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Abstract: In this study, the support vector machine (SVM) was applied and validated by using the
geographic information system (GIS) in order to map landslide susceptibility. In order to test the
usefulness and effectiveness of the SVM, two study areas were carefully selected: the PyeongChang
and Inje areas of Gangwon Province, Korea. This is because, not only did many landslides (2098 in
PyeongChang and 2580 in Inje) occur in 2006 as a result of heavy rainfall, but the 2018 Winter Olympics
will be held in these areas. A variety of spatial data, including landslides, geology, topography, forest,
soil, and land cover, were identified and collected in the study areas. Following this, the spatial data
were compiled in a GIS-based database through the use of aerial photographs. Using this database,
18 factors relating to topography, geology, soil, forest and land use, were extracted and applied to
the SVM. Next, the detected landslide data were randomly divided into two sets; one for training
and the other for validation of the model. Furthermore, a SVM, specifically a type of data-mining
classification model, was applied by using radial basis function kernels. Finally, the estimated
landslide susceptibility maps were validated. In order to validate the maps, sensitivity analyses were
carried out through area-under-the-curve analysis. The achieved accuracies from the SVM were
approximately 81.36% and 77.49% in the PyeongChang and Inje areas, respectively. Moreover, a
sensitivity assessment of the factors was performed. It was found that all of the factors, except for soil
topography, soil drainage, soil material, soil texture, timber diameter, timber age, and timber density
for the PyeongChang area, and timber diameter, timber age, and timber density for the Inje area, had
relatively positive effects on the landslide susceptibility maps. These results indicate that SVMs can
be useful and effective for landslide susceptibility analysis.
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1. Introduction

Landslides are natural phenomena that can be very hazardous to humans, and thus, landslide
susceptibility mapping is very important for the environmental, cultural, economic, and social
sustainability of human beings. Throughout the world, many people have died and been injured by
landslides, and thousands of hundreds of houses and buildings have been destroyed. As a consequence
of this, many researchers have pursued work with the intention of predicting and preventing landslide
hazards by using a wide variety of methods [1]. In particular, recent case studies have frequently
applied soft computing technology to the assessment of landslide hazards. When creating soft
computing models, artificial neural networks [2–6], neuro-fuzzy logic [2,7–9], decision trees [10–15],
and support vector machines (SVMs) [10,15–19], have been applied in order to analyze landslide
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susceptibility. Among the many soft computing models, SVMs were applied in the present study.
They are a relatively new and promising pattern classification technique that were proposed by Vapnik
and co-workers [20–23]. Nevertheless, the SVMs are not completely free from problems. The drawback
of using SVMs is that they only cover the determination of the parameters for a given value of the
regularization and kernel parameters, and choice of kernel [24]. Additionally, the machine learning
algorithms, called kernel machines, can be quite sensitive to over-fitting the model selection criterion.
Despite this limitation, SVMs are still one of the most popular machine learning algorithms and are
considered to be the go-to method for the production of a high-performing algorithm with little tuning.

Approximately 70% of South Korea is mountainous, and landslides commonly occur, especially
during the summer rainy season. The study areas for this research, PyeongChang and Inje, are
located deep in the highlands of the Gangwon Province. The average annual temperature of these
areas is 10.3 ◦C and 10.1 ◦C, respectively, and the average yearly rainfall value is 1082 mm and
1210.5 mm, respectively (http://www.kma.go.kr/). Very intense precipitation has occurred in the
PyeongChang and Inje areas, which has caused many landslides (Figure 1). In 2006, between 12 July
and 18 July, typhoon Ewiniar struck the PyeongChang and Inje regions, accompanied by heavy
storms and excessive rainfall. Daily rainfall reached 202 mm and cumulative rainfall over the six-day
period reached 650 mm. Subsequently, a very large number of landslides occurred in the study areas
(Figures 2a and 3a). The typhoon claimed 40 lives and caused approximately 1 billion U.S. dollars
worth of property damage. Landslides and the collapse of cut slopes were considered to be the leading
causes of death [25]. The extensive damage from rainfall-induced landslides in the PyeongChang and
Inje areas can be partly attributed to both the lack of landslide assessment and prediction, and the
lack of response plans for minimizing the impacts of the landslides. Moreover, the PyeongChang
2018 Olympic Winter Games will be held in these areas and the construction work for the game
venues are well underway. Therefore, it is imperative to enhance the nation’s capability to detect and
predict geological hazards like landslides, and to prevent or reduce the risk to life, property, social and
economic activities, and natural resources.

The main aim of the present study is to produce a landslide susceptibility map using an SVM.
Because SVMs are high-performing machine learning alogrithms, they were applied and validated in
the PyeongChang and Inje areas of Korea, which served as case studies. Following this, the effect of
each factor in the sensitivity analysis was evaluated by validation of landslide susceptibility maps,
which excluded individual factors.
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Figure 2. (a) Hillshade map and landslide occurrence in the PyeongChang area; (b,c) respectively 
show digital aerial photographs of the yellow rectangles shown in (a), and represent areas in which 
many landslides occurred; (d,e) show typical landslide photographs in the yellow rectangles, 
respectively. 

2. Data 

For the accurate detection of landslide locations, digital aerial photographs with ground 
resolutions of 50 cm were collected from the Daum website (http://map.daum.net) (Figures 2b,c and 
3b,c). Web-based digital aerial photographs taken from across Korea are readily available on the 
Daum web portal. We used photographs taken on the 27 May 2008 using the UltraCamX sensor 
(Microsoft, Graz, Austria). They were taken by Samah Aerial Survey Co. (http://www.samah.com) 
after landslides had occurred during the rainy season of 2006. High-resolution photographs were 

Figure 2. (a) Hillshade map and landslide occurrence in the PyeongChang area; (b,c) respectively show
digital aerial photographs of the yellow rectangles shown in (a), and represent areas in which many
landslides occurred; (d,e) show typical landslide photographs in the yellow rectangles, respectively.

2. Data

For the accurate detection of landslide locations, digital aerial photographs with ground
resolutions of 50 cm were collected from the Daum website (http://map.daum.net) (Figure 2b,c
and Figure 3b,c). Web-based digital aerial photographs taken from across Korea are readily available
on the Daum web portal. We used photographs taken on the 27 May 2008 using the UltraCamX sensor
(Microsoft, Graz, Austria). They were taken by Samah Aerial Survey Co. (http://www.samah.com)
after landslides had occurred during the rainy season of 2006. High-resolution photographs were
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rectified via ground control points (GCPs) from digital topographic features. As a result of this,
landslide locations could be accurately detected by visual interpretation of the aerial photographs
taken after landslide occurrences and checks by field investigations (Figure 2d,e and Figure 3d,e).
Consequently, it was reported that both rainfall-triggered shallow landslides and channelized debris
flows, occurred widely in the study areas. Most landslides had approximate lengths of 20–3000 m,
widths of 5–50 m, and depths of less than 3 m. The landslides were mapped as initiation points.
The total number of landslides was 2099 in the PyeongChang area and 2580 in the Inje area. The location
of each landslide was denoted using a pixel of 10 m × 10 m. The study areas were delineated based on
the basin boundary.
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It is generally believed that landslides result from the interaction of complex factors. The selection of
factors, and preparation of corresponding thematic data layers, are crucial for models used in landslide
susceptibility mapping [26]. The instability factors responsible for landslides include lithology, geological
structure, slope steepness, seismicity, morphology, climate, land use, stream evolution, groundwater
conditions, vegetation cover, and human activity. Among these factors, specially topography, geology, soil,
forest and land use factors, were taken into account in this study (listed in Table 1), and were collected from
available maps and field investigations. A digital elevation model (DEM) with 10 m × 10 m resolution
was prepared by digitization of contours at 5 m intervals from the topographical maps. The slope gradient,
slope aspect, plan curvature, slope length, topographic wetness index (TWI) [27], and stream power
index (SPI) [28], were calculated by using the DEM. The geology was replaced with the slope length in
the Inje area because only one type of geology exists in this region. The pattern of structural lineaments
was detected by an interpretation of a hill shade map, produced by a structural geologist with extensive
experience working as an interpreter. The selected factors are assumed to have a dominant influence on
the occurrence of landslides. Previous studies have analyzed these factors using the same parameters and
frequency ratio model in South Korea, including a similar area [13,29–33]. The probability-likelihood ratio
method was applied to Boun, Korea [29], and the probability logistic regression method was used for
the statistical analysis of land slide susceptibility at Yongin, Korea [30]. Landslide detection was applied
with the frequency ratio, weight of evidence, logistic regression, and artificial neural network models in
Jinbu, Korea [31]. The decision tree was used for the landslide susceptibility mapping in Pyeongchang,
Korea [13], and the integration of frequency ratio and neuro-fuzzy models was used to forecast and
validate the landslide susceptibility in the Seorak mountain area [32]. Landslides in the Inje area were
mapped using the frequency ratio with the condition of rainfall probability [33].

Table 1. Data layer considered as predisposing factors in the study areas.

Category Factors Data Type Scale

Topographic map [34]

Slope gradient

GRID 1:5000

Slope aspect
Curvature

TWI (Topographic Wetness Index)
SPI (Stream Power Index)
Slope Length (Inje only)

Geological map [35] Geology Polygon 1:50,000Distance from fault GRID

Soil map [36]

Topography

Polygon 1:25,000
Soil drainage
Soil material

Soil depth
Soil texture

Forest map [37]

Timber diameter

Polygon 1:25,000Timber type
Timber density

Timber age

Land use map [38] Land use (PyeongChang only) Polygon 1:5000

In order to consider the factors, a geological map was provided with polygon coverage at a scale of
1:50,000, and soil and forest maps (Tables 2 and 3) were presented with polygon coverage at a scale of
1:25,000. These maps were created by the following three institutes: the Korea Institute of Geoscience and
Mineral Resources (KIGAM), the Korea Forest Research Institute (KFRI), and the National Academy of
Agricultural Science (NAAS). The land-use map with polygon coverage at a scale of 1:5000, was provided
by the Korea Ministry of Environment (KME). The land-use types were classified by using a 10 m × 10 m
spatial resolution panchromatic SPOT-5 image, acquired in November 2007. The diameter, density,
type, and age of timber, were derived from the forest maps (see Table 3), while soil topography, soil
thickness, soil texture, soil material, and soil drainage, were all acquired from the soil maps (see Table 2).
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Landslide occurrences were constructed in a vector spatial database using a GIS software package.
Seventeen factor maps were generated from the maps, and were then converted into a 10 m × 10 m
raster format. Consequently, the dimensions of the study area grids were 1770 columns by 1028 rows
for a total of 1,819,560 cells (about 182 km2) in PyeongChang, and 2884 columns by 1299 rows for
3,746,316 cells (about 375 km2) in Inje.

Table 2. Soil map factor classification *.

Soil Topography Soil Texture Soil Drainage Soil Material Soil Effective
Thickness

Water Water Water Water Water

Fluvial plains Sandy loam Somewhat poorly drained Fluvial alluvium 0–20 cm

Valley and alluvial fan Fine sandy loam Moderately well drained Alluvial-Colluvium 20–50 cm

Lower hilly area Gravelly sandy loam Well drained Okcheon system
residuum formation 50–100 cm

Hilly area Gravelly silt loam Excessively drained Colluvium 100–150 cm

Piedmont slope area Loam Poorly drained Diluvium

Diluvium Silt loam Valley alluvium

Valley area Gravelly loam Granite residuum

Valley and piedmont
slope area Loamy fine sand Alluvium

Mountain and hilly area Overflow area Phyllite residuum
formation

Mountainous area Rocky silt loam

Rocky sandy loam

* The terrain unit is 0.25 ha (the distance between survey is 100–200 m). But the unit can be changed according
to the condition.

Table 3. Forest map factor classification *.

Timber Type Timber Diameter Timber Age Timber Density

Non-forest Non-forest Non-forest Non-forest

Rigida pine

Very small diameter
(timber diameter is below 6 cm)

1st age More than
(50% 1–10 years old timber)

Loose (Less than 50%
forest area)

Pine

Needle and broad 2nd age More than
(50% 11–20 years old timber)Artificially afforested

broad leaf tree

Korea nut pine
Small diameter

(timber diameter is 6–16 cm)

3rd age More than
(50% 21–30 years old timber) Moderate Less than

(51%–70% forest area)
Larch

Broad leaf tree 4th age More than
(50% 31–40 years old timber)Field

Cultivated land
Medium diameter

(wood diameter is 16–28 cm)
5th age More than

(50% 41–50 years old timber)
Dense More than
(71% forest area)

Chestnut tree
Poplar
Ranch

* The terrain unit is 0.1 ha for artificial forest area and 0.5 ha for natural forest area.

The topographic factors reflect the geomorphological characteristics of the study areas. Slope gradient,
slope aspect, and plan curvature can all influence landslide initiation [30,39,40]. The hillslope profile
indicates the thickness and composition of soil horizons, which vary with not only position on a hillslope,
but also with water drainage. In the hillslope domain, between the drainage divides and the stream
network, several topographic attributes are distributed, such as slope, curvature, and TWI [41–44].
The topography has a vital role in the spatial variation of hydrological conditions, such as soil moisture,
groundwater flow, and slope stability. Topographic indices such as SPI and TWI are used to describe spatial
soil moisture patterns [27,28]. Lithology plays an important role in landslide occurrences because different
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lithologic units have varied inherent characteristics, including strength, composition, and structure,
producing varied resistance against landslides [45–47]. Fault lines are the expression of structural brittle
deformation of rocks due to tectonics, and thus landslide susceptibility is higher along these features.
The occurrence of landslides varies with land-use pattern, which is an indication of the stability of
hillslopes [48]. Forest cover and soil properties also affect various geomorphologic and hydrologic
processes, including surface erosion, hillslope change, and the rate of landslide occurrences [49,50].

3. Methods

The detailed workflow for landslide susceptibility map creation is shown in Figure 4. In this study,
landslide occurrence locations were identified by using digital aerial photographs. Following this,
50% of the landslide occurrences were randomly selected as training data, and the others were
determined to be validation data. Geology, topography, soil, forest, and land-use datasets, were
entered into a GIS-based spatial database, and the 18 landslide-related factors were extracted from the
database. In this way, SVMs were applied for landslide susceptibility mapping.
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An SVM is a supervised learning method based on statistical learning theory and the principle
of structural risk minimization [22]. Using the training data, the SVM implicitly maps the original
input space onto a high-dimensional feature space [51]. Subsequently, in the feature space, the optimal
hyperplane is determined by maximizing the margins of class boundaries [52]. The SVM intends
to minimize the upper bound of the generalization error by maximizing the margin between the
separating hyperplane and the data [53]. The training points that are closest to the optimal hyperplane
are called support vectors. The aim of SVM classification is to find an optimal separating hyperplane
that can distinguish between the two classes (i.e., landslides and no landslides), and the set of training
data [10]. Two main concepts underlie SVM modeling for discriminant-type statistical problems.
The first of these concepts is an optimum linear separating hyperplane that separates data patterns.
The second, is the use of kernel functions for converting the original nonlinear data patterns, into a
format that is linearly separable in a high-dimensional feature space [54].

Detailed descriptions of two-class SVM modeling were provided by [2,17,54] and were
summarized in the following explanation. Consider a set of linear separable training vectors xi
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(i = 1, 2, . . . , n). The training vectors consist of two classes, denoted as yi = ±1. The goal of the
SVM is to search an n-dimensional hyperplane, differentiating the two classes by their maximum gap
(Figure 5a). This is expressed as:

1
2
‖w‖2 (1)

subject to the following constraints:
yi((w·xi) + b) ≥ 1 (2)

where ||w|| is the norm of the hyperplane, b is a scalar base, and (·) denotes the scalar product
operation. Using the Lagrangian multiplier, the cost function can be defined as:

L =
1
2
‖W‖2 −

n

∑
i=1

λi(yi((w·xi) + b)− 1) (3)

where λi is the Lagrangian multiplier. The solution can be achieved by dual minimization of
Equation (3), with respect to w and b through standard procedures. For the non-separable case
(Figure 5b), the constraints can be modified by introducing slack variables ξi [22]:

yi((w·xi) + b) ≥ 1− ξi (4)

and Equation (1) becomes:

L =
1
2
‖W‖2 − 1

vn

n

∑
i=1

ξi (5)

where v(0,1) is introduced in order to account for misclassification [55,56]. In addition, Vapnik [22]
introduced a kernel function K(xi, xj) to account for the nonlinear decision boundary.
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In the present SVM study, the Environment for Visualizing Images (ENVI) (ENVI 4.4 2006, Harris
Corporation, Jersey City, NJ, USA) was used. The ENVI 4.4 SVM classifier provides four types of
kernels: linear, polynomial, radial basis function (RBF), and sigmoid. The mathematical representations
of each kernel (linear, polynomial, radial basis function, and sigmoid, respectively) are listed below
(ENVI 4.4 2006):

Linear : K(xi, yi) = xT
i ·xj,

Polynomial : K(xi, yi) =
(
Υ·xT

i ·xj + r
)d, Υ > 0,

Radial basis function : K(xi, yi) = e−Υ(xi−xj)
2
, Υ > 0,

Sigmoid : K(xi, yi) = tan h
(
Υ·xT

i ·xj + r
) (6)

where γ, r, and d are parameters of the kernel functions and are entered manually. In the present
study, the RBF kernel was used (often called the Gaussian kernel) because it is one of the most



Sustainability 2017, 9, 48 9 of 15

powerful kernels [10,17]. The RBF kernel is the default kernel, and it works well in most of the cases
(ENVI 4.4 2006). Moreover, in many studies and cases (especially in nonlinear problems), RBF provides
better prediction results for landslide susceptibility mapping than other kernels [2,10,57,58]. In order
to perform the landslide susceptibility mapping using an SVM, the following steps had to be taken:

(1) Preparation of the 18 landslide-related factors as GIS data;
(2) Opening of the landslide-related factors to use ENVI software through a TIFF image file;
(3) Defining the region of interest (ROI) through using the landslide location data;
(4) Running the SVM classification algorithm by using the RBF kernel for each factor;
(5) Summarizing the result of SVM classification for each factor;
(6) Validation of the summarized result by using the area-under-the-curve (AUC) method.

A sensitivity analysis showed how a solution might be changed when the input factors are
also altered. If the selected factor results in a relatively large change in the outcome, the outcome
is believed to be affected by that specific factor. The factors that have the greatest impact on the
calculated landslide susceptibility map can therefore be identified through using sensitivity analysis.
In the present study, sensitivity analysis was conducted by excluding each factor in turn during the
summation stage:

LSI SENi = SVMall − SVMi (i = 1, 2, . . . , n) (7)

where LSI SENi is the landslide susceptibility index (LSI) of a factor omitted from the sensitivity
analysis, SVMall is the sum of the result of classification when using the SVM of all factors, and SVMi
is the result of classification when using the SVM of a particular factor. Here, n is the total number of
input factors. The LSI was used to map the landslide susceptibility. Finally, the landslide susceptibility
was mapped with the result of the classification, and the sensitivity analysis was validated through the
use of existing landslide locations, that were not used to train the model and the AUC method.

4. Results

The SVM was applied and the results were used to produce landslide susceptibility maps of the
study areas. In order to create a landslide susceptibility map, four classes were established, based
on areas for simple and visual interpretation. These classes were: very high (10%), high (10%),
medium (20%), and low (60%) (Figure 6a for PyeongChang area and Figure 6b for Inje area).
The classification was useful for both estimating the possibility of a landslide in each class, and for
visually delineating susceptible zones in residential and facility areas.

A landslide susceptibility map should be able to make an effective prediction of possible landslide
areas. It can also be validated through incorporating data acquired from new landslide occurrence
locations, if landslides do occur. In this study, the validation of the landslide susceptibility analysis
was performed by using 50% of total landslide occurrences that were not used as the training data.
The validation of the landslide susceptibility map was completed by following these four steps:
(1) sorting the calculated LSI values in all cells into descending order; (2) breaking down the ordered
cell values into 100 classes with cumulative 1% intervals; (3) adapting the above procedure for the
landslide occurrence cells by comparing the 100 classes; and (4) making a graph to compare the two
sets of classifications.

As a result of this, in the case of the PyeongChang area, the 90%–100% (10%) class of the study
areas in which the LSI had a higher rank, explained 40% of the entire landslides. In addition, the
80%–100% (20%) class of the study areas in which the LSI had a higher rank, explained 63% of
the landslides. In order to compare the results quantitatively, AUCs were recalculated as the total
area [59,60]. Therefore, the AUC could be used to assess the prediction accuracy qualitatively. From the
validation of the landslide susceptibility maps, the RBF kernel produced AUC values, indicating the
accuracy of the landslide susceptibility maps, and these were 81.36% for the PyeongChang area, and
77.49% for the Inje area (Figure 7). There were some differences in accuracy between the study areas,
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because the previous studies [2–19,29–33] showed that the spatial distribution is subject to change,
according to the area and event. However, the accuracy was usually high enough, displaying figures
of above 80%.Sustainability 2017, 9, 48 10 of 15 
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Figure 6. Landslide susceptibility maps created support vector model. The index was classified into
four classes based on an area for simple and visual interpretation: very high, high, medium, and low
index ranges in 10%, 10%, 20%, and 60% of the study area, respectively. (a) The PyeongChang area and
(b) the Inje area.

The sensitivity analyses were conducted by excluding each factor (Equation (7)) in turn during the
summation stage of the SVM, before the effect of each factor was evaluated. In this way, a sensitivity
analysis was performed in order to make sure that the model system used was susceptible to various
factor selection. The model outputs were compared with the expected output changes. In order to
conduct the sensitivity analysis, we re-used the rate curve, as well as the AUC method. In accordance
with the landslide susceptibility validation of the PyeongChang area by the sensitivity analysis (Table 4),
all of the factors, including aspect, SPI, TWI, slope, land use, geology, plan curvature, distance from
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fault, timber type, and soil depth, exerted a minor positive influence on the landslide susceptibility
maps. On the contrary, the remaining factors, including soil topography, soil material, soil drainage,
soil texture, timber age, timber diameter, and timber density, exercised a minor negative influence
on the landslide susceptibility. Moreover, for the Inje area, SPI, slope length, aspect, slope, TWI,
plan curvature, geology, distance from fault, soil material, soil depth, soil topography, soil texture,
soil drainage, and timber type, in sequence, also had small positive influences on the landslide
susceptibility maps. In stark contrast, timber diameter, timber density, and timber age, had small
negative influences on the landslide susceptibility maps. This is because the lower the value of the
AUC gets, the greater the effect of the factor on the landslide susceptibility maps will be. Conversely,
a larger AUC means that the factor has a more negative effect on the landslide susceptibility maps.
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Figure 7. Cumulative frequency diagram showing the landslide susceptibility index rank (x-axis)
occurring in the cumulative percent of landslide locations (y-axis). From the validation of the landslide
susceptibility maps, SVM approaches the produced area-under-the-curve (AUC) values of accuracy of
81.36% (PyeongChang area with all factors) and 77.49% (Inje area with all factors).

Table 4. Result of sensitivity analysis.

PyeongChang Inje

Factor AUC Effect Factor AUC Effect

Aspect 78.66 Positive SPI 75.93 Positive
Land use 80.32 Positive Slope Length 76.22 Positive

SPI 80.70 Positive Aspect 76.28 Positive
Slope 80.72 Positive Slope 76.68 Positive
TWI 80.81 Positive TWI 76.76 Positive

Geology 80.89 Positive Plan curvature 77.18 Positive
Plan curvature 81.06 Positive Geology 77.22 Positive

Distance from fault 81.07 Positive Distance from fault 77.32 Positive
Timber type 81.18 Positive Soil material 77.37 Positive
Soil depth 81.30 Positive Soil depth 77.37 Positive

All factor used 81.36 Soil topography 77.42 Positive
Soil topography 81.36 Negative Soil texture 77.42 Positive

Soil drainage 81.37 Negative Soil drainage 77.43 Positive
Soil material 81.39 Negative Timber type 77.47 Positive
Soil texture 81.55 Negative All factor used 77.49

Timber diameter 81.81 Negative Timber diameter 77.79 Negative
Timber age 81.93 Negative Timber density 77.88 Negative

Timber density 82.22 Negative Timber age 78.35 Negative

AUC: area-under-the-curve.
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5. Discussion and Conclusions

In the present study, the SVM was applied for predicting landslide occurrences in the areas
susceptible to these phenomena in the PyeongChang and Inje areas, where landslides are expected
to continue to strike in the future. For application of the SVM, the RBF kernel was used. In order to
validate the maps, landslide locations that were not used in the training, were used to assess predictive
capacity of the landslide susceptibility maps. The maps were developed by using an RBF kernel that
had high accuracy rates (81.36% for the PyeongChang area and 77.49% for the Inje area), as validated
by the AUC method. Therefore, the SVM can be used efficiently for landslide susceptibility analysis
and may be used widely for the prediction of various spatial events.

In order to assess the sensitivity of the factors, each factor was excluded from the analysis in
turn, and its sensitivity was validated through the use of the landslide location data. In the Inje area,
topography, geology, and soil-related factors, had relatively positive effects (especially SPI, slope length,
aspect, slope, and TWI) on the landslide susceptibility maps. On the contrary, in the PyeongChang
area, topography-related, and geology-related factors, had relatively positive effects (especially aspect,
land use, SPI, slope, and TWI) on the landslide susceptibility maps. From the sensitivity analysis,
we know that the topography-derived factors, such as slope, aspect, SPI, TWI, and slope length, are
important for landslide susceptibility mapping. The landslide susceptibility mapping uncertainty
comes from the input factor error, the positioning error of aerial photograph, and the landslide location
visual interpretation error. The SVM is a useful and flexible supervised classifier, that is suitable
for a wide range of classification problems, even if the problems are in high dimensions and are
not linearly separable. In addition, SVMs are flexible when considering the choice of the threshold
form separating susceptible areas from non-susceptible areas, by introducing the kernel. The kernel
implicitly contains a non-linear transformation; therefore, any particular assumptions of the functional
form of the transformation do not have to be made [61]. When using the SVM, decision rules provide a
general method of function estimation that is performed by solving a convex (quadratic) optimization
problem. In summary, SVMs have a significant advantage when compared to other machine learning
algorithms: the uniqueness of the solution [57]. Nevertheless, the SVM is still a binary classifier,
so multi-class classification is not eligible in this case. Moreover, the SVM does not offer many choices
for controlling values, neither does it directly provide probability and statistics estimates in the results
and procedure, as it is a non-parametric technique.

The present study identified factors that may be involved in landslides, and the results and
methods that can be used for landslide susceptibility mapping in other regions beyond the study
areas. Landslide susceptibility maps are able to help implement a guide for planning mass evacuation
of residents in the case of a landslide, and also to prevent or reduce the disruptive impacts of a
natural disaster on surrounding communities. Landslide susceptibility mapping is expected to be
readily applied to other areas, yielding a comprehensive and useful analysis model. Especially when
considering more practical use of landslide management, landslide hazard and risk analysis must be
completed [62]. The analysis will be based on the relationship between the landslide occurrence and
precipitation. Therefore, in the not-too-distant future, a landslide warning system may be established
by forecasting landslides induced by rainfall. Nevertheless, caution should be exercised when using
the models for specific site development, and the scale of the analysis should be considered with great
care. In sum, the models used in the present study are not valid for specific planning and assessment
purposes, but for general planning and assessment purposes.
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city center and its near vicinity by the logistic regression method. Environ. Earth Sci. 2009, 59, 745–756.
[CrossRef]

46. Chauhan, S.; Sharma, M.; Arora, M.K. Landslide susceptibility zonation of the Chamoliregion,
Garhwal Himalayas, using logistic regression model. Landslides 2010, 7, 411–423. [CrossRef]

47. Lee, S.; Won, J.S.; Jeon, S.W.; Park, I.; Lee, M.J. Spatial Landslide Hazard Prediction Using Rainfall Probability
and a Logistic Regression Model. Math. Geosci. 2015, 47, 565–589. [CrossRef]

48. Anbalagan, R. Landslide susceptibility evaluation and zonation mapping in mountainous terrain. Eng. Geol.
1992, 32, 269–277. [CrossRef]

49. Edeso, J.M.; Merino, A.; Gonzalez, M.J.; Marauri, P. Soil erosion under different harvesting managements in
steep forest lands from northern Spain. Land Degrad. Dev. 1999, 10, 79–88. [CrossRef]

50. Dhakal, A.S.; Sidle, R.C. Long-term modeling of landslides for different forest management practices.
Earth Surf. Proc. Land 2003, 28, 853–868. [CrossRef]

51. Kanevski, M.; Pozdnoukhov, A.; Timonin, V. Machine Learning Algorithms for Geospatial Data. Theory,
Applications and Software; PPUR EPFL-Press: Lausanne, Switzerland, 2009.

52. Abe, S. Support Vector Machines for Pattern Classification; Springer: New York, NY, USA, 2010.
53. Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw.

1999, 12, 783–789. [CrossRef]
54. Yao, X.; Tham, L.G.; Dai, F.C. Landslide susceptibility mapping based on Support Vector Machine: A case

study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [CrossRef]
55. Scholkopf, B.; Smola, A.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput.

2000, 12, 1207–1245. [CrossRef] [PubMed]
56. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining Inference and Prediction;

Springer: New York, NY, USA, 2001.
57. Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping

using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369.
[CrossRef]

58. Taner, S.B. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping:
The Candir catchment area (western Antalya, Turkey). Int. J. App. Earth. Obs. Geoinform. 2004, 26, 399–412.

59. Lee, S.; Dan, N.T. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam:
Focus on the relationship between tectonic fractures and landslides. Environ. Geol. 2005, 48, 778–787.
[CrossRef]

60. Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency
ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [CrossRef]

61. Auria, L.; Moro, R.A. Support Vector Machines (SVM) as a Technique for Solvency Analysis. Available online:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1424949 (accessed on 17 December 2016).

62. Einstein, H.H. Landslide Risk Assessment Procedure. In Proceedings of the Fifth International Symposium
on Landslide, Lausanne, Switzerland, 10–15 July 1988.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12665-009-0070-0
http://dx.doi.org/10.1007/s10346-010-0202-3
http://dx.doi.org/10.1007/s11004-014-9560-z
http://dx.doi.org/10.1016/0013-7952(92)90053-2
http://dx.doi.org/10.1002/(SICI)1099-145X(199901/02)10:1&lt;79::AID-LDR324&gt;3.0.CO;2-4
http://dx.doi.org/10.1002/esp.499
http://dx.doi.org/10.1016/S0893-6080(99)00032-5
http://dx.doi.org/10.1016/j.geomorph.2008.02.011
http://dx.doi.org/10.1162/089976600300015565
http://www.ncbi.nlm.nih.gov/pubmed/10905814
http://dx.doi.org/10.1007/s12040-013-0282-2
http://dx.doi.org/10.1007/s00254-005-0019-x
http://dx.doi.org/10.1007/s00254-006-0256-7
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1424949
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data 
	Methods 
	Results 
	Discussion and Conclusions 

