (3) how
to protect farmland and harmonize urban land use with nearby agricultural activities. The UGB is a
means of applying multi-objective controls, which aim at maximizing ecological, economic, and social
benefits [30].

In order to solve these problems, scholars are paying more attention to the construction of a
conceptual model. With the development of geographical information science, more geographical
information techniques have been applied to construct the UGB delineation model [7,31,32].
Low-cost, high-precision urban boundary extraction models were developed using the geographical
simulation method, remote sensing technologies, and land-use information entropy models [33,34].
Computational models tend to rely too much on mathematical calculations, thereby failing to consider
the directional expansion of urban morphology, and thus overlooking structural adjustments to urban
boundary morphology. To address this deficiency, many academics have used a variety of data sources
and techniques to propose UGB extraction methods that are distinct from traditional computational
models [5,35,36]. In addition, some academics have conducted a variety of studies on integrating
theory with the practice of research for UGBs, further enriching these studies [27–30,37–41].

2.3. Urban Development Boundaries in China

UDBs were first proposed at an urbanization meeting of the central government of China [26].
It is not a component of the Land Use Master Plans, but it is a critical part of the Multiple Plans
United, which were proposed recently with the objective of solving contradictions between land use
master plans, urban plans, and other spatial plans [26]. The major content of the Multiple Plans
United is the delineation of three controlling boundaries (ecological protection lines, permanent basic
farmland protection areas, and UDBs) to protect ecologically fragile regions and important agricultural
production areas, and to limit irrational urban sprawl [42]. Among them, the UDB was used to relieve
the contradictions between urban plans and land use master plans. It is a compulsory document for
land use management in China. It was set as the framework for the Chinese planning system for the
future [42]. However, as a new land use policy in China, the UDB is still at the exploratory stage.

In July 2014, the Ministry of Land and Resources and the Ministry of Housing and Urban-Rural
Development jointly conducted a first-phase experiment on UDBDs in 14 cities, including Beijing,
Shanghai, Guangzhou, and Shenzhen. Among the 14 pilot cities, the initial work on Xiamen City was
completed by ‘combining three plans in one’ (i.e., the planning of the national economy and social
development, urban planning, and land planning). Xiamen City has established ecological control
lines (including an ecological red line and an ecological buffer zone) and construction land use control
lines that delineate ecological and urban spaces, respectively. Nanjing City has implemented strict
land use planning controls on the scale of land use development [42]. On 25 April 2015, the ‘Opinions
of the CPC Central Committee and the State Council on Accelerating the Ecological Civilization
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Construction’ was published. This policy stated that there was a further need for the vigorous
promotion of green urbanization, the delineation of UDBs, more stringent rules for the supply of urban
land for development, promotion of the transformation of urbanization development from outward
expansion to internal content improvements, and tightening of the conditions and procedures for
setting up new cities and districts [43].

3. Materials and Methods

3.1. Location

The area chosen for this study is the Xinbei District of Changzhou City, in Jiangsu Province,
China. The total area of the study region is 437 km2, and its land use types can be classified as
agricultural land (235 km2), construction land (183 km2), and other land (19 km2) (Figure 1). In 2014,
the resident population of Xinbei District was 622,400, of which 119,948 were in Chunjiangzhen,
91,560 in Menghezhen, and 40,502 in Xixiashuzhen [44]. For many years, the Xinbei District has been
the administrative, economic, and cultural heart of Changzhou.
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Its rapid socioeconomic development has been accompanied by an increased rate of urbanisation
that has led to the large-scale transformation of land formerly used for arable and ecological
purposes to its use for urban development. This transformation far exceeds the environment’s
capacity for self-purification, thereby exacerbating pollution of the urban environment and other
ecological problems.

Ecological protection and the intensive use of land for development have become the main factors
influencing China’s urban growth; the urban sprawl associated with urban expansion has failed to
meet the requirements of sustainable urban development. The Xinbei district was one of the first
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areas designated as a ‘National High-Tech Industrial Development Zone’, and it is currently in the
exploratory stage of an urban development transformation. For this reason, current socioeconomic
conditions and the scale of future land-use development, as well as environmental conditions,
determine the spatial scope of urban development, and constrict the spatial direction of growth, as well
as its scale and pattern. The key priorities for a new model of urban development in Xinbei District are
achieving a compromise between urban development and environmental protection—while satisfying
both conservation and intensity-of-use requirements—and achieving the harmonious development of
a new form of urbanisation premised on ecological liveability.

The land use master plan of Xinbei district started in 2006 and is due to end in 2020 [45]. It is the
third-round land use master plan in Xinbei district. The first- and second-round land use master plans
were shown to be failing to keep urban growth inside developable areas [46,47] because of their poor
control of construction land sprawl. In response, the third round instituted three boundaries and four
zones to limit uncontrolled city expansion. It is a pity that the contradictions between the urban plans
and land use master plans were enlarged for this construction land management policy. As a result,
an urban development boundary emerged.

3.2. Data Collection

3.2.1. Landsat TM/ETM+ Images

This study’s primary data sources were Landsat images (Landsat 5 TM, and Landsat 7 ETM+,
from 1985, 1995, 2005, and 2014) of Changzhou City in the Xinbei District. These data depicted land-use
development. Image quality was excellent, with cloud cover less than 1%.

Since some of the image data had been damaged by a faulty band, our study used remote sensing
data from different views, at different times, and used local regression analysis to compile the images,
thus optimising the quality of the restored image. This study used the Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) module in ENVI (Environment for Visualizing Images)
software (Harris Corporation, Melbourne, FL, USA) to make atmospheric corrections, while adjusting
for artificial spectral smoothing. Finally, using government-defined boundaries for the Xinbei District
as borders for the images, the study used ENVI software to achieve irregular cropping of the RS images.

3.2.2. Other Geographical Spatial Data

This study utilised the artificial visual interpretation of data from Jiangsu Province in 1985, and
1995 (1:100,000 scale, National Data Sharing Infrastructure of Earth System Science, Yangtze River Delta
Data Sharing Platform), as well as land-use data from Changzhou City in the Xinbei District in 2005,
and survey data on land-use changes from 2014 (1:50,000, Changzhou City, Xinbei District National
Land Resources Bureau) to verify the precision of the interpreted RS data. Changzhou City DEM
(30 m) was sourced from the International Scientific Data Service Platform of the Chinese Academy of
Sciences, and was used to extract slope and elevation data. Traffic vector data for Changzhou City in
2012 were sourced from the National Land Resources Bureau of Changzhou City, and were used to
develop our SLEUTH model. Information describing the divisions between farmland conservation
areas, ecological redline protection areas, and construction areas was drawn from the National Land
Resources Bureau of Changzhou City, Xinbei District, and used to adjust UDBs.

3.3. Extraction of Construction Land Use

This study used data compression to extract information documenting the land used for
development. In other words, the researchers used new images constructed from the Index of
Biological Integrity (IBI) spectrum that had been derived from the original spectrum, to extract
urban development land-use data.

The IBI index uses three indices to establish a cumulative RS index. This method differs from the
more commonly used method of constructing an index from the multispectral bands of the original
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image. The three indices used here are the Modification of Normalized Difference Water Index
(MNDWI), representing bodies of water, the NDBI, representing land used for development, and the
SAVI or NDVI, which represents vegetation [14,15]. When vegetation coverage in an urban research
area is relatively low, SAVI should be used, and when this area includes a large amount of vegetation,
one should choose the NDVI. Since vegetation coverage in the research area was low, this study used
the SAVI. The methods of calculation used for each index are shown below:

MNDWI =
GREEN − SWIR
GREEN + SWIR

(1)

NDBI =
SWIR − NIR
SWIR + NIR

(2)

SAVI =
(NIR − RED)× 1.5
(NIR + RED + 0.5)

(3)

IBI =
[NDBI − (SAVI + MNDWI)/2]
[NDBI + (SAVI + MNDWI)/2]

(4)

where GREEN: green band; SWIR: short-wave (length) infrared (band); NIR: near infrared (band);
RED: red band.

Historical information describing the land used for development in the Xinbei District was
extracted using the IBI.

3.4. Urban Growth Simulation

This study uses the SLEUTH model to simulate the growing extent of land used for urban
development. It adopts the assumptions that future phenomena can be simulated on the basis of
previously experienced trends, and that previous growth trends will persist. The model also has some
shortcomings, because of its deficiency in giving less consideration to institutional factors, such as
the effects of land use management policies on urban expansion and land use change. However, the
model allows the user to define the exclusion layer, and a number of model parameters are conducive
to different comparisons of future development patterns and their potential impacts on planning.

Growth rules for this model are determined by the values of five coefficients: dispersion, breed,
spread, slope resistance, and road gravity. These five control coefficients produce four types of growth:
spontaneous, diffusive, organic, and road-influenced. The SLEUTH model uses a calibration process to
obtain optimised coefficient values for the prediction of future changes in urban growth and changes
in land use. Calibration is the key to running the SLEUTH model; in the process of calibration, the
model makes use of a brute-force method of iterative Monte-Carlo simulations and historical data to
gradually hone in the scope of the control coefficients, finally deriving a set of five optimised control
coefficient values suitable for the urban growth experienced by the research area.

This study uses two different types of layer exclusion research models for the calibration process.
Exclusion layer E1 includes only water or ecological protection zones; exclusion layer E2 is formed
on the basis of E1, and adds basic programming data for farmlands, with the delineation of basic
farmland protection zones restricting urban growth. Next, the exclusion layer that provides greater
simulation precision can be selected to simulate future urban development.

The goodness-of-fit index determined in the calibration phase follows the form proposed by
Dietzel and Clarke’s optimal SLEUTH metric (OSM), which is calculated as follows (see Table 1 for
descriptions of indicators):

OSM = compare × pop × edges × clusters × slope × xmean × ymean (5)
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Due to the gentleness of the slopes in the research area, to avoid calculating a value of 0, the
slope index is deleted, and replaced with the optimal SLEUTH metric, no slope (OSM_NS), which is
calculated as follows:

OSM_NS = compare × pop × edges × clusters × xmean × ymean (6)

The OSM_NS metric calculates the accuracy of numerical growth in the model (Compare and
Population), the accuracy of growth location (X-Mean and Y-Mean), as well as the size and form
(Clusters and Edges). As the value of OSM_NS increases, this indicates that the simulation results are
closer to the real situation. The specific meanings of each index are outlined in Table 1.

Table 1. SLEUTH a model calibration indicators [48].

Indicator Description

Compare Final year modelled population/final year actual population (or IF Pmodelled >
Pactual {1 − [final year modelled population/final year actual population]})

Pop Least-squares regression score of modelled urbanization compared to actual
urbanization in control years

Edges Least-squares regression score for modelled urban edge count compared to actual
urban edge count in control years

Clusters Least-squares regression score for modelled urban clustering compared to known
urban clustering in control years

Xmean
Least-squares regression of mean X_values for modelled urbanized cells
compared to mean X_values of known urban cells in control years

Ymean
Least-squares regression of mean Y_values for modelled urbanized cells
compared to mean Y_values of known urban cells in control years

Slope Least-squares regression of mean slope for modelled urbanized cells compared to
mean slope of known urban cells in control years

a SLEUTH = slope, land use, exclusion, urban extent, transportation, and hillshade.

3.5. Extraction of Urban Growth Boundary Lines

Urban growth occurs at the outer edges of urban spaces. Consequently, the evolving delineation of
urban boundaries should represent contiguous contours within a large area. Based on this characteristic,
this study has established area parameter values to conduct edge detection, thereby extracting UGBs
(Figure 2). This method follows the process of denoising, filtering the image that has been separated
into small polygonal areas of land used for development, and preserving large-scale contiguously
distributed polygons of land used for development. For the convolution operation, we use the
brightness gradient magnitude and the brightness gradient direction that was calculated using the
image generated from the original image. Parameter values are selected using the smallest value of
the polygonal areas in each urban socioeconomic development centre, and filtering out the smallest
area of land used for development outside of urban centres, forming an initial binary image (where 0
represents non-development land use, and 1 represents land-use development), wherein a pixel with a
value of 0 adjacent to a pixel with a value of 1 represents an edge point. Based on these principles, we
have extracted the image edges from which we have derived UGBs.
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3.6. Urban Growth Boundary Delineation

The Chinese Government’s official definition of UGBs is ‘based on the determination of factors
such as topography, natural ecology, environmental capacity, and basic farmland, spatial boundaries
allowing and banning urban development construction areas can be established, permitting the largest
possible boundaries for urban construction land use’.

This study established exclusion layers using basic farmland, ecological redlines, and the banned
or restricted development conditions described in the Land Use Master Plan, with these types of areas
strictly banning any type of urban development activities. Apart from basic farmland and ecological
redline zones, and permissions stated in the Land Use Master Plan, other areas zoned for construction
are within UGBs. Following this principle, this study conducted spatial overlay analysis to eliminate
excluded layer areas, and deleted areas that conflicted with delineated construction restrictions in
UGBs, ecological areas, and farmland (Figure 3).
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4. Results

4.1. Extraction of Urban Land-Use Development Information, Spatial and Temporal Change Analysis

Based on the IBI model, this study extracted time-series information for the urban development
of land in the research area for 1985, 1995, 2005, and 2014. Based on the results of image classification,
the study applied true vector value data for the corresponding years to conduct accuracy tests. Using
the kappa coefficient, the classification accuracies for each year were, respectively, 80%, 88%, 86%,
and 86%.

According to these results, during the last thirty years the extent of land used for urban
development in the research area has increased consistently. However, between 1985 and 1995, with the
rapid development of the economy of Xinbei district, the increase in farmers’ income and the updating
of their thinking led them to invest more in housing from the beginning of the Chinese reforms and
opening up. As a result, the scale of rural construction lands expanded during this period. In addition,
some farmers started to construct new houses without demolishing old buildings. This resulted in an
increase in idle land and empty villages. Aiming to optimise rural land use patterns, 10,000 ha of fertile
farmland was designated in order to convert idle land and empty villages to farmland [49]. The total
area in which old buildings were demolished reached 405 ha (Figure 4). Between 1995 and 2005,
land-use development increased dramatically in the research area from 4089 ha to 9047 ha, amounting
to an increase of 4958 ha, or 121% (Figure 4). From 2005 to 2014, land-use development in the research
area continued to increase, from 9047 ha to 20,562 ha, amounting to an increase of 11,514 ha, or 127%
(Figure 4). From 1995 to 2014, urban development increased by 16,472 ha, or 402% (Figure 4).
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Based on the expanded area and increase in the scale of urban growth in the research area,
we can see that in the past thirty years, the pace of growth for urban development has been
extremely high. In 2014, the area occupied by development was 47% of the total research area.
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During this process, the land available for ecological and agricultural production in the research area
was severely constricted, leading to an increasing deterioration of the environmental quality of the
region [50,51]. At the same time, the large scale of the development activities described has been hard
to maintain [52]. While the intensity of development in the research area remains high, the level
of conflict between demands for urban development and green spaces/agricultural production is
increasingly apparent [53]. Given this background, there is an urgent need to implement baseline
restrictions on urban growth, from the perspectives of space and the scale of development, to achieve
orderly, guided, and regulated urban development.

4.2. Simulation of Land-Use Development and Growth Boundary Extraction

According to the coarse, fine, and final calibration of data for the research area for the years 1985,
1995, 2005, and 2014, parameters were combined according to OSM_NS rankings after each stage of
calibration in order to determine the optimal growth control coefficient. We obtained optimal OSM_NS
values under two scenarios for each calibration stage, with the optimal OSM_NS values for coarse, fine,
and final calibration for exclusion layer E2 being higher than those for exclusion layer E1. From coarse
to fine calibration, and then to final calibration, OSM_NS values exhibited an upward trend. For the
coarse calibration stage, the value for E1 was 0.61, and for E2 it was 0.63. In the fine calibration stage,
the value for E1 was 0.62, and for E2 it was 0.66. In the final calibration stage, the value for E1 was 0.62,
and for E2 it was 0.66. Because the OSM_NS index is derived from six indices, the current magnitude
of accuracy optimisation is relatively significant. Consequently, in this study the exclusion layer with
higher simulation accuracy, E2, was selected for the land-use development expansion model.

This study used predictive parameters to obtain the best-fit set of future development land-use
expansion growth control coefficients, based on the optimal coefficient for historical land-use
development that excluded layer E2. Using 2014 as the starting point for forecasts, we predict
increasing urban land use growth conditions from 2014 to 2020, thus forecasting the scope of urban
development for the year 2020. As shown in Figure 5, our model predicts that urban growth for
Changzhou City in the Xinbei District will exhibit edge expansion and infill development trends.
Comparing predictions for urban growth by 2020 to urban growth in 2014, we predict that urban
growth of land use will increase by 7645 ha, or 37%. According to the results forecast by our simulation,
new urban development in Changzhou City in the Xinbei District will be located primarily in the
southwestern Benniu Town (Figure 5).

Due to the fact that government planning largely directs the development of land use in China,
changes in land use are heavily influenced by land-use policies. Thus, simulations of land-use
development in Chinese regions must emphasize the effects of land-use policies; such as basic farmland
preservation zoning policies, land-use regulations, and policies that link increases and decreases in
urban and rural development [54,55]. Through the addition of factors associated with land-use policies,
simulations of changes in land use can more closely parallel actual outcomes, thereby increasing the
accuracy of simulations, and providing more reliable results for future simulations. Since farmland
with high quality and continuity are protected by Chinese Land Use Management Law, random
transformations from farmland for non-agricultural land use purposes are forbidden. However, lakes,
grasslands, forests, and other areas are not protected, and they will have effects on cities. Therefore, we
selected the farmland protection area as providing restrictions on urban sprawl. In peri-urban China,
farmland protection areas may have the only land use policy that can constrain urban expansion. In this
study, basic farmland protection zones formed a reference layer for calibrating the SLEUTH model in
order to consider the effects that the current implementation of farmland protection policies are having
on urban development. The model established on this basis achieved greater accuracy, and simulated
the delineation of UDBs that were consistent with what actually occurred in the research area.
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Given the high accuracy of the model’s land-use forecasting, this study used edge detection to
extract urban development boundary lines for Changzhou City in the Xinbei District for 2020 as the
theoretical UGBs (Figure 6a). Due to unequal socioeconomic development in various areas of the
region, the scale of development in each area in the Xinbei District is different; this has led to the
coexistence of segmented and contiguous growth. Thus, there exists the problem that theoretical UGBs
have a scattered layout, and the direction of urban spatial development is disorganized. For this
reason, this study is based on a new Chinese form of urbanisation, under the requirements for ‘urban
and rural unified development’, ‘urban and rural unity’, and ‘intensive conservation’. Integrating
urban development land-use change data from each area of the Xinbei District in 2014, and applying
area parameters, we have eliminated spatially dispersed or relatively small polygonal areas of urban
development. At the same time, through the inclusion of ecological redlines (Figure 6c), basic farmland
preservation redlines (Figure 6d), and areas regulated by the Land Use Master Plan (Figure 6e), and
applying spatial analysis to adjust theoretical UGBs, we have delineated UGBs for the Xinbei District
(Figure 6b). The UGBs delineated in this study encompass an area of 17,558 ha, with this space being
concentrated around the southern and eastern riverside belt. This is consistent with the urban space
development strategy contained in the Xinbei District Land Use Master Plan (2006–2020) and the
Changzhou City Land Use Master Plan (2011–2020).
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5. Discussion

As an absolutely new land use policy, the UDB shares some similarities with the UGB. China’s
research on UGBs is relatively weak. The new edition of the ‘Measures for Formulating City Planning’,
published in China in 2006, provides a clear summary for overall city planning and the need to ‘study
urban growth boundaries’ in the planning of city centres [56]. It means that urban planning in China’s
major cities began to gradually introduce the concept of the UGB. Currently, it is still an auxiliary tool
of urban plans in China, and it has not been applied in urban land use management [7,57]. Research on
the UGB in China mostly focuses on the delineation techniques rather than theoretical studies [58,59].
In contrast, the UDB is proposed as a dominant planning tool for urban land use management, and it
has been accepted and incorporated into the nation’s new type of urbanization planning (2014–2020)
coupled with permanent farmland [26,60]. However, in China the concept of a UDB does not have a
precise definition, and is not yet distinguished from the UGB. As a result, research on the UDB is closer
to the UGB [24]. However, unlike the UGB, the UDB will be used to relieve the contradiction between
urban plans and land use master plans in the future, not just to limit the irrational spatial sprawl of
cities [42]. Since the land use master plan defined the spatial regulation policy of construction land, it
provided a reference for urban sprawl control from the perspective of spatial management. Moreover,
the spatial regulation policy of ‘Three Boundaries and Four Zones’ was written in the third-round land
use master plan and supported by China’s related land use management law [51]. Three Boundaries
and Four Zones reflected the ‘bottom line thinking’ of the government’s spatial regulation policy.
It turned urban sprawl space management from passive to active. Thus, China’s UDB delineation
depends more on the land use master plan. Once the UDB is delineated, the scale of construction
land defined in urban plans and land use master plans must be located within the limits defined by
this boundary.

The model we constructed integrates the related spatial planning, such as land use master
planning, and unifies the same content into a common spatial planning platform to improve the
rationality of the UBD. In addition, the proposed UDB can parallel the current situation of urban
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construction and development in China. It can also adapt to the real needs of managing China’s urban
development in the context of new urbanization, and can be used to identify urban control strategies
that are consistent with their own development plans. By delineating UGBs, and isolating areas for
agricultural development, ecological protection, and urban development, socioeconomic development
can be better harmonized with the ecological protection of the environments that surround urban areas.
In so doing, we can further ease the environmental and social pressures precipitated by urban growth,
while promoting the orderly development of reasonable urban scales in appropriate locations. Still,
facing the effects of uncertain socioeconomic developments, there is some dynamism in the demand
for urban development. Once considered unsuitable for socioeconomic development, the controlling
mechanisms for UGBs will result in frequent changes to urban growth plans, thereby disrupting the
continuity of these plans. Thus, the establishment of UDBs should accommodate different regulatory
goals and types of growth, and should apply appropriate controls on aspects that require strict controls.
Where unclear boundaries or unpredictable elements exist, flexible solutions must be put into place.
In this way, the management of urban development can be improved, and resilience in the face of
uncertain socioeconomic development can be strengthened.

There are serious spatial imbalances in China’s urban development. In the eastern coastal areas,
urban development is occurring too quickly. However, urban construction in the central region is in
the developmental stage, and urban construction in the western region has just started. Consequently,
the definition of UDBs has regional differences. Depending on the regional economic and social status,
the UDB is too difficult to delineate in the same way. It is necessary to implement rigid UDB controls
for over-expanded cities. For the developing city, rigid UDB controls should be based on the urban
development space remaining. In addition, because of the uncertainty of China’s socio-economic
development, it is difficult to quantify the demand for regional construction land accurately. Therefore,
the UDB cannot accurately meet urban development needs, which makes it difficult to be applied to
sustainable urban land use management.

6. Conclusions

The methods used to conduct this study are based on a combination of RS land-based observation
images, socioeconomic statistics, and land classification results, and the application of GIS spatial
analysis and SLEUTH model simulation techniques. This paper develops an UGB delineation model
suitable for China, by conducting a comprehensive analysis of farmland redline and ecological redline
restrictions, and a variety of land-use policies delineated in national land-use spatial plans.

The UGB delineation model proposed in this study combines the land-use policies related to basic
farmland preservation redlines, ecological protection redlines, and spatial restrictions, for land-use
development. With respect to the region’s actual development needs, the model delineates a unified
boundary for urban development, while defining its spatial extent, promoting orderly development,
and providing a spatial reference. In addition, the delineated UGBs harmonise with agricultural
preservation redlines and ecological land-use restriction redlines, thus preserving the areal extent
of farmland, and preserving the ecological environment, while enforcing farmland and ecological
preservation policies. To avoid the concentration of agricultural production areas and ecologically
fragile areas, the model coordinates urban development with the environmental protection of
neighbouring areas.

However, urban development under conditions of socioeconomic volatility is inherently dynamic,
so UGBs must be flexible and adaptive measures must not conflict with socioeconomic development.
For this reason, future research is needed to explore how UGBs can be used to achieve socioeconomic
development that is consistent with the scale and direction of land-use development.
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