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Abstract: Facing urban warming, mitigation and adaptation strategies are not efficient enough to
tackle excessive urban heat, especially at the local scale. The local climate zone (LCZ) classification
scheme is employed to examine the diversity and complexity of the climate response within a city.
This study suggests that zonal practice could be an efficient way to bridge the knowledge gap between
climate research and urban planning. Urban surfaces classified by LCZ are designated as urban
climate landscapes, which extends the LCZ concept to urban planning applications. Selecting Wuhan
as a case study, we attempt to explore the climatic effect of landscape patterns. Thermal effects are
compared across the urban climate landscapes, and the relationships between patch metrics and
land surface temperature (LST) are quantified. Results indicate that climate landscape layout is a
considerable factor impacting local urban climate. For Wuhan, 500 m is an optimal scale for exploring
landscape pattern-temperature relationships. Temperature contrast between surrounding landscape
patches has a major influence on LST. Generally, fragmental landscape patches contribute to heat
release. For most climate landscape types, patch metrics also have a significant effect on thermal
response. When three metrics are included as predictive variables, 53.3% of the heating intensity
variation can be explained for the Large Lowrise landscape, while 57.4% of the cooling intensity
variation can be explained for the Water landscape. Therefore, this article claims that land-based
layout optimization strategy at local scale, which conforms to planning manner, should be taken into
account in terms of heat management.

Keywords: urban climate; urban landscape; local climate zone (LCZ); urban heat island (UHI);
mitigation and adaptation strategy; urban planning

1. Introduction

Global warming is an indisputable fact, and city temperatures are significantly higher than the
global average temperature [1,2]. Urban thermal environment influences residents’ health, energy
consumption, and so on. The urban heat island (UHI) and related climatic issues have been extensively
investigated by global researchers for more than 100 years [3]. Urban surface characteristics are
considered to be the main factors affecting UHIs [4–6]. Governing the near-surface energy balance,
land surface temperature (LST), derived from remote sensing imagery, modulates the air temperature
and thus influences urban microclimate [7–9].

From the perspective of landscape ecology, a large number of studies have examined the
relationship between land use/land cover (LULC) spatial distribution and LST [10–13]. However,
the conventional LULC classification system is not well suited for urban landscapes. Impervious
surface is treated as a single type [13], or may be subdivided into buildings and non-buildings such as
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pavement [11,14]. The former approach fails to distinguish the climatic diversity of the urban building
environment. Results of later studies are not easily applicable, because urban planning processes
focus on land parcels rather than individual buildings. A more reasonable classification system is
thus needed.

Mitigation and adaptation strategies are needed to limit potential heat stress risk. Generally, heat
management strategies fall into three categories: (1) utilizing green infrastructure to lower the ambient
temperature [15–18]; (2) modifying urban form to improve ventilation potential and heat release [19,20];
(3) using advanced technology and materials to cool buildings and the environment [21]. Beyond that,
mitigation efforts should consider land-use planning strategies within cities [22], especially in the early
stage of the urban planning process.

Local climate zone (LCZ) classification scheme provides a standard method to study the internal
climate within cities and divides the urban surface into relatively homogeneous classes at the local
scale (102–104 m) [23]. The LCZ classification distinguishes built environments more finely than other
similar classification schemes such as local thermal zone (LTZ) classification [24]. In further studies
based on the LCZ scheme, different methods of classification and various data sources are considered
in order to achieve better classification results [25,26]. Some researchers focus on the classification
results and their accuracy [27–29]. Others have conducted simulation studies based on specific LCZ
scenarios [16,30]. Compared with the conventional LULC classification scheme, LCZs are better
suitable for the urban planning process due to the zoning practices at the local scale. However, there is
little discussion about the impact of LCZs’ spatial arrangement on urban climate and how to optimize
the landscape layout for a better thermal environment.

Urban surfaces divided by LCZ classification are described as urban climate landscapes in this
paper. They are divided into action landscapes and compensation landscapes according to their
mean LST. Action landscapes bring heat load into the city and have higher temperature than urban
average level. Others, whose mean temperature is lower, are regarded as compensation landscapes.
Landscape-climate interactions and heterogeneities are expressed through urban climate landscape
patterns. In this research, we examine the following questions: (1) Can LCZ classification differentiate
urban surface temperature effectively? (2) What is the difference in the pattern-temperature relationship
across climate landscape types? (3) What metrics impact the thermal effect mostly, and how?
By exploring these three questions, we hope to help urban planners to understand the potential
impact of climate landscape patterns, so as to optimize urban landscape layout.

2. Materials

2.1. Study Area

Wuhan (29◦58′–31◦22′N, 113◦41′–115◦05′E) is one of the largest cities in the central region of
China (Figure 1), with a total area of 8569 km2 and a population of more than 10 million. Located in the
east of Jianghan Plain, the Yangtze River runs through the city, and numerous lakes are present within
the urban areas. There are four distinct seasons in Wuhan. Summer begins in May and ends in October.
It is very hot and humid with abundant rainfall, and the maximum temperature is approximately
37–39 ◦C. Similar to many developing cities, Wuhan is facing great challenges in urban environment.
In this research, the Wuhan metropolitan development area (MDA) is chosen as the study extent,
which covers approximately 3268 km2. With a much higher density of urban construction and urban
population, the main urban area (MUA) of the city is used as a comparison extent, which covers
695 km2.
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Figure 1. Location map of Wuhan and the study area. 

2.2. Data Pre-Processing 

Landsat 8 images are employed in this study. Landsat 8 was launched in February 2013, carrying 
the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). Moderate-resolution 
imagery is collected from 15 m to 100 m ground cell resolution. Four images taken in spring, summer 
and fall, respectively, are selected for mapping LCZs. The image data were collected on 26 April, 13 
June, 31 July, and 3 October 2013. All these days were calm and cloudless, without rainfall the day 
before. Data acquired at 10:58 a.m. on 31 July, a typical midsummer day with the maximum 
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Access Portal Tools) method has the advantages of convenience and versatility [31]. It provides a 
practical workflow to process the LCZ classification, using open access data and open-source 
software [32]. Based on the geometry and surface cover properties provided by the LCZ classification 
framework (Table 1), the urban landscape is observed using Google Earth. Training areas are selected 
according to land cover types, street aspects, and building spacing requirements specified in local 
architectural design code. The supervised classification process is performed using SAGA GIS 
software. 

Figure 1. Location map of Wuhan and the study area.

2.2. Data Pre-Processing

Landsat 8 images are employed in this study. Landsat 8 was launched in February 2013, carrying
the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor). Moderate-resolution imagery
is collected from 15 m to 100 m ground cell resolution. Four images taken in spring, summer and
fall, respectively, are selected for mapping LCZs. The image data were collected on 26 April, 13 June,
31 July, and 3 October 2013. All these days were calm and cloudless, without rainfall the day before.
Data acquired at 10:58 a.m. on 31 July, a typical midsummer day with the maximum temperature
of 37 ◦C, is used to retrieve LST. An extension tool called Landsat 8 LST in ENVI 5.2 SP1 software
performed the LST calculation process. The initial resolution of LST raster data is 30 m. Since a 100 m
resolution is recommended for LCZ classification (see Section 3.1), LST data are resampled to 100 m.

3. Methodology

We take three steps to achieve the aim of this research: classification; comparison; and
quantification. Accordingly, we (1) map LCZs as urban climate landscapes in Wuhan, China;
examine the LST differentiation between landscapes; and describe the spatial distribution of urban
climate landscapes in order to select focal landscapes; (2) determine the optimal scale to study the
pattern-temperature relationship, then compare the relationship between each climate landscape and
temperature response; (3) investigate the impact of patch patterns on thermal effect.

3.1. LCZ Classification and Validation

3.1.1. Mapping Local Climate Zones

Among various LCZ classification techniques, the WUDAPT (The World Urban Database and
Access Portal Tools) method has the advantages of convenience and versatility [31]. It provides
a practical workflow to process the LCZ classification, using open access data and open-source
software [32]. Based on the geometry and surface cover properties provided by the LCZ classification
framework (Table 1), the urban landscape is observed using Google Earth. Training areas are selected
according to land cover types, street aspects, and building spacing requirements specified in local
architectural design code. The supervised classification process is performed using SAGA GIS software.
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Considering the scale of the LCZ scheme, pattern recognition restrictions, and user
requirements [32], an initial resolution of 100 m is adopted. Then, in order to obtain a representative,
operable classification map, the optimal patch size of the LCZs is demanded. The initial classification
results are filtered using a majority filter, which replaces cells based on the majority of the contiguous
neighboring cells. Some research has revealed that 500–650 m is the most suitable scale for accurately
characterizing the LST patterns in Wuhan [9]. Therefore, the majority filter radius was set to 3 pixels,
that is, the neighboring area covers 5 × 5 cells.

Table 1. Geometric and surface cover properties for local climate zones (LCZs) [23].

LCZ Classes
Sky

View
Factor

Aspect
Ratio

Building
Surface
Fraction

Impervious
Surface
Fraction

Pervious
Surface
Fraction

Height of
Roughness
Elements

LCZ 1 (Compact Highrise) 0.2–0.4 >2 40–60 40–60 <10 >25
LCZ 2 (Compact Midrise) 0.3–0.6 0.75–2 40–70 30–50 <20 10–25
LCZ 3 (Compact Lowrise) 0.2–0.6 0.75–1.5 40–70 20–50 <30 3–10
LCZ 4 (Open Highrise) 0.5–0.7 0.75–1.25 20–40 30–40 30–40 >25
LCZ 5 (Open Midrise) 0.5–0.8 0.3–0.75 20–40 30–50 20–40 10–25
LCZ 6 (Open Lowrise) 0.6–0.9 0.3–0.75 20–40 20–50 30–60 3–10
LCZ 7 (Lightweight Lowrise) 0.2–0.5 1–2 60–90 <20 <30 2–4
LCZ 8 (Large Lowrise) >0.7 0.1–0.3 30–50 40–50 <20 3–10
LCZ 9 (Sparsely Built) >0.8 0.1–0.25 10–20 <20 60–80 3–10
LCZ 10 (Heavy Industry) 0.6–0.9 0.2–0.5 20–30 20–40 40–50 5–15
LCZ A (Dense Trees) <0.4 >1 <10 <10 >90 3–30
LCZ B (Scattered Trees) 0.5–0.8 0.25–0.75 <10 <10 >90 3–15
LCZ C (Bush, Shrub) >0.9 0.25–1.0 <10 <10 >90 <2
LCZ D (Low Plants) >0.9 <0.1 <10 <10 >90 <1
LCZ E (Bare Rock or Paved) >0.9 <0.1 <10 >90 <10 <0.25
LCZ F (Bare Soil or Sand) >0.9 <0.1 <10 <10 >90 <0.25
LCZ G (Water) >0.9 <0.1 <10 <10 >90 -

3.1.2. Validation by LST Variation

The LCZ framework was originally developed to standardize urban temperature observations [23].
Air temperatures of each zones are significantly difference [33]. Because of the close relationship
between LST and air temperature [34], we assume that the LSTs of each zone should also be significantly
different. Thus the assumption is that the LCZ classification is determined by the land surface
characteristics, which in turn affects the zonal patterns of the LST. In this case, analysis of variance
(ANOVA) is used to examine the ability of the LCZs to differentiate LSTs across climate landscapes.
Tamhane’s T2 post hoc is used to investigate the differences between each pair of LCZs.

3.2. Comparison of Different Landscapes

3.2.1. Urban Climate Landscape Pattern

A series of landscape metrics are used for quantifying the spatial distribution of climate landscapes,
which are computed using the Fragstats 4.2.1 software package [35]. Three aspects are often considered
in urban planning, namely, area, shape geometry, and relationship with other landscapes. All metrics
selected in this study revolve around these factors (Table 2). In this research, spatial characteristics of
individual patches are quantified by patch level metrics, general character of each climate landscape
type by class level metrics; and overall landscape pattern of the given extent by landscape level metrics.

3.2.2. Searching for the Optimal Scale

Attention should be paid to spatial scale or resolution when analyzing remote sensing
imagery [8,36]. Since landscape patterns and their relationships tend to vary at different observational
scales [37], the optimal scale is required for the examination. The moving window method is applied
to calculate continuous landscape metrics. For each pixel, seven window sizes are tested (300 m,
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500 m, 700 m, 900 m, 1100 m, 1300 m, and 1500 m). The patch pattern is measured by three landscape
metrics (Table 2) including area-weighted mean perimeter-area ratio (PARA_AM), Shannon’s diversity
index (SHDI), and total edge contrast index (TECI). Pearson’s correlation coefficients between metric
values from seven window sizes and LSTs of the center points were examined to search for the optimal
window size.

Table 2. Descriptions of landscape metrics used in this study [35].

Abbreviation Landscape Metrics Description Analysis Level

AREA Area The area of the patch. Patch level

SHAPE Shape Index The simplest and straightforward
measure of shape complexity. Patch level

CAI Core Area Index A relative index that quantifies core area
as a percentage of patch area. Patch level

ECON Edge Contrast Index A relative measure of the amount of
contrast along the patch perimeter. Patch level

PLAND Percentage of Landscape The percentage the landscape comprised
of the corresponding patch type. Class level

PARA_AM Area-Weighted Mean
Perimeter-Area Ratio

PARA is a simple measure of shape
complexity. Landscape level

SHDI Shannon’s Diversity
Index

A popular measure of diversity in
community ecology. Landscape level

TECI Total Edge Contrast
Index

A relative measure of the amount of
contrast along the patch perimeter. Landscape level

PD Patch Density The number of patches on a per unit
area basis. Landscape level

AREA_MN Mean Patch Area Average patch area of the landscape. Landscape level

TCA Total Core Area The sum of the core areas of each patch of
the landscape. Landscape level

3.2.3. Comparison of the Pattern-Temperature Relationship

The pattern-temperature relationship of each landscape is investigated by randomly sampled
pixels. First, a total of 100 pixels in each landscape are selected randomly. Taking every pixel as a center,
we buffer a square area at the optimal scale to observe the surrounding landscape patterns. Then, six
metrics are computed to describe the composition and construction of landscapes (Table 2), including
patch density (PD), mean patch area (AREA_MN), total core area (TCA), as well as PARA_AM, TECI,
and SHDI. At last, the pixel LST and maximum/minimum LST in the buffer area are correlated with
landscape metrics to uncover any relationships.

3.3. Quantification of the Heating/Cooling Effect

3.3.1. Defining the Heating/Cooling Intensity

The thermal effects on the surrounding environment by climate landscape patches are considered
as heating intensity for action landscapes and cooling intensity for compensation landscapes. In this
paper, heating intensity = LSTpatch_max − LSTmean; cooling intensity = LSTpatch_min − LSTmean, where
LSTpatch_max is the maximum LST of the patch, LSTpatch_min is the minimal LST of the patch, and
LSTmean is the mean LST of the whole study area.

3.3.2. Quantifying the Effect by Patch Metrics

To estimate the contribution of patch metrics to heating/cooling effect, four landscape metrics
are selected to represent landscape pattern characteristics at the patch level (Table 2). They are area
(AREA), shape index (SHAPE), core area index (CAI), and edge contrast index (ECON). Core area is
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defined as the area of the patch 100 m away from the edge; the edge contrast is determined by the
temperature difference between the average LSTs of each class. A step-wise multivariate regression
is used to evaluate the roles of climate landscape patterns on heating and cooling intensity at the
patch level.

4. Results and Discussion

4.1. LCZ Map of Wuhan

The LCZ classification results in Wuhan are shown in Figure 2. There are 17 classes within the
initial LCZ framework (Table 1). Based on four Landsat 8 images from 2013, 16 classes are present
due to the lack of a Lightweight Lowrise class. Different radii (from 1 to 5 pixels) of the majority filter
are applied respectively to the classification result. As the radius increases, fragmented pixels are
removed (Figure 2a,b), and gradually, more detail is lost (Figure 2d,e). Considering the readability of
the classification result, the applicability of the LCZs to the urban planning process, and the operational
scale of the LST dynamic in Wuhan [9], Figure 2c is selected for analysis.
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4.2. Verifying LCZs by LST Variation

4.2.1. Distribution of LST

As shown in Figure 3, the LST distribution in Wuhan is uneven. The urban built-up environment
is warmer than other areas (Figure 3). The average LST of the MDA is 35.66 ◦C and the standard
deviation is 4.45 ◦C (Figure 4). Comparatively, the average LST of the MUA is 3.13 ◦C higher
than the MDA, reaching 38.79 ◦C with a standard deviation of 5.00 ◦C. The core area of the city
is significantly overheated.
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Figure 4 shows the LST distribution of all climate landscapes. Action landscapes include the
built-up environment and bare land. Excessively high temperature is present in the Compact Lowrise
(mean LST is 44.01 ◦C) and the Heavy Industry landscape (mean LST is 43.83 ◦C). The Compact
Midrise and Bare Rock landscapes also show elevated heat levels. Vegetation and waterbody areas
belong to compensation landscapes, which play the role of balancing and lowering temperature.
Other landscapes, such as Open Lowrise, Sparsely Built, Dense Trees, Scattered Trees, are moderate in
this case.

4.2.2. Validation of LCZ Classification

Due to differences in urban morphology and artificial heat emission, air temperature readings
vary across each LCZ class [33]. In this study, the results of ANOVA show that there is also a significant
difference between the mean LSTs in all 16 classes, and the significance level is 0.000. Furthermore, the
results of Tamhane’s T2 post hoc show a significant difference between the average LSTs of most of
the 120 pairs for all 16 classes (Table 3). At the 0.05 confidence level, only four pairs, that is, Compact
Highrise and Bare Soil or Sand, Compact Midrise and Bare Rock or Paved, Compact Lowrise and
Heavy Industry, and Open Midrise and Large Lowrise, exhibit an insignificant difference. Open
Midrise and Bare Rock or Paved is included at the 0.01 confidence level. This indicates that the LCZ
classification result is considered to be acceptable for this preliminary study.
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Table 3. Tamhane’s T2 multiple comparison table of mean differences in LST of LCZ classes.

LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ 9 LCZ 10 LCZ A LCZ B LCZ C LCZ D LCZ E LCZ F

LCZ 2 −3.212 *
LCZ 3 −4.671 * −1.459 *
LCZ 4 −1.187 * 2.025 * 3.484 *
LCZ 5 −1.831 * 1.382 * 2.841 * −0.644 *
LCZ 6 2.184 * 5.397 * 6.856 * 3.371 * 4.015 *
LCZ 8 −1.837 * 1.376 * 2.835 * −0.649 * −0.006 −4.021 *
LCZ 9 3.037 * 6.249 * 7.708 * 4.224 * 4.868 * 0.853 * 4.873 *

LCZ 10 −4.493 * −1.280 * 0.179 −3.305 * −2.662 * −6.677 * −2.656 * −7.529 *
LCZ A 4.228 * 7.441 * 8.900 * 5.415 * 6.059 * 2.044 * 6.065 * 1.192 * 8.721 *
LCZ B 3.238 * 6.451 * 7.910 * 4.425 * 5.069 * 1.054 * 5.075 * 0.201 * 7.731 * −0.990 *
LCZ C 5.284 * 8.496 * 9.955 * 6.471 * 7.114 * 3.099 * 7.120 * 2.247 * 9.776 * 1.055 * 2.046 *
LCZ D 6.014 * 9.226 * 10.685 * 7.201 * 7.845 * 3.830 * 7.851 * 2.977 * 10.507 * 1.786 * 2.776 * 0.730 *
LCZ E −2.936 * 0.277 1.736 * −1.749 * −1.105 * −5.120 * −1.099 * −5.973 * 1.557 * −7.164 * −6.174 * −8.219 * −8.950 *
LCZ F −0.625 2.588 * 4.046 * 0.562 * 1.206 * −2.809 * 1.212 * −3.662 * 3.868 * −4.853 * −3.863 * −5.909 * −6.639 * 2.311 *
LCZ G 8.749 * 11.961 * 13.420 * 9.936 * 10.580 * 6.565 * 10.585 * 5.712 * 13.241 * 4.521 * 5.511 * 3.465 * 2.735 * 11.685 * 9.374 *

* The mean difference is significant at the 0.05 level (2-tailed).
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4.3. Spatial Distribution of Urban Climate Landscape and Focal Landscapes

4.3.1. Area Proportion of Each Climate Landscape

Figure 5 shows the proportion of each climate landscape area, that is, percentage of landscape
(PLAND). Low Plants occupies the largest area in the MDA, but it is much less in the MUA. Areas
of Large Lowrise and Open Midrise account for the largest proportion in the MUA. With larger area
proportions in the MUA than in the MDA, most built-up landscapes are concentrated in the core area
of the city, and are surrounded by a large number of agricultural landscapes. The total proportion
of vegetation in MUA is less than 12%. Due to the lack of vegetation, water is the most important
compensation landscape in Wuhan. It is noteworthy that the area proportion of Water in the MUA is
19.7%, which is greater than the proportion of Water in the MDA.
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4.3.2. Selection of Focal Climate Landscapes

Not all climate landscapes have the same impact on urban thermal environment. Some deserve
more attention than others. Based on the area, distribution, and temperature, three criteria are
established to screen focal climate landscapes in this case study. First, the number of samples must be
sufficient in order to ensure the validity of the analysis results. Areas with a PLAND less than 0.1%
are disregarded. Second, the spatial distribution should be concentrated to the MUA, which indicates
that the core area of the city needs more attention. Areas with larger PLAND in the MUA than in the
MDA are considered to satisfy this criterion. Third, the LCZ should show a significant temperature
difference, and the average LST must be beyond ±1 standard deviation from the mean LST of the
whole study area (Figure 4).

Table 4 shows whether each landscape meets these three criteria. As a result, Compact Midrise,
Compact Lowrise, Open Highrise, Open Midrise, Large Lowrise, Heavy Industry, and Water are
selected as focal landscapes for further analysis.

4.4. Optimal Scale for Studying Pattern-Temperature Interactions

A moving window analysis is applied to examine the correlation between landscape patterns and
LSTs at seven spatial scales (from 300 m to 1500 m, at 200 m intervals). Pearson correlation coefficients
of each window size are plotted in Figure 6. For most focal landscapes, PARA_AM and TECI show the
strongest correlation with LST at the 300–700 m scale, and SHDI shows the strongest correlation with
LST at the 500–700 m scale. For the Water landscape, the correlation between SHDI and LST reaches a
maximum of 0.585 at the 700 m scale, which is close to 0.580 at the 500 m scale. This implies that the
500 m scale is a good choice to study pattern-temperature interactions in Wuhan, since most of the
interactions show highest correlativity at this scale. The scale effect of the Heavy Industry landscape is
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peculiar, and PARA_AM and SHDI correlate best with LST at 1300 m and 1500 m, respectively. This
may be due to high-intensity artificial heat sources which is distinct from all other landscapes.

Table 4. Selection of focal climate landscapes.

Sufficient Area Centralized
Distribution

Adequate Temperature
Difference

LCZ 1 (Compact Highrise) -
√

-
LCZ 2 (Compact Midrise)

√ √ √

LCZ 3 (Compact Lowrise)
√ √ √

LCZ 4 (Open Highrise)
√ √ √

LCZ 5 (Open Midrise)
√ √ √

LCZ 6 (Open Lowrise)
√

- -
LCZ 8 (Large Lowrise)

√ √ √

LCZ 9 (Sparsely Built)
√

- -
LCZ 10 (Heavy Industry)

√ √ √

LCZ A (Dense Trees)
√

- -
LCZ B (Scattered Trees)

√
- -

LCZ C (Bush, Shrub)
√

- -
LCZ D (Low Plants)

√
- -

LCZ E (Bare Rock or Paved) -
√ √

LCZ F (Bare Soil or Sand)
√

- -
LCZ G (Water)

√ √ √

Note: The landscapes that meet all criteria are highlighted.
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Since both landscape patterns and LST distributions are scale dependent, it is important to
examine the scale effects in a specific case study before investigating the interrelationships. According
to previous studies, the optimal research scale in urban area varies, for example, from 120 m in
Indianapolis, USA [38], to 660–720 m in Beijing, China [8]. A case study in Wuhan suggests that the
appropriate scale to inspect the LST and its cause is 500–650 m [9]. This is consistent with our optimal
scale and verifies that 500 m is a suitable scale to investigate landscape-climate interactions locally.

4.5. Relationship between Landscape Metrics and LST at a Fixed Scale

Given the 500 m window size, the influence of landscape patterns on temperature varies (Figure 7).
Among these metrics, TECI, which represents the temperature difference between adjacent patches,
has the most stable effect on LST, negatively for action landscapes and positively for compensation
landscape. Noticeably, patch temperature is affected by adjacent patches. For all action landscapes,
LST negatively correlates with PD, PARA_AM, and SHDI, and positively correlates with AREA_MN
and TCA. This result demonstrates the benefit of a fragmental landscape pattern, that is, patches
with small area, large density and complex shape. For the compensation landscape, the situation is
reversed. Generally, fragmental landscape patches and large edge contrast of temperature contribute
to heat release.

Sustainability 2017, 9, 1700  11 of 16 

Indianapolis, USA [38], to 660–720 m in Beijing, China [8]. A case study in Wuhan suggests that the 
appropriate scale to inspect the LST and its cause is 500–650 m [9]. This is consistent with our optimal 
scale and verifies that 500 m is a suitable scale to investigate landscape-climate interactions locally. 

4.5. Relationship between Landscape Metrics and LST at a Fixed Scale 

Given the 500 m window size, the influence of landscape patterns on temperature varies (Figure 
7). Among these metrics, TECI, which represents the temperature difference between adjacent 
patches, has the most stable effect on LST, negatively for action landscapes and positively for 
compensation landscape. Noticeably, patch temperature is affected by adjacent patches. For all action 
landscapes, LST negatively correlates with PD, PARA_AM, and SHDI, and positively correlates with 
AREA_MN and TCA. This result demonstrates the benefit of a fragmental landscape pattern, that is, 
patches with small area, large density and complex shape. For the compensation landscape, the 
situation is reversed. Generally, fragmental landscape patches and large edge contrast of temperature 
contribute to heat release. 

 
Figure 7. Comparison of Pearson correlation coefficients between landscape metrics and LSTs: (a) PD; 
(b) AREA_MN; (c) PARA_AM; (d) TCA; (e) TECI; (f) SHDI. 

For those landscapes whose mean LST deviates far from the mean LST of the whole city (Figure 
4), such as Compact Lowrise, Large Lowrise, Heavy Industry, and Water, landscape metrics have 
greater influence on pixel LSTs. And moderate ones are less impacted by landscape patterns. In other 
words, layout optimization will be more effective in those landscapes with extreme temperatures, 
thus priority should be given to those types in planning decision process. 

Figure 7. Comparison of Pearson correlation coefficients between landscape metrics and LSTs: (a) PD;
(b) AREA_MN; (c) PARA_AM; (d) TCA; (e) TECI; (f) SHDI.



Sustainability 2017, 9, 1700 12 of 16

For those landscapes whose mean LST deviates far from the mean LST of the whole city (Figure 4),
such as Compact Lowrise, Large Lowrise, Heavy Industry, and Water, landscape metrics have greater
influence on pixel LSTs. And moderate ones are less impacted by landscape patterns. In other words,
layout optimization will be more effective in those landscapes with extreme temperatures, thus priority
should be given to those types in planning decision process.

In the case of action landscapes, the effect of pattern characteristics on minimum LST is stronger
than that on maximum LST, especially for the Compact Midrise, Open Midrise, and Large Lowrise
landscapes. That is to say, the minimum LST of action landscapes is more affected by landscape
patterns, while the maximum LST is relatively stable. Specific surface characteristics and artificial heat
release cause increasing temperature, while reasonable landscape patterns contribute to decreasing
temperature. For compensation landscapes, this relationship is reversed.

Some results of specific landscapes are worth noting. For the Open Highrise landscape, TECI is
the only metric to show any visible correlation with temperature. Compared with other landscape
types, the Open Highrise landscape is hardly affected by landscape pattern. Low density, high
buildings, and adequate vegetation result in better ventilation and lower temperature [39]. This
finding implies that flexible layout of the highrise landscape is acceptable because it does not impact
local climate significantly.

The LSTs of the Heavy Industry landscape correlate well with landscape pattern with a correlation
coefficient greater than 0.5. Despite excessive heat stress, the thermal environment of the Heavy
Industry landscape may be effectively mitigated by optimizing the landscape pattern. Reducing
the patch area, increasing patch shape complexity, and bordering compensation space are effective
methods of landscape optimization.

The Compact Lowrise landscape, which has the highest mean LST among all landscapes, is
generally similar to other action landscapes, but more complex. Landscape pattern and LSTs show a
moderate correlation with an irregular variation. This may be due to the complicated land surface
composition, low vegetation, and a large percentage of impervious surfaces [10,12]. Particularly, TECI
shows a strong correlation with the minimum LST (r = 0.758). This shows that controlling the patch
area, as well as adjoining to compensation landscapes, is essential.

4.6. Impact of Patch Metrics on LST

Table 5 shows the results of the step-wise multivariate regression. The coefficients of determination
(R2) measures the proportion of the variance in heating/cooling intensity that is predictable from
the patch metric(s). The standardized coefficients tell us which metric has a greater impact on patch
heating/cooling intensity in the regression model. Tolerance and VIF examine the collinearity of the
predictor variables.

For Compact Midrise, Open Highrise, Open Midrise, and Large Lowrise landscapes, patch
heating intensity is affected by ECON, CAI, and SHAPE. When these three metrics are included as
predictor variables, the model accounts for 53.3% of the heating intensity variance for the Large Lowrise
landscape, and CAI has the greatest impact on patch heating intensity. For Compact Midrise and Open
Midrise landscapes, the predictable proportion is 51.2% and 49.0%, and the most effective predictor
variables are ECON and CAI respectively. So it can be inferred that for these types of landscapes, it is
worth paying special attention to patch geometry in the planning process, especially the core area of
the patch and the temperature difference between adjacent patches.

Given extreme heat stress, patch heating intensity of Heavy Industry is less affected by patch
metrics. Only 26.8% can be explained by the shape complexity index. Since the influence of
patch geometry is limited, mitigation strategies integrating the surrounding environment should
be considered for the Heavy Industry landscape.
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Table 5. Regression results with landscape metrics as independent variables and heating/cooling
intensity as dependent variable.

Model
Unstandardized

Coefficients
Standardized
Coefficients t Sig.

Collinearity
Statistics

Adjusted
R Square

B Std. Error Beta Tolerance VIF

Heating
intensity

LCZ 2 (Compact
Midrise)

(Constant) 7.117 0.938 7.587 0.000

0.512
ECON −0.102 0.015 −0.495 −6.574 0.000 0.958 1.044

CAI 0.030 0.010 0.261 3.126 0.002 0.775 1.290
SHAPE 2.005 0.663 0.255 3.024 0.003 0.765 1.307

LCZ 3 (Compact
Lowrise)

(Constant) 8.701 0.262 33.185 0.000
0.347CAI 0.049 0.009 0.599 5.599 0.000 1.000 1.000

LCZ 4 (Open
Highrise)

(Constant) 4.178 0.680 6.141 0.000

0.353
CAI 0.045 0.007 0.462 6.053 0.000 0.689 1.452

ECON −0.033 0.013 −0.167 −2.593 0.010 0.969 1.032
SHAPE 1.371 0.602 0.174 2.279 0.024 0.687 1.456

LCZ 5 (Open
Midrise)

(Constant) 5.798 0.393 14.747 0.000

0.490
CAI 0.057 0.005 0.507 10.693 0.000 0.983 1.017

ECON −0.066 0.009 −0.306 −7.411 0.000 0.742 1.348
SHAPE 0.884 0.274 0.152 3.226 0.001 0.752 1.329

LCZ 8 (Large
Lowrise)

(Constant) 6.327 0.499 12.684 0.000

0.533
CAI 0.068 0.006 0.512 11.770 0.000 0.995 1.005

ECON −0.091 0.010 −0.347 −9.592 0.000 0.687 1.456
SHAPE 1.336 0.333 0.175 4.018 0.000 0.685 1.459

LCZ 10 (Heavy
Industry)

(Constant) 0.755 1.835 0.412 0.682
0.268SHAPE 6.452 1.470 0.531 4.389 0.000 1.000 1.000

Cooling
intensity LCZ G (Water)

(Constant) −5.020 0.360 −13.932 0.000

0.574
CAI −0.034 0.004 −0.399 −7.696 0.000 0.988 1.012

AREA −0.001 0.000 −0.396 −7.681 0.000 0.694 1.441
ECON 0.056 0.007 0.372 7.627 0.000 0.701 1.427

Previous researchers report that similar to vegetation, urban waterbodies can reduce the
temperature of the ambient environment [40], and waterbody geometry significantly influences
cooling capacity [41]. Consistently, our regression result shows that patch cooling intensity of Water is
affected by CAI, AREA, and ECON, and 57.4% of cooling intensity variation can be explained by the
regression model (Table 5). These three metrics have almost equal effects on the cooling intensity. This
means that the area, especially the core area, is the main factor impacting waterbody cooling intensity.
But in many cities, water area is continuously shrinking during the process of urban renewal and
urbanization. To ensure the cooling effect, maintaining waterbody area plays a vital role in tackling
urban overheating and should be a fundamental measure.

5. Implications and Conclusions

The global concern on climate change highlights the need for urban planning [42]. However, due
to the difficulty of understanding complex climate variations within cities and the lack of consideration
of climate knowledge in local urban planning practices, climate actions adopted by urban planners
are still limited and ineffective [1,43]. Although knowledge is not easily transferable from climate
science to urban planning [44], LCZ classification presents an opportunity to bridge the gap between
research and practice. It classifies land surfaces according to climate related urban morphology [23] so
as to examine the diversity and complexity of the climate response within a city. From the perspective
of urban planners, urban surfaces classified by LCZ are regarded as urban climate landscapes in
this paper.

Urban climate landscapes provide a much-needed climate perspective to understand urban
landscapes and extend the concept of LCZ to urban planning applications. Climate-related
classification results at the local scale effectively distinguish climate diversity and are easily applied to
urban planning because of the land-based zoning strategy. For specific locations, classification results
present the climatic response of urban surface, which can provide comparison and guiding urban
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planning [45]. Through the lens of urban climate landscapes, past and future local climate studies can
be examined to provide an overall climate picture of the city.

Land cover conditions impact UHIs at the metropolitan scale [46]. Similarly, analysis of the
pattern-temperature relationship in this study shows the climate effects of land-use patterns at the
local scale. In fact, the impact of landscape layout on urban thermal environment has been seldom
considered in conventional urban planning regulation. This research reveals the effective landscape
metrics and their impacts on different landscape types. These results can provide guidance in the urban
planning process. For example, when planners consider the climate landscape layout, attention should
be paid to urban climate landscape configuration, and land-based planning strategies, including large
temperature contrasts between adjacent patches, and fragmental patches, are recommended. These
strategies should be taken into account in the early stage of land-use planning, or be used as guidance in
the urban renewal process. Combining with other adaptation approaches, such as urban reforestation
and green roofs, a reasonable climate landscape layout will benefit to mitigate overheating.

At present, a growing subset of research explores the urban thermal environment based on LCZ
in urban areas. Since every city is unique, local knowledge, such as land surface characteristics,
topographic features and cultural backgrounds, should be considered in the classification process, and
the optimal scale analysis is necessary. However, the methodology adopted in this study is general,
and the conclusions drawn from this case study also provide reference for subtropical developing
cities. In this case study, focal landscapes are examined, and the local optimal scale is identified. It is
instructive to subdivide and quantify particular landscapes in further research, such as the complex
Compact Lowrise and the hot Heavy Industry in Wuhan. High spatial and temporal resolution data
may also improve the accuracy of LCZ classification in future research. Highlighting the impact of
urban climate landscape patterns, our study acts as a basis for future examinations of urban climate
for landscape planners and urban designers.
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25. Geletič, J.; Lehnert, M.; Dobrovolný, P. Land surface temperature differences within local climate zones,

based on two central european cities. Remote Sens. 2016, 8, 788. [CrossRef]
26. Bechtel, B.; See, L.; Mills, G.; Foley, M. Classification of local climate zones using sar and multispectral data

in an arid environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3097–3105. [CrossRef]
27. Danylo, O.; See, L.; Bechtel, B.; Schepaschenko, D.; Fritz, S. Contributing to wudapt: A local climate zone

classification of two cities in ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1841–1853.
[CrossRef]

28. Xu, Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of local climate zones using aster and landsat
data for high-density cities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3397–3405. [CrossRef]

29. Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using local climate zone scheme for UHI assessment:
Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [CrossRef]

30. Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on
mid-afternoon microclimate in phoenix local climate zones. Landsc. Urban Plan. 2014, 122, 16–28. [CrossRef]

31. Mills, G.; Ching, J.; See, L.; Bechtel, B.; Foley, M. An introduction to the wudapt project. In Proceedings of
the 9th International Conference on Urban Climate, Toulouse, France, 20–24 July 2015; pp. 20–24.

http://dx.doi.org/10.1016/j.jag.2015.11.006
http://dx.doi.org/10.1016/j.landurbplan.2010.03.008
http://dx.doi.org/10.1016/j.rse.2011.07.008
http://dx.doi.org/10.1016/j.ufug.2014.09.009
http://dx.doi.org/10.1016/j.buildenv.2015.09.019
http://dx.doi.org/10.1016/j.landurbplan.2015.02.010
http://dx.doi.org/10.1016/j.landurbplan.2015.02.012
http://dx.doi.org/10.1016/j.ufug.2016.03.015
http://dx.doi.org/10.1016/j.jenvman.2014.07.025
http://www.ncbi.nlm.nih.gov/pubmed/25163601
http://dx.doi.org/10.1016/j.buildenv.2011.10.023
http://dx.doi.org/10.1016/j.buildenv.2008.02.008
http://dx.doi.org/10.1016/j.buildenv.2010.09.003
http://dx.doi.org/10.1890/150103
http://dx.doi.org/10.1175/BAMS-D-11-00019.1
http://dx.doi.org/10.1016/j.jenvman.2016.11.059
http://www.ncbi.nlm.nih.gov/pubmed/27912135
http://dx.doi.org/10.3390/rs8100788
http://dx.doi.org/10.1109/JSTARS.2016.2531420
http://dx.doi.org/10.1109/JSTARS.2016.2539977
http://dx.doi.org/10.1109/JSTARS.2017.2683484
http://dx.doi.org/10.1016/j.buildenv.2014.05.005
http://dx.doi.org/10.1016/j.landurbplan.2013.11.004


Sustainability 2017, 9, 1700 16 of 16

32. Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I.D.
Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf.
2015, 4, 199–219. [CrossRef]

33. Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature
observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [CrossRef]

34. Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its
implications for quantifying urban heat island indicators—An application for the city of leipzig. Ecol. Indic.
2012, 18, 693–704. [CrossRef]

35. McGarigal, K.; Cushman, S.A.; Ene, E. Spatial Pattern Analysis Program for Categorical and Continuous
Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on
20 September 2017).

36. Goodchild, M.F.; Quattrochi, D.A. Scale, Multiscaling, Remote Sensing, and GIS. Available online: http:
//www.citeulike.org/group/7954/article/4257773 (accessed on 20 September 2017).

37. Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19,
125–138. [CrossRef]

38. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship
for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [CrossRef]

39. Hang, J.; Li, Y. Ventilation strategy and air change rates in idealized high-rise compact urban areas.
Build. Environ. 2010, 45, 2754–2767. [CrossRef]

40. Morris, K.I.; Chan, A.; Ooi, M.C.; Oozeer, M.Y.; Abakr, Y.A.; Morris, K.J.K. Effect of vegetation and waterbody
on the garden city concept: An evaluation study using a newly developed city, Putrajaya, Malaysia.
Comput. Environ. Urban Syst. 2016, 58, 39–51. [CrossRef]

41. Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012,
105, 27–33. [CrossRef]

42. Dubois, C.; Cloutier, G.; Rosenkilde Rynning, K.M.; Adolphe, L.; Bonhomme, M. City and building designers,
and climate adaptation. Buildings 2016, 6, 3. [CrossRef]

43. Stone, B.; Vargo, J.; Habeeb, D. Managing climate change in cities: Will climate action plans work?
Landsc. Urban Plan. 2012, 107, 263–271. [CrossRef]

44. Hebbert, M.; Jankovic, V. Cities and climate change: The precedents and why they matter. Urban Stud. 2013,
50, 1332–1347. [CrossRef]

45. Ren, C.; Cai, M.; Wang, R.; Xu, Y.; Ng, E. Local climate zone (LCZ) classification using the world urban
database and access portal tools method: A case study in wuhan and hangzhou. In Proceedings of the Fourth
International Conference on Countermeasure to Urban Heat Islands, Stephen Riady Centre, University
Town, Singapore, 30 May–1 June 2016.

46. Stone, B.; Vargo, J.; Liu, P.; Hu, Y.; Russell, A. Climate change adaptation through urban heat management in
Atlanta, Georgia. Environ. Sci. Technol. 2013, 47, 7780–7786. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijgi4010199
http://dx.doi.org/10.1002/joc.3746
http://dx.doi.org/10.1016/j.ecolind.2012.01.001
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.citeulike.org/group/7954/article/4257773
http://www.citeulike.org/group/7954/article/4257773
http://dx.doi.org/10.1023/B:LAND.0000021711.40074.ae
http://dx.doi.org/10.1016/j.rse.2003.11.005
http://dx.doi.org/10.1016/j.buildenv.2010.06.004
http://dx.doi.org/10.1016/j.compenvurbsys.2016.03.005
http://dx.doi.org/10.1016/j.landurbplan.2011.11.018
http://dx.doi.org/10.3390/buildings6030028
http://dx.doi.org/10.1016/j.landurbplan.2012.05.014
http://dx.doi.org/10.1177/0042098013480970
http://dx.doi.org/10.1021/es304352e
http://www.ncbi.nlm.nih.gov/pubmed/23734623
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials 
	Study Area 
	Data Pre-Processing 

	Methodology 
	LCZ Classification and Validation 
	Mapping Local Climate Zones 
	Validation by LST Variation 

	Comparison of Different Landscapes 
	Urban Climate Landscape Pattern 
	Searching for the Optimal Scale 
	Comparison of the Pattern-Temperature Relationship 

	Quantification of the Heating/Cooling Effect 
	Defining the Heating/Cooling Intensity 
	Quantifying the Effect by Patch Metrics 


	Results and Discussion 
	LCZ Map of Wuhan 
	Verifying LCZs by LST Variation 
	Distribution of LST 
	Validation of LCZ Classification 

	Spatial Distribution of Urban Climate Landscape and Focal Landscapes 
	Area Proportion of Each Climate Landscape 
	Selection of Focal Climate Landscapes 

	Optimal Scale for Studying Pattern-Temperature Interactions 
	Relationship between Landscape Metrics and LST at a Fixed Scale 
	Impact of Patch Metrics on LST 

	Implications and Conclusions 

