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Abstract: Rapid urbanization in China has strengthened the connection and cooperation among
cities and has also led urban residents to be more vulnerable in adverse environmental conditions.
Vulnerability research has been an important foundation in urban risk management. To make cities safe
and resilient, it is also necessary to integrate the connection among cities into a vulnerability assessment.
Therefore, this paper proposed a new conceptual framework for urban social vulnerability assessment
based on network theory, where a new dimension of social vulnerability (connectivity) was added
into the framework. Using attribute data, the traditional social vulnerability index of a city (SVInode)
was calculated via the projection pursuit cluster (PPC) model. With the relational data retrieved
from the Baidu search index, a new dimension (connectivity) of social vulnerability (SVIconnectivity)
was evaluated. Finally, an integrated social vulnerability index (SVIurban) was measured combined
with SVInode and SVIconnectivity. This method was applied in the Yangtze River Delta region of China,
where the top three high values of SVInode belonged to the cities of Taizhou (Z), Jiaxing, and Huzhou.
The three lowest cities were Hangzhou, Nanjing, and Shanghai. For SVIurban, the social vulnerability
of cities in different hierarchies behaved differently. For Hierarchies 2 and 3, when compared to
SVInode, the SVIurban was significantly reduced. However, the variation between SVInode and SVIurban in
Hierarchy 4 was slight. Furthermore, an increase for the city of Taizhou (J) in its social vulnerability was
achieved after connecting to the network. Huzhou, in Hierarchy 5, increased its social vulnerability
the most when adding connectivity in the social vulnerability assessment. Based on the results
of our case study, a conclusion was drawn that network connectivity had an influence on social
vulnerability. However, when connectivity was strong enough, it could help cities to mitigate their
traditional social vulnerability, whereas a loose connection in the network aggregated their traditional
social vulnerability. Hence, the latter should be emphasized in future urban risk management.
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1. Introduction

In 1800, only approximately 2% of the world’s population lived in cities, whereas today, about 54%
of the world’s population reside in cities, which is projected to rise to over 67% by 2050 [1,2]. Most of
these individuals live in the developing world, in places such as China. Over the past three decades,
China become increasingly urbanized and its urbanization rate has soared from 19.39% in 1980 to 53.73%
in 2013 [3]. According to the Demographic World Urban Areas Report (12th Annual Edition, 2016),
Shanghai, Beijing, and Guangzhou-Foshan are among the top twenty largest cities in the world.
Shanghai has become the eighth largest city (with a population of 22.7 million people), Beijing is ranked
as the eleventh largest in the world (with a population of 20.4 million), and Guangzhou-Foshan is the
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thirteenth largest city (with a population of 18.8 million). Such rapid urbanization has and will continue
to strengthen the connection and cooperation among cities. Thus, around Shanghai, Beijing, and
Guangzhou-Foshan, three giant city agglomerations have developed separately: the Yangtze River Delta
Region, the Beijing-Tianjin-Hebei Region, and the Pearl River Delta Region. However, the emergence of
such high-density city agglomerations in a developing country has incurred social stratification and
inequality, and increased the exposure of urban residents to adverse environmental conditions such as
natural hazards, climate change, environmental pollutions, and so on [3,4]. As a result, local residents
are more vulnerable both physically and socially. As one of the defining components of risk, identifying
vulnerability has become an important foundation that supports urban risk management. Furthermore,
integrating the connections between cities into a vulnerability assessment is extremely essential in
making cities safe and resilient in the context of rapid urbanization.

This paper concentrates on urban social vulnerability and investigates a new conceptual
framework for assessing social vulnerability based on network theory. The paper is organized
as‘follows. Section 2 reviews the literature on social vulnerability including concepts, evolution,
and assessment. Section 3 presents the methodology of urban social vulnerability based on the new
conceptual framework from a network perspective, using a case study of the Yangtze River Delta
region in China. Section 4 consists of the study results including the vulnerability profile of each city
in the study areas through GIS mapping and a discussion of the results. Section 5 provides our final
conclusions and recommendations.

2. Literature Review: Conceptual Basis and Evolution of Vulnerability

More than 40 years ago, the concept of vulnerability emerged within the geography and natural
hazards research field. At that time, most studies emphasized disaster exposure risk and linked
vulnerability to the amount of damage caused by a particular hazard from a technical or engineering
sciences perspective [5,6]; however, since the 1980s, scholars have been reluctant to take this perspective.
From a social science viewpoint, researchers have embraced the theory that vulnerability is a state that
exists in a system before it encounters a hazard and emphasized that the negative impacts of disasters
could be magnified by certain social factors, including poverty, low levels of education, poor public
infrastructure, and social services [7,8]. Methodologies that take vulnerability as a starting point for risk
reduction and apply demographic data to assess vulnerability were regarded and signified a paradigm
shift from natural sciences to a social sciences perspective in the standard interpretation of natural
disasters [9–13]. To date, vulnerability research has covered different fields including climate studies,
security studies, engineering, geography, political ecology, and disaster risk management [14–16].
To do so, vulnerability has been divided into biophysical and social aspects, both of which help
scholars clarify the circumstances that put people and places at risk, and the conditions that reduce
responsiveness to environmental threats [17].

As one important aspect of vulnerability, social vulnerability refers to the predisposition and inner
state of individuals, organizations, or societies that affect the way they withstand adverse impacts
from disruptive events such as natural hazards, climate change, or other dangerous incidences [18–20].
In essence, social vulnerability is a by-product of social stratification and social inequalities among
different communities and different places from the built environment [21–23]. It has roots in
the various characteristics of people including socio-economic status, demographics, and risk
perception [24]. Cutter et al. provided generally accepted factors that influence social vulnerability:
(1) frail and physically limited individuals (e.g., the elderly, children, special needs people, and
even females); (2) the type and density of infrastructure and lifelines; (3) building stock; (4) limited
access to public resources (e.g., knowledge, information and technology); (5) insufficient access to
service resources (e.g., education and medicine); (6) lack of access to political power and social
capital; and, (7) beliefs and customs [22,25]. Owing to its “mediating role”, social vulnerability
is not only registered by exposure to hazards alone, but also resides in the local sensitivity to
external stress and the capacity of the system to prepare, cope, and recover from damage [5,7,26,27].
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Therefore, social vulnerability typically includes three basic components (or dimensions): exposure,
sensitivity, and adaptability [28,29]. The United Nation Office for Disaster Risk Reduction (UNISDR)
defines exposure as “the people, property, systems, or other elements present in hazard zones that are
thereby subject to potential losses”, and can be biophysical or social [30]. Sensitivity reflects the degree
to which a given community or system is affected by climatic stresses [31]. Adaptability is defined as
“the ability of a system or individuals to respond, adjust, and cope with negative impacts of climate
change and natural hazards [8,31,32].

Scholars have proposed multiple conceptual frameworks to assess social vulnerability [33,34],
among which, there are four famous frameworks: the Pressure-and-Release (PAR) framework,
the Hazards-of-Place (HOP) framework, the Exposure-Sensitivity-Resilience (ESR) framework, and the
Bogardi-Birkmann-Cardona (BBC) framework. The PAR framework shows the progression of
vulnerability with three social components: root causes, dynamic pressures, and unsafe conditions;
however, it does not consider exposure in the definition of vulnerability [35]. The Hazards of Place
(HOP) framework proposes the idea of “place” to bridge the gap between biophysical vulnerability
produced by dangerous geographic context and social vulnerability created by social fabric [36].
The Exposure-Sensitivity-Resilience framework describes the complexity and interactions involved in
vulnerability analysis. In this model, vulnerability emerges in a specific place, whereas, it is influenced
by a human-environment system at broader scales such as regional and global levels [20,37]. The BBC
framework indicates that vulnerability is a dynamic process and consists of two elements: exposed and
vulnerable elements, and coping capacity. In this process, vulnerability is hidden in the environmental,
social, and economic key spheres, which ultimately results in three risks: environmental risk, social risk,
and economic risk [12]. In these conceptual frameworks, a geographic area (or place) is taken as a
whole and complex system, where each component affects or is affected by other components, just like
a systems view is taken in most logistic and supply chain management studies [38]; however, all of the
interactions analyzed in vulnerability studies are mostly limited inside of the system border, that is
to say, the interactions and connections between the systems are neglected.

Under these frameworks, a variety of tools and methods, such as integrated assessment models,
household surveys, and indicator approaches have been used to measure social vulnerability [6,39,40].
Despite ongoing debates on the viability of measuring social vulnerability [41], a methodology
of aggregating related indicators to produce a composite index of social vulnerability (SVI) has
gained general acceptance and is one of the leading tools for quantifying social vulnerability [42].
This methodology has been successfully applied in various contexts described in References [21,40,42–44].
It is fairly robust and strongly supported for identifying and monitoring social vulnerability over space.

3. Materials and Methods

3.1. A New Conceptual Framework from a Network Perspective

Vulnerability is thought to arise from the inequalities of core thematic dimensions such as
environment, economy, society, and so on [41]. As a popular method in social vulnerability assessment,
the index methodology always selects the related factors influencing vulnerability from these
aspects and presents them in terms of exposure, sensitivity, and adaptability. In this methodology,
the connectivity between different systems or geographic areas is usually neglected. In fact, we have
witnessed dramatic economic changes at a global level along with an increasing close mutual interaction
shaped by flows of goods, people, and information between local and global processes over the past
three decades [45–47]. In modern conceptions of the city, cities are considered as lived places with
various attributes or dimensions, and are also regarded as nodes where different networks run together.
Cities have crossed their geographical boundaries and connected to each other through a variety of
high-speed worldwide or regional networks that play an important role in understanding the nature
of cities [47,48]. City networks can be physical connections to other places such as transport systems,
and can also exist in immaterial forms such as trade, migration, information, capital, and cultural
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links [49]. The research on city networks is regarded as a symbol of the transition from the theory of
‘space of places’—which focuses on structure—to the theory of ‘space of flows’ that emphasizes the
relationships in urban geography [48,50,51]. It is an important paradigm transition and also offers a
new perspective on social vulnerability assessment. Network analysis will play an increasing role
in vulnerability studies [52]; hence, based on the theory of city networks, this paper proposed a
new conceptual framework to emphasize the open, dynamic, and interactive characteristics of urban
vulnerability (Figure 1).
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As illustrated in Figure 1, when a city suffers from a disruptive event, all of the attributes stemming
from three aspects of environment, economy, and society manifest as different forms of vulnerability.
Traditionally, they are superimposed in three dimensions: exposure, sensitivity, and adaptability,
and are considered as attribute data. In fact, as a whole and complex system, a city is also a node
linking to other cities (nodes) with various types of flows in a larger scale system, known as a network
of regions [38]. Either physical flows or immaterial flows always change urban attributes in the aspects
of environment, economy, and society, and further affects urban exposure, sensitivity, and adaptability.
Ultimately, urban vulnerability has changed as networks can affect the level of vulnerability [52].
To embed urban vulnerability in the context of networks, a fourth important dimension, namely
connectivity, was added to our conceptual framework. This dimension aims to evaluate the ability
of a city on the connection, openness, and coordination in networks. Three traditional dimensions
(exposure, sensitivity, and adaptability) lie in the first level of the model and the new dimension
(connectivity) is on the second level of model as the fourth new dimension emerges later and has
influence on the other three. Several researchers have proposed that well-coordinated and better
connectivity networks can play active roles in decreasing disaster vulnerability and increase resilience
before, during, and after disasters [53]. Based on various connections and flows, networks can provide
cities with more potential access to resources, and also a higher possibility of effectively mobilizing
resources to meet priorities and further achieve their goals in reducing vulnerability [52]. In contrast,
fragmented urban communities in a complex physical environment are relatively vulnerable due to a
lack of social support and cohesion [54]. It can be concluded that this new dimension of connectivity
is an efficient complement to adaptability. However, it differs from adaptability as connectivity
needs to be evaluated by relational data [55]. Similar to a risk perspective, these four dimensions
(exposure, sensitivity, adaptability, and connectivity) can be further divided into biophysical and social
vulnerabilities that interact with each other to produce the overall vulnerability. When the overall
vulnerability interacts with a disruptive event, it will result in damage such as injuries, deaths, disease,
and economic losses. Damage, in turn, can affect urban attributes and connections that, furthermore,
moderate or enhance vulnerability. In this paper, we only focused on urban social vulnerability.
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Figure 2 shows a particular description of connectivity. Cities A, B, and C are three different
cities in an affected area. Due to developments in physical and immaterial flows, these three cities are
linked to each other and become three nodes in a network. They are different in four vulnerability
dimensions: exposure, sensitivity, adaptability, and connectivity, which correspond to the different
area of annulus, as illustrated in Figure 2. All of the flows between the adjacent nodes were simplified
into in-flow and out-flow presented by the lines. The width of the lines represents the strength of flow.
Here, flow strength is simply defined as “bold” and “thin”. As Connectivity A = 2 (thin lines) + 2
(bold lines); Connectivity B = 3 (thin lines) + 1 (bold lines); and, Connectivity C = 1 (thin lines) + 3
(bold lines), therefore, Connectivity C > Connectivity A > Connectivity B. In our post-industrialized
society, a large amount of fast moving information flows between cities is the essential and obvious
feature [55]. To a certain extent, information flows have reshaped the urban network. Therefore, we
only focused on information flows in this paper.
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3.2. Study Area

Located in the easternmost part of China (118◦20′E–122◦46′E, 28◦2′N–33◦25′N), the Yangtze River
Delta (YRD) region is one of the major engines of China’s economic growth and is considered to be
the world’s sixth-largest economic center. In general, the Yangtze Delta region is comprised of three
major areas: the municipality of Shanghai, the central and southern parts of Jiangsu Province, and the
northern parts of Zhejiang Province. Together, sixteen large-sized and medium-sized cities are included:
Yangzhou, Taizhou, Nantong, Nanjing, Zhenjiang, Changzhou, Wuxi, Suzhou, Shanghai, Huzhou,
Jiaxing, Hangzhou, Shaoxing, Ningbo, Zhoushan, and Taizhou (Figure 3). The linkage between city
agglomerates to individual cities can be likened to the relationship between “networks and knots”.
Amidst competition and cooperation, every individual city has important positions and complementary
functions to other cities, and all of the cities in this region have achieved a win-win outcome.

The YRD region has always ranked among the top with the highest urbanization level, population
density, and economic development in China [56,57]. In 2010, the population of this region was
108.12 million that accounted for 8.06 percent of the nation’s total population. Of this, 57.19% of the
total population lived in urban areas. Hence, the population density in the urban areas of the YRD
region reached 1646 people per km2, notably higher than in the national figure of 140 people per km2.
Moreover, with only 1.1% of the total land area of China, the Gross Domestic Product (GDP) of the YRD
region soared to 6824.89 billion Yuan and accounted for 17.0% of the whole nation’s GDP. Even with
such high population density, its per capita GDP was RMB 68,337, nearly 1.3 times more than the
national average (Table 1).
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Table 1. General statistics of cities in the Yangtze River Delta (YRD) region (2010).

City Province Urbanization
(%)

Population
(Million)

Land Area
(sq. km2)

Population Density
(People Per km2)

GDP
(Billion Yuan)

GDP Per Capita
(Yuan)

Shanghai Shanghai 89.30 23.47 6341 3632 1716.60 76,074
Nanjing Jiangsu 77.94 8.01 6587 960 513.07 65,273

Hangzhou Zhejiang 73.25 8.71 16,596 524 594.92 86,691
Wuxi Jiangsu 70.31 6.38 4627 1008 579.33 92,167

Suzhou Jiangsu 70.07 10.47 8488 751 922.89 93,043
Ningbo Zhejiang 68.31 7.61 9816 775 516.30 90,175

Zhoushan Zhejiang 63.59 1.12 1440 672 64.43 66,581
Changzhou Jiangsu 63.17 4.59 4372 825 304.49 67,327
Zhenjiang Jiangsu 61.97 3.12 3847 704 198.76 64,284
Shaoxing Zhejiang 58.58 4.91 8279 530 279.52 63,770
Yangzhou Jiangsu 56.75 4.46 6591 697 222.95 49,786
Nantong Jiangsu 55.80 7.28 8001 954 346.57 48,083
Taizhou Jiangsu 55.64 4.62 5787 872 204.87 44,118
Taizhou Zhejiang 55.54 5.97 9411 620 242.65 41,777
Jiaxing Zhejiang 53.33 4.51 3915 873 230.02 67,534

Huzhou Zhejiang 52.89 2.89 5818 447 130.17 50,149
The YRD region 57.19 102.15 100,505 1016 6824.89 68,337

The country 49.95 1340.91 9,600,000 140 40,151.28 30,015

However, with heavy population pressure and high consumption of resources and energy,
the eco-environment system of the YRD has become increasingly vulnerable [57]. Hence, the YRD
new-style urbanization plan has called for the development of smart city clusters, regarded as
one of the most powerful strategies for moving cities towards sustainability in an increasingly
urbanized world [58]. This plan includes enhancing fixed line and wireless broadband service
coverage, using new-generation information technology to drive IoT (Internet of Things), and other
technical applications for transportation, the environment, municipal facilities, and other urban
management domains. Undoubtedly, the Internet has become increasingly important to people in their
everyday lives. At the same time, the connection of cities in the YRD region will become closer in the
immediate future.

In this context, the YRD was selected for conducting our urban social vulnerability assessment
within the new conceptual framework.

3.3. Data

Two types of data were used in our study: attribute data and relational data. The former were
applied to measure traditional SVI composed of three dimensions: exposure, sensitivity, and adaptability.
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The latter were the data of information flows for examining the fourth new dimension of social
vulnerability: connectivity. The attribute data were collected from the 6th National Population Census
of China (2010), the Jiangsu Statistical Yearbook, the Shanghai Statistical Yearbook, and the Zhejiang
Statistical Yearbook, as well as the 2010 China Civil Affairs Statistical Yearbook. Referencing our similar
previous study in the YRD area [19], nineteen indicators were finally selected for assessing social
vulnerability after removing indicators for their high correlation, and included: Population density,
Urban Resident, Female, Children, Elderly, Ethnicity, Illiterate, Poor, Unemployment Rate, Employees
in the Second Sector, Employees in Mining, Employees in Construction, GDP in the Second Industry,
Per GDP, Educated, Beds in Hospitals, Physicians in Hospital, Employees in Management Sector, and
Green Space Coverage.

The relational data were retrieved from the Baidu Index [59]. In China, Baidu is the most widely
used search engine and Baidu Inc. developed a public web facility named the Badidu Index in 2006.
Like Google trend, the Baidu Index is an unbiased sample of search data based mainly on the
consumption of Web information (e.g., the information being actively being sought) [49]. It helps
to investigate a user’s interest in a particular topic or a specific set of search terms over time from
around the globe and drills down to city-level geography. The analysis of data obtained from search
engines like Google or Baidu were labeled as Web activity Analysis (WAA), and was used to illustrate
the urban information flows in network studies [49,55,60–62]. To simulate the information flow,
we investigated the mutual search interests among the sixteen cities, and more details will be shown
in the following section.

3.4. Method

The method used in this paper is shown in Figure 4.
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As illustrated in Figure 4, the urban social vulnerability included three parts.

(1) With attribute data, the traditional urban SVI was regarded as an index of individual nodes
(each city) without connectivity and was evaluated with the projection pursuit cluster (PPC) model.
The detailed procedure is as follows:

Step 1: Normalize the values of proxy indicators by using the min-max rescaling transformation
method.
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Step 2: Develop the index function Q(a). First, the dataset of {x(i, j)|i = 1, 2, . . . , n; j = 1, 2, . . . , p}
(n = 16, p = 13) was converted into a one-dimensional projection value z(i):

z(i) =
p

∑
j=1

a(j)× x(i, j), i = 1, 2, 3, . . . , n. a(j) ∈ [−1, 1],
p

∑
j=1

a(j)2 = 1 (1)

where a(j) is a p-dimensional unit vector of the projection direction. Different projection directions
revealed different features of the data structure. An optimal projection direction, or the direction
exposing the most interesting structure of high dimension data, was taken as the weight of the
indicator in this paper. To find the optimal projection, the index function Q(a) was evaluated
as follows:

Q(a) =

√√√√ n

∑
i=1

(z(i)− E(z))2

n− 1
× (

n

∑
i=1

n

∑
j=1

(R− r(i, j))× u(R− r(i, j))) (2)

where E(z) is the mean of z(i); R is the local density radius of the window set as 0.1×
√

n
∑

i=1

(z(i)−E(z))2

n−1 ;

r(i, j) corresponds to the distance between the sample and was set as |z(i)− z(j)|; and u(t) is the
unit step function: u(t) = 1, if r(i, j) < R or u(t) = 0, i f r(i, j) ≥ R.

Step 3: Based on the program of the real-coded genetic algorithm implemented in PYTHON,
Q(a) was maximized to find the optimal projection a*(j). a*(j) also corresponded to the best
suitable weights of social vulnerability indicators. Next, the traditional urban SVI (labelled as
the SVInode) was calculated:

SVInode(i) =
p

∑
j=1

a∗(j)× x(i, j), i = 1, 2, 3, . . . , n (3)

where a*(j) is the optimal projection direction.

More detailed steps were illustrated in our previous paper: Mapping Social Vulnerability to Air
Pollution: A Case Study of the Yangtze River Delta Region, China [19].

(2) With the relational data retrieved from the Baidu Index, the new dimension (connectivity) of
social vulnerability (labelled as SVIconnectivity) was calculated according Equation (2).

SVIconnectivity(i) =
n

∑
j=1,j 6=i

x(i, j) +
n

∑
i=1,i 6=j

x(i, j) + x (i, i), i, j = 1, 2, 3, . . . , n (4)

where i and j represent the city (n = 16 for this case). The first item corresponded to the total
searches from all the other 15 cities to city i, which meant the sum of information flowing in
city i. For example, if city i = Shanghai, this item records all of the search data where the
search topic is “Shanghai” and the search regions are “Yangzhou, Taizhou, Nantong, Nanjing,
Zhenjiang, Changzhou, Wuxi, Suzhou, Huzhou, Jiaxing, Hangzhou, Shaoxing, Ningbo, Zhoushan
and Taizhou”. The second item represents the total searches from city i to all the other
15 cites, which means the sum of information flowing out of city i. In the above example,
if city i = Shanghai, then the search topic is any one of “Yangzhou, Taizhou, Nantong, Nanjing,
Zhenjiang, Changzhou, Wuxi, Suzhou, Huzhou, Jiaxing, Hangzhou, Shaoxing, Ningbo, Zhoushan
and Taizhou”, while, the search region is “Shanghai”. The third item represents the searches from
city i to itself, that is, the search topic and search region are both “Shanghai”.
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(3) As above-mentioned, a node with better connectivity should be less vulnerable to disasters.
Hence, the urban SVI was modelled as follows:

SVIurban(i) = SVInode/SVIconnectivity , i = 1, 2, 3, . . . , n (5)

4. Results and Discussion

4.1. Connectivity

These sixteen cities of in the YRD region in the order of highest connectivity to lowest were
Shanghai, Suzhou, Nanjing, Hangzhou, Ningbo, Wuxi, Changzhou, Jiaxing, Yangzhou, Nantong,
Taizhou (Z), Zhenjiang, Zhoushan, Shaoxing, Taizhou (J), and Huzhou. More details on the connectivity
are shown in Table 2 (note: “Flow-in” means the total searches from all the other 15 cities to city i in the
Baidu Index. “Flow-out” means the total searches from city i to all the other 15 cities. “Itself” means
the total searches from city i to itself. “Connectivity” is the sum of “Flow-in” and “Flow-out”).

Table 2. General information regarding connectivity of cities in the YRD region.

City Connectivity
Connectivity Structure

Flow-In Flow-In (%) Flow-Out Flow-Out (%) Itself Itself (%)

Shanghai 2,456,274 1,012,732 28.6 1,443,542 40.8 1,085,578 30.6
Suzhou 1,552,866 764,621 34.9 788,245 36.0 638,744 29.1
Nanjing 1,482,085 817,798 41.5 664,287 33.7 487,696 24.8

Hangzhou 1,466,046 774,536 39.5 691,510 35.2 496,902 25.3
Ningbo 1,110,875 581,852 39.8 529,023 36.2 352,219 24.0
Wuxi 1,119,289 624,139 43.2 495,150 34.3 326,154 22.5

Changzhou 999,329 592,878 45.2 406,451 31.0 310,951 23.8
Jiaxing 915,068 488,300 40.0 426,768 35.0 304,749 25.0

Yangzhou 903,912 555,265 46.4 348,647 29.1 293,219 24.5
Nantong 891,827 518,189 45.1 373,638 32.5 256,739 22.4
Taizhou

(Z) 834,969 452,718 40.7 382,251 34.4 277,772 24.9

Zhenjiang 782,454 433,599 45.8 348,855 36.8 164,911 17.4
Zhoushan 685,121 443,720 55.3 241,401 30.1 117,048 14.6
Shaoxing 487,174 65,708 13.5 421,466 86.5 0 0.0

Taizhou (J) 417,266 64,938 15.6 352,328 84.4 0 0.0
Huzhou 392,207 57,388 14.6 334,819 85.4 0 0.0

According to Table 2, there were five types of connectivity structure: (1) “Flow-out” > “Itself” >
“Flow-in”, for example, Shanghai; (2) “Flow-out” > “Flow-in”> “Itself”, e.g., Suzhou; (3) “Flow-in”
> “Flow-out” > “Itself”, from Nanjing to Zhoushan; and (4) “Flow-out” > “Flow-in” > “Itself”
(Shaoxing, Taizhou and Huzhou). By considering the general characters of the cities described in
Table 1, several conclusions were drawn from the results in Table 2: (1) smaller or less-developed
cities had fewer searches from other cities, focused less on themselves, and were more interested in
other cities, that is, a city with less inner vitality was used to following others; (2) As the scale or
economy of the city increased, more searches from other cities and more focus was placed on itself,
which meant that the city began to affect others and be more active; and, (3) as the city or economy
grew further, searches from this city to other cities increased again, and even searches about itself
were larger than searches from the other cities, which demonstrated that a city has become more open,
active, and is capable of learning from others.

To illustrate the spatial distribution of connectivity, we mapped the results with QGIS and are
shown in Figure 5 (note: the circle’s area and color represents the connectivity of the city, and the
width and color of line represents the strength of connections between two cities) [63].
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According to Table 2 and Figure 5, the connectivity of Shanghai was the highest in the region and
all of the connections between Shanghai and another city belong to Level 1 (the red lines), or Level 2
(the orange lines). This made Shanghai the most important node of this information network in
the YRD region. Considering the total connection strength, Suzhou, Nanjing, and Hangzhou had
leading roles on their local information connection. Aside from the relatively weak connection between
Nanjing and Hangzhou, the connectivity between Shanghai, Suzhou, Nanjing, and Hangzhou were
stronger than any other city pairs. Hence, they can be considered as four basic pillars carrying the
whole information network and constitute the red backbone of the network, therefore were recognized
as Level 1. The second group was composed of Yangzhou, Nantong, Changzhou, Wuxi, Jiaxing,
Shaoxing, and Ningbo. Coupled with the top four, they constituted the Level 2 skeleton of the network
which is presented in orange. The third group included Taizhou (J), Zhenjiang, Huzhou, Zhoushan,
and Taizhou (Z). Connecting with the first and the second group, they formed the Level 3 framework
of network rendered in yellow.

Although all of these connections in the information network are immaterial, they actually
correspond to physical connections of the material network, such as (1) the transportation network
where Shanghai, Nanjing, and Hangzhou are three key transport hubs for rail or highway
networks, and Suzhou, Wuxi, and Changzhou are important sub-hubs of transportation networks;
and, (2) urban hierarchy. As a direct-controlled municipality of China, Shanghai is the largest city in
the region and a global financial hub. Thus, it is on the top tier of the urban hierarchy. Being the capital
city of the province, both Nanjing and Hangzhou are classified as sub-provincial cities and sub-centers
in urban hierarchy. Suzhou, the second largest city in Jiangsu province and a major economic center
in China, was another sub-center of the YRD region. The reality of the material networks supported
our results of the immaterial network.
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4.2. SVInode and SVIurban

Mapped with QGIS 2.14.10, the spatial distribution of SVInode and SVIurban is illustrated in Figure 6.
The detailed information about the differences between SVInode and SVIurban are shown in Table 3.
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The condition of traditional social vulnerability (SVInode) for cities in the YRD region can be
classified in three parts: (1) The lowest three are Hangzhou (1.09), Nanjing (1.06), and Shanghai (0.88);
(2) these were followed by Zhoushan, Suzhou, Wuxi, Ningbo, Zhenjiang, Changzhou, Nantong,
Yangzhou, Shaoxing, and Taizhou (J), with SVI from 1.61 to 2.34; and, (3) the top three high values
of SVInode were located in Taizhou (Z) (2.76), Jiaxing (2.60), and Huzhou (2.48), which all belong to
Zhejiang Province. Either the top three or the bottom three just corresponded to the urbanization
ranking in Table 1. The average value in Jiangsu Province as less than in Zhejiang Province,
which showed that the condition of traditional social vulnerability in Jiangsu Province was better
than Zhejiang Province. The distribution of new social vulnerability (SVIurban) showed that once these
sixteen cities were connected with each other by information flows, their social vulnerability changed
obviously. SVIurban in some cities was reduced such as in Yangzhou, Suzhou, Taizhou (Z), whereas,
Taizhou (J) increased its social vulnerability distinctly. By examining their changes more clearly,
we normalized SVInode and SVIurban, and these are demonstrated in Figure 7.

In Figure 7, both the SVInode and SVIurban of Shanghai were the minimum in our study area,
so these two values became zero after normalization. In most cities, the SVIurban was far less than
the SVInode. It indicated that connecting in the information network helped most of the cities mitigate
their social vulnerability. However, two cities, Taizhou in Jiangsu Province and Huzhou in Zhejiang
Province, had‘an SVIurban higher than their SVInode. This showed that their social vulnerability
could not be reduced for the connecting network. To explore the relationship between SVI and
connectivity, we examined the variation of SVInode and SVIurban, and linked it to the hierarchy of cities.
According to Figure 5, there were five hierarchies of connectivity between the cities: (1) Hierarchy
1, where connectivity was from 188,039 to 340,907, of which only Shanghai belonged to this type;
(2) Hierarchy 2, where connectivity was from 116,923 to 188,039, and Suzhou, Hangzhou, and Nanjing
belonged to this type; (3) Hierarchy 3, where connectivity was from 71,370 to 116,923, and eight
cities (Ningbo, Wuxi, Jiaxing, Changzhou, Yangzhou, Taizhou (Z), Nantong, and Zhenjiang) belonged
this type; (4) Hierarchy 4, with connectivity from 34,425 to 71,370 and Zhoushan, Shaoxing and Taizhou
(J) belonged to this type; and (5) Hierarchy 5, where connectivity was below 34,425, and only Huzhou
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was classified as this type. Furthermore, the variation between SVInode and SVIurban (normalized value)
was calculated and all the results are shown in Table 3.
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Table 3. Statistics of differences between the SVInode and SVIurban of cities in the YRD region.

No. City Province Hierarchy SVInode SVIurban Variation

1 Shanghai Shanghai 1 0.0000 0.0000 0.0%

1 Suzhou Jiangsu 2 0.4771 0.0927 −80.6%
2 Hangzhou Zhejiang 2 0.1093 0.0503 −54.0%
3 Nanjing Jiangsu 2 0.0943 0.0476 −49.5%

Mean value: 0.2269 0.0635 −61.3%

1 Ningbo Zhejiang 3 0.6258 0.1908 −69.5%
2 Wuxi Jiangsu 3 0.4918 0.1649 −66.5%
3 Jiaxing Zhejiang 3 0.9128 0.3099 −66.1%
4 Changzhou Jiangsu 3 0.6642 0.2269 −65.8%
5 Yangzhou Jiangsu 3 0.7604 0.2771 −63.6%
6 Taizhou (Z) Zhejiang 3 1.0000 0.3679 −63.2%
7 Nantong Jiangsu 3 0.7214 0.2801 −61.2%
8 Zhenjiang Jiangsu 3 0.6610 0.3286 −50.3%

Mean value: 0.7297 0.2683 −63.3%

1 Zhoushan Zhejiang 4 0.3848 0.2889 −24.9%
2 Shaoxing Zhejiang 4 0.7762 0.7509 −3.3%
3 Taizhou (J) Jiangsu 4 0.8029 0.9034 12.5%

Mean value: 0.6546 0.6477 −5.2%

1 Huzhou Zhejiang 5 0.8488 1.0000 17.8%

First of all, the city in Hierarchy 1 (Shanghai) kept its minimum value for either SVInode or
SVIurban, so no variation occurred. For Hierarchy 2, though the SVInode of these three cities were
already sufficiently low, the SVIurban still obviously decreased because their connectivity was strong
enough. Eight cities belonged to Hierarchy 3, which meant that their connectivity was weaker than
cities in Hierarchy 2. At the same time, the mean values of SVInode and SVIurban were both higher
than ones in Hierarchy 2 so they have decreased their social vulnerability more so than cities in
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Hierarchy 2, therefore, these eight cities benefited most from the network. As for the three cities
belonging to Hierarchy 4, the situation was the reverse. The mean value of the SVInode of Hierarchy 4
was less than Hierarchy 3, while the mean value of SVIurban was much more than that of Hierarchy 3.
The variation in Hierarchy 4 was slight. The city of Taizhou (J) even increased its social vulnerability
after connecting in the network. Therefore, Hierarchy 4 did not benefit much from the network.
The last city in Hierarchy 5 increased its social vulnerability most when adding connectivity in the
social vulnerability assessment. Based on the results of our case study, a conclusion was drawn that
network connectivity influenced social vulnerability. If connectivity was strong enough, it could
help cities mitigate their traditional social vulnerability, otherwise, a loose connection in the network
aggregated their traditional social vulnerability.

5. Discussion and Conclusions

In modern conceptions, cities are regarded as residential places with various attributes and
also as nodes in a variety of networks run together. Network analysis can offer new insights into
social vulnerability assessments. Based on the theory of city networks, this paper proposed a new
conceptual framework to evaluate social vulnerability in city agglomerations. In detail, it measured
social vulnerability in three parts: (1) with the attribute data, the SVInode was calculated using the PPC
model based on the real-coded genetic algorithm implemented in Python; (2) with the relational data
retrieved from the Baidu Index, a new dimension of social vulnerability (connectivity in networks)
was measured; and, (3) based on SVInode and SVIconnectivity, a new integrated social vulnerability of a
city (SVIurban) was evaluated. This method was applied in the Yangtze River Delta region in China.

Our findings are summarized as follows. First, regarding the traditional social vulnerability
(SVInode), the top three highest values of SVInode were located in Taizhou (Z), Jiaxing, and Huzhou.
All of these are cities in the Zhejiang Province. The bottom three were Hangzhou, Nanjing,
and Shanghai. Thus, the condition of traditional social vulnerability of Jiangsu Province is better than
Zhejiang Province. Second, on connectivity. The connectivity of Shanghai was the highest in the region,
which made Shanghai the most important node of the information network in the YRD region. Aside
from the relatively weak connection between Nanjing and Hangzhou, the connectivity between
Shanghai, Suzhou, Nanjing, and Hangzhou were stronger than that any other city pairs, therefore
making them the four basic pillars carrying the whole information network. The second group as
composed of Yangzhou, Nantong, Changzhou, Wuxi, Jiaxing, Shaoxing, and Ningbo. Coupled with
the top four, they constituted the Level 2 skeleton of network. Third, concerning integrated social
vulnerability (SVIurban), the social vulnerability of cities in different hierarchies behaved differently.
For Hierarchy 2, the SVIurban obviously decreased because their connectivity was sufficiently strong.
The connectivity of cities in Hierarchy 3 was weaker than that of cities in Hierarchy 2, who had
decreased their social vulnerability the most. The situation is the reverse for cities in Hierarchy 4 where
the variation between SVInode and SVIurban in was slight. The city of Taizhou (J) even increased its
social vulnerability after connecting to the network. Huzhou in Hierarchy 5 also increased its social
vulnerability the most when adding connectivity in the social vulnerability assessment. Based on
the results of our case study, a conclusion was drawn that network connectivity influenced social
vulnerability. If only connectivity was strong enough, it could help cities mitigate their traditional
social vulnerability, otherwise, a loose connection in the network aggregated their traditional social
vulnerability. Hence, the latter should be the main emphasis of future urban risk management.

Our study also had limitations despite yielding interesting explorative results. First, our conceptual
framework was simple and only provided a primary theoretical analysis of social vulnerability and
connectivity. This should be further developed to reflect their complicated relationships in reality.
Second, this paper only focused on the informational connection among cities, and would be better if
physical connections of material networks, such as transports networks, logistics networks, or electricity
network were added. Third, data availability is the biggest challenge in social vulnerability assessment
in China. On one hand, it is time consuming to collect data; however, it was still difficult for us to obtain
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all of the required indicators even if much time was spent on data collection. As data limited our study,
we only selected 16 cities and 19 indicators to measure social vulnerability in networks and to explore
the relationship between social vulnerability and connectivity. Moving forward, our aim is to collect
more samples and indicators in future works.
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