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Abstract: The importance of research and development (R&D) for business sustainability have
gained increasing interests, especially in the high-tech sector. However, the efforts of R&D might
cause complex and mixed impacts on the financial results considering the associated expenses.
Thus, this study aims to examine how R&D efforts may influence business to improve its financial
performance considering the dual objectives: the gross and the net profitability. This research
integrates a rough-set-based soft computing technique and multiple criteria decision-making (MCDM)
methods to explore this complex and yet valuable issue. A group of public listed companies from
Taiwan, all in the semiconductor sector, is analyzed as a case study. More than 30 variables are
considered, and the adopted soft computing technique retrieves 14 core attributes—for the dual
profitability objectives—to form the evaluation model. The importance of R&D for pursuing superior
financial prospects is confirmed, and the empirical case demonstrates how to guide an individual
company to plan for improvements to achieve its long-term sustainability by this hybrid approach.

Keywords: business sustainability; research and development (R&D); multiple criteria
decision-making (MCDM); financial objective; variable-consistency dominance-based rough set
approach (VC-DRSA); internetwork relationship map (INRM); directional flow graph (DFG)

1. Introduction

The importance of research and development (R&D) for the high-tech industry has been discussed
broadly; moreover, the relationship between R&D efforts and financial prospects has gained surging
interests in the recent years. Owing to the intensive competition and rapid advances in the global
business environment, high-tech companies have to invest in R&D to maintain or strengthen their
market competitiveness. Previous studies [1,2] have argued that R&D could be regarded as a driving
force for productivity, and the others have claimed that R&D efforts and product innovations would
help firms to capture market share and contribute to the profitability [3–5] in U.S. and Canada.
Although most of the researchers would agree that R&D activities are the driving force to achieve
innovations, the influences of R&D to the financial performance (FP) of high-tech companies are still
unclear, which need further investigations.

Similar to R&D efforts, it has been argued by certain research [6] that patents may act as an
intermediate role to protect innovations, creativities and R&D outcomes, and contribute to the
profitability of companies. On one side, MacDonald [7] examined the effect of patents on FP and found
mixed results; on the other side, Artz et al. [8] found a negative relationship between patents and
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FP from the observed 272 firms that were listed in the U.S. stock market. It still lacks consensus or
universal pattern on the influence of R&D or patents on FP, because the spending on R&D or patents is
not only a plus to value creation but also a deduction item on the income statement. Few studies have
attempted to analyze the impact of R&D efforts for improving FP on the gross (before deducting R&D
spending) and the net profitability simultaneously. Therefore, the central purpose of this study is to
deepen our understanding of the influence of R&D on FP for the two financial prospects: the gross
and the net profitability, which are critical to business sustainability in the long-term. Furthermore,
this study manages to support an individual company to improve its FP considering the complex and
imprecise relationships among R&D and critical financial factors in a real business environment.

High-tech industry has been growing increasingly above the average of sectors that delivers
significant impact on worldwide technological innovations and economic developments [9].
Among various high-tech sectors, the semiconductor industry is crucial in facilitating new technologies
and product development. Take 3C (i.e., Computers/Communications/Consumer) products as an
example, which depend on integrated circuit (IC) design to enable new functionalities, and the
sizes/costs of new ICs decrease in each generation by the advances in semiconductor manufacturing
techniques. Based on the statistics from Semiconductor Industry Association (SIA), the worldwide
market of the semiconductor has been estimated at more than 334 billion USD in 2016, and the
global sales are increasing in 2017. Top-ranked semiconductor sales leading companies such as Intel
headquartered in U.S., TSMC headquartered in Taiwan, Samsung headquartered in South Korea,
and Japan’s Toshiba are world-class technological giants that drive the development of innovative
products and the economy. The four world leading semiconductor companies all invested significantly
on R&D. Nevertheless, the financial outcomes of TSMC and Toshiba were diverse in the past three
years. In mid/2017, TSMC reached its peak market value by showing outstanding earnings per
share (its 2016 EPS reached 12.89 TWD, the highest figure in the recent three years) with a high
growth momentum; on the contrary, the semiconductor business of Toshiba was sold out owing to its
consecutive financial losses. The crucial link between R&D and FP deserves high attention.

According to a report from the U.S. Department of Commerce, the sales of Taiwan semiconductor
industry was about USD 71 Billion in 2015 [10], which is among the top three leading countries in
the world. The semiconductor industry has led the economic growth and migration in Taiwan since
the last decade, and the understanding of how R&D efforts may influence the FP in this industry is
highly valuable in practice [11]. As a result, a real case of the semiconductor companies from Taiwan is
adopted to explore the intricate patterns between R&D and FP prospects.

Given the above research purposes, three major research questions to be addressed are as
follows: (1) What are the contextual relationships of R&D and individual financial indicators on
the FP of the semiconductor industry? (2) What are the relative importance of the critical R&D and
financial variables that may influence the profitability of semiconductor companies? (3) How could a
semiconductor company identify the priority to improve its FP based on the self-defined emphasis on
the gross and the net profitability objectives? In a complex business environment, it often requires to
consider a significant amount of variables (attributes) with interrelated or partially related relations;
conventional statistical methods (e.g., multiple regression) would encounter obstacles to tackle this kind
of complicated problems. Therefore, to answer the research questions as mentioned above, a hybrid
multiple criteria decision-making (MCDM) model/approach is proposed in this study. Compared with
the previous research that mainly relied on statistics to examine the relationship between R&D and
subsequent performance, the present study not only tries to distinguish the influence of R&D on the
gross and the net profitability but also can support and guide a company to reach its financial target.
It is, therefore, the aim of the proposed approach to find the imprecise knowledge from historical data
and support semiconductor businesses to plan for R&D or financial strategy based on their expected
profitability objectives. The overall research concept is illustrated in Figure 1.

The remainder of this paper is structured as follows. In Section 2, it briefly reviews the influence
of R&D on FP and the adopted research methods. Section 3 introduces the proposed hybrid model.
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Section 4 examines the proposed approach by analyzing a group of semiconductor companies in Taiwan
as a case study and uses a semiconductor company’s actual data to illustrate the idea of improvement
planning. In the final section, the concluding remarks are provided, and some limitations of the
proposed approach are discussed.
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2. Literature Review and Background of Research Methods

In this section, how the R&D efforts might influence high-tech companies is discussed. Besides,
the proposed hybrid approach comprises of several MCDM and soft computing techniques; therefore,
the background and the financial applications by the adopted methods and are briefly reviewed.

2.1. R&D Influence on High-Tech Companies

Previous studies argued that R&D is a key factor for high-tech companies to compete and
thrive under intensive global competitions [11,12]. Empirical studies on R&D intensive companies
and high-tech industry clusters have found higher production economics and added values [13].
Nevertheless, empirical evidence was mixed to the relation between R&D efforts and the subsequent
FP of firms. For example, R&D intensity and R&D workforce were found to be positive predictors
for FP in the semiconductor industry [14]; also, the information technology (i.e., R&D) investments
revealed positive influences to the FP of companies in China. However, Artz et al. [1] found a negative
relationship between R&D and firm performance. It seems that the influence of R&D or patents varies
in different circumstances, as the constraints and strategies of companies are not always the same.

Recently, the relationship among financial constraints, R&D efforts, and cash holdings has
been noticed [15]. As the marginal value of R&D spending is higher for the financially constrained
companies, those constrained companies might be more sensitive to the financial returns brought
by R&D investments. Li [16] explored the mixed relationship among financial constraints, R&D
investment, and the stock performance (a leading indicator of FP); the positive relation between R&D
investment and return were only significant for those constrained companies.

Some other researchers [17] claimed that companies mainly rely on internal funding to support
R&D activities; the relationship between financing constraints and R&D investments is significant.
In this research thread, the present study also hopes to explore the contexts (e.g., the status of capital
structure and cash flow) that need to be considered for semiconductor companies while forming
their R&D strategies. According to the previous study [18], research on the influence of R&D efforts
or patents for the FP of companies, consider multiple financial constraints or criteria are still rare
and underexplored. Therefore, this study attempts to propose a hybrid approach—based on the
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machine learning capability of the soft computing and the decision model formed by domain experts’
experience—to explore this important issue.

2.2. Rough Set and Rule-Based Hybrid Decision Model for Financial Applications

Rough set related research have become an emerging field in soft computing [19,20], which has
strength in modeling the vagueness and impreciseness of data. Although the classical rough set theory
(RST) has gained positive outcomes in handling various classification problems, it ignores the so-called
“dominance” relationship, which is critical to resolving decision-making problems. Therefore, the
famous RST research group IDSS (Laboratory of Intelligent Decision Support Systems) proposed the
dominance-based rough set approach (DRSA) [21] and variable consistency DRSA (VC-DRSA) [22] by
analyzing the dominance relationship among attributes. One of the advantages of DRSA/VC-DRSA
is that it may generate a set of “IF antecedents, THEN consequence” rules, which is easy to be
comprehended by DMs, and it has been applied to solve several financial problems in the recent years.
Examples are predicting financial distress [23], diagnosing the financial performance of banks [24] and
life insurance companies [25], technical analysis for investment [26], and portfolio selection [27].

Considering the complexity of R&D efforts on the FP of high-tech companies, it is our hope to
explore its influences in a contextual approach; the decision rules obtained by DRSA/VC-DRSA may
pave a road to meet this end. Furthermore, decision rules could be integrated with the findings from
DEMATEL technique (refer Sections 2.3 and 3.2), which may suggest the directional influences of R&D
in each context in the form of directional flow graph (DFG) [28]. The implications from DFG may thus
unravel the likely impact of R&D efforts on the financial prospects for the semiconductor industry.

2.3. Multiple Criteria Decision-Making (MCDM) Methods in Finance

Real business problems, such as FP prediction or evaluation for stocks, are often complex,
imprecise, and ill-defined [29,30]. It is well recognized that there are often more than one
variable/criterion regarding the evaluation or prediction of the target variable; furthermore, the
considered criteria are often interrelated, which causes the complexity of modeling in practice.

The mainstream social science research adopts statistical methods to describe or examine the
relations among the independent and explained variables, which is based on some unpractical
assumptions—such as the independence of the considered variables and the probabilistic distributions
of variables—in statistics [31]. Moreover, statistical outcomes from regressions only represent the
average results [32], which are not capable of identifying contextual relationships considering the
specific situations/constraints of an individual company. As a result, there is a rising trend in adopting
MCDM methods, which has strength in considering all relevant and interrelated criteria, to resolve
real-world problems [30,31].

Although there are several sub-fields in MCDM research, for brevity, only the methods/techniques
considered in the proposed approach are discussed in here. First, to explore the plausible influential
relationships among all the considered criteria, the DEMATEL technique [33,34] is incorporated into
the analytic network process (ANP) [35] method in MCDM. The DEMATEL method was proposed
to evaluate complicated social problems assuming that all criteria have influences on each other,
which has been successfully applied in identifying cause-effect influences for various applications,
such as evaluating the improvement strategies of public open space for elderly people [36] and new
technology [37]. The integration of DEMATEL and ANP may help adjust the dimensional weights
in the classical ANP method, which also simplifies the design of questionnaire for collecting DMs’
opinions [38]. Therefore, the DEMATEL-based ANP (DANP) method is adopted in the proposed
model to evaluate the importance of R&D and certain financial attributes for modeling.

Second, as the primary goal aims to support improvements in business sustainability, the modified
VIKOR is adopted for evaluating and aggregating performance gaps on the considered criteria.
Inspired by the idea of the previous works [39]. The classical VIKOR [40] uses an aggregation function
to synthesize the performance gaps on all criteria, and form the final ranking outcome. However, it



Sustainability 2017, 9, 1964 5 of 21

only uses the best/worst value of the evaluated alternatives on each criterion for calculations, which
might compel DMs to select a relatively good choice among a group of inferior options.

To overcome this limitation, the modified VIKOR was proposed [30,31] by using the ideal/aspired
value on each criterion to form an aggregation function, which could identify the priority gaps for a
systematic improvement planning. The new approach, based on the modified VIKOR, contributed to a
continuous improvement in, which is the essence of sustainability.

3. Hybrid Model for Exploring R&D Influences and Performance Gaps

This Section explains the proposed hybrid approach. At the beginning, the financial and R&D
data need to be discretized to form two sets: the training and testing sets. The training set is adopted
to conduct VC-DRSA approximations (explained in Section 3.1), to explore the CORE attributes and
the associated rules with the net and the gross profitability; the testing set is used to examine its
validity. Those two groups of CORE attributes are analyzed by the DEMATEL technique to identify
the cause-effect relationships among them for supporting improvement planning.

The analysis of the DEMATEL cause-effect analysis can be combined with strong decision rules
to form the influential network relation map (INRM) and directional flow graph (DFG). In the final
stage, the modified VIKOR method can aggregate each alternative’s input data to generate a ranking
decision. The INRM, DFG, and modified VIKOR, all support for a systematic improvement planning
that may lead to the long-term sustainability of a business. The following Sections 3.1–3.4 explain the
mathematical operations and logics of the involved methods.

3.1. Rough Set Theory and Its Extensions for Decision Aids

Extended from the classical RSA, VC-DRSA may further consider the dominance relationships in
attributes, which can be described by a 4-tuple information system (IS = (U, A, V, f )) with a controlled
level of consistency among the data set. In an IS, the set U is a finite set of universe, and the set A is a
finite set of attributes (i.e., two subsets C and D, where C denotes the condition set, D the decision
one; C ∩ D = ∅). Va is the value domain of an attribute a, where f : U × A→ V denotes a mapping
function, in which f (x, a) ∈ Va for each a ∈ A and x ∈ U. In the proposed hybrid MCDM model,
various financial ratios and R&D indicators of a company at the time t− 1 are regarded as the condition
attributes, and the FP (in the measure of gross or net profitability) at the time t the decision attribute.

In the next, �a denotes a complete outranking relation on set U regarding the attribute a(for each
a ∈ A. For any two x, y ∈ U, “x�ay” denotes that x is at least not worse than y on the attribute a. If �a
represents a complete outranking relationship, then x and y are always comparable with respect to
the attribute a. Besides, Cl = {Clk, k = 1, . . . , h}, which is defined as a set of h decision classes (DCs)
in U. Then, in a preferred order of DCs, if q � k, which indicates that Clq � Clk. Thus, the upward
union and downward union of DCs can be defined as: (1) Cl≥k = ∪

s≥k
Cls and (2) Cl≤k = ∪

s≤k
Cls. In the

following explanations, only the upward union is illustrated for brevity.
The dominance relation DomP for P ⊆ C can be defined by the aforementioned upward union.

If an object (or alternative) x P-dominates y regarding P, then x�ai
y for all ai ∈ P ⊆ C, denoted

as xDomPy. For any x, y ∈ U, the dominating and dominated sets regarding P can be described
as Dom↑P(x) = {y ∈ U : yDomPx} and Dom↓P(x) = {y ∈ U : xDomPy} respectively. The P-lower

and P-upper approximations of the upward union Cl≥k can be denoted as AP
(

Cl≥k
)

and AP
(

Cl≥k
)

,

where AP
(

Cl≥k
)

=
{

x ∈ U : Dom↑P(x) ⊆ Cl≥k
}

and AP
(

Cl≥k
)

=
{

x ∈ U : Dom↓P(x) ∩ Cl≥k 6= ∅
}

for k = 2, . . . , h. The P-lower and P-upper approximations thus construct the P-boundary region.
The P-boundary of Cl≥k can be denoted as BouP(Cl≥k ) to represent the imprecise or boundary region.

To define this boundary region, BouP(Cl≥k ) = AP
(

Cl≥k
)
− AP

(
Cl≥k

)
for t = 2, . . . , h. The P-lower

approximation only includes the consistent objects in DRSA, which denotes the certain knowledge.
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However, VC-DRSA further allows for a controlled degree of inconsistency to include some additional
objects in AP

(
Cl≥k

)
.

For Cl≥k ⊆ U and v ∈ U, the gain-type consistency measurement and a fixed gain threshold
can be denoted as ΘX and θX, where X denotes Cl≥k , and ¬X ⊆ U while ¬X = U − X.

The AP
(

Cl≥k
)

with gain threshold θX can then be defined as APθX
(

Cl≥k
)
=
{

z ∈ Cl≥k : ΘX(v) ≥ θX

}
.

The P-attributes-based upper and lower approximations of set X could be used to define the

P-boundary of set X as BouθX
P = APθX (X)− APθX (X), and the detailed discussions of the gain-type

consistency measure can be referred to the previous research [22].
In VC-DRSA, ψθX

P (X) denotes the percentage of all correctly classified objects for P ⊆ C
that satisfies consistency threshold θX, and each minimal subset P that can meet the requirement
ψθX

P (X) = ψθX
C (X) is termed as a REDUCT of C. The intersection of all REDUCTs is called a COREX of

the IS in VC-DRSA, which represents the minimal and indispensable attributes to make VC-DRSA
approximations without deteriorating its approximation quality. Those condition attributes in the
CORE (COREX) set will be used for forming a hybrid MCDM model by DEMATEL, DANP, and the
modified VIKOR (refer Figure 2). The object that complies with both the antecedents and consequence
of a rule is termed as a support for the decision rule. The one with a high number of supports is called
a strong rule.

Those DCs in set X, by the approximations of VC-DRSA, may generate a set of decision rules, in
the form of “IF antecedent (premise), THEN consequence (decision).” The decision rules obtained from
VC-DRSA would convey understandable knowledge considering the impreciseness and controlled
level of inconsistency in data [22]. The VC-DRSA algorithm adopted in this work is based on the
study [41], which is calculated by sequential covering rule and termed as VC-DomLEM. The required
steps for VC-DRSA are as below, and the proposed approach needs to form two VC-DRSA models
(take the gross and net profitability goals as the decision attribute separately in two sub-models).
The two VC-DRSA models would induce two sets of CORE attributes to be integrated into a hybrid
MCDM model.

Step 1 Discretize attributes. Discretized values may denote ideas like “high” and “low” to be close
to how DMs process those concepts during reasoning. As a result, the obtained rules will be
easier to be comprehended by DMs.

Step 2 Conduct VC-DRSA algorithm on data sets by various consistency thresholds until an
acceptable outcome can be reached. Besides, the learned model will be validated by a
testing set.

Step 3 Each trained VC-DRSA model would generate a CORE (COREX) set and a set of certain level
of consistency in decision rules. The CORE comprises indispensable attributes for discerning
the DCs. In the present study, two CORE sets associated with the gross and the net profit
goals are the expected outputs, which will be used to form a hybrid MCDM model. This step
is based on VC-DRSA approximation capability.

3.2. Decision-Making Trial and Evaluation Laboratory (DEMATEL) Technique

The DEMATEL technique is adopted for two purposes: find cause-effect influence relationships
among the critical dimensions/attributes and use the basic concept of the ANP method to identify the
influential weights by the DEMATEL-based-ANP (called DANP weights).

Step 4 Collect experts’ opinions to form the direct influence relation matrix B = [bij]n×n that they
feel the influence attribute i has on another attribute j, expressed as bij, and form B in
Equation (1). The scale of opinions ranges from 0 (zero influence) to 4 (extremely high
influence), according to the knowledge or experience of experts.
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B =



b11 · · · b1j · · · b1n
...

...
...

bi1 · · · bij · · · bin
...

...
...

bn1 bnj bnn


n×n

(1)

As the proposed approach considers both financial objectives, the union set of the two VC-DRSA
models’ CORE attributes from Step 3 is used for the DEMATEL analysis, and the number of attributes
in this union set equals n in Equation (1) for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Step 5 Normalize B to obtain the direct influence relation matrix D. The matrix D = [dij]n×n can be
obtained by Equations (2) and (3) , and a constant φ could be found to normalize B.

D = φB (2)

φ = min

{
1

maxi∑n
j=1 bij

,
1

maxj∑n
i=1 bij

}
, i, j ∈ {1, · · · , n} (3)

Step 6 Using D to get the total influence relation matrix T. As the indirect effects of the influence
decrease as the power of D increases, the total influence relation matrix T can be redescribed
as Equation (4). Therefore, the total influence relation matrix T can be obtained from direct
influence relation matrix D.

T = D + D2 + . . . + Dw = D(I−Dw)(I−D)−1, and

T =
[
tij
]

n×n = D(I−D)−1 while lim
w→∞

Dw = [0]n×n
(4)

Step 7 Identify the cause-effect relationship of attributes by analyzing T. The sum of each row and
sum of each column in T may be indicated as rA

i (rA
i = ∑n

j=1 tij, for j ∈ 1, . . . , n) and sA
j

(sA
j = ∑n

i=1 tij, for j ∈ 1, . . . , n). Because the number of rows and columns both equal to n (T is

a square matrix), the operations of rA
i + sA

i (for i = 1, . . . ,n) would denote the central influence
degree of the ith criterion/attribute; in addition, the operations of rA

i − sA
i (for i = 1, . . . ,n)

may divide criteria (attributes) into two group. If rA
i − sA

i > 0, the ith criterion belongs to the
source group that has influence to the others; otherwise, the effect group. The cause-effect
influence analysis by DEMATEL may be combined with VC-DRSA decision rules to indicate
R&D influential paths, termed as the direction flow graph (DFG). A case of how to develop a
DFG will be demostrated in the next section.

3.3. Hybrid DANP Model for Dual Financial Objectives

The total influence relation matrix T from Step 6 is normalized to be Tα
A as Equation (5) for

forming a hybrid DANP model, assuming that there are m dimensions and n criteria in Tα
A.
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Tα
A =

D1

...

Di

...

Dm

A11

A12
...

A1m1
...

Ai1
Ai2

...
Aimi

...
Am1

Am2
...

Ammm

D1 Dj Dm

A11···A1m1 . . . Aj1···Ajmj · · · Ammm

Tα11
A · · · Tα1j

A · · · Tα1m
A

...
...

...

Tαi1
A · · · Tαij

A · · · Tαim
A

...
...

...

Tαm1
A · · · Tαmj

A · · · Tαmm
A


n×n, ∑m

j=1 mj=n

(5)

Step 8 Find the initial super-matrix for a DANP model. After the normalization of T, the initial
super-matrix W can be obtained by transposing Tα

A, denoted as W (i.e., W = (Tα
A)
′).

Furthermore, to adjust the equal-weight assumption among dimensions in the classical
ANP method, the dimensional influence relation matrix TD is normalized to become Tα

D as
in Equations (6) and (7).

TD =



t11
D · · · t1j

D · · · t1m
D

...
...

...
ti1
D · · · tij

D · · · tim
D

...
...

...
tm1
D · · · tmj

D · · · tmm
D


m×m

(6)

Tα
D =



t11
D /d1 · · · t1j

D/d1 · · · t1m
D /d1

...
...

...
ti1
D/di · · · tij

D/di · · · tim
D /di

...
...

...
tm1
D /dm · · · tmj

D /dm · · · tmm
D /dm


=



tα11
D · · · tα1j

D · · · tα1m
D

...
...

...
tαi1
D · · · tαij

D · · · tαim
D

...
...

...
tαm1
D · · · tαmj

D · · · tαmm
D


m×m

(7)

Step 9 Calculate the raw influential weights of a DANP model. The adjusted super-matrix should
multiply the normalized dimensional influence relation matrix Tα

D by the un-weighted
super-matrix W, and the limiting super-matrix can be derived from multiplying by itself
multiple times until the weights become converged as a weighted super-matrix (i.e.,
WN = Tα

DW). The raw influential weight wi of each criterion (i = 1, 2, . . . , n) can thus
be calculated by lim

z→∞

(
WN)z (i.e., the raw influential weights w = (w1, . . . , wi, . . . , wn)).

Step 10 Adjust the influential weight of each criterion (attribute) based on a DM’s emphasis on the
dual financial objectives. Since the attributes in the DANP model come from the union of the
two CORE sets (i.e., COREGross and CORENet), some attributes would only appear in one of
the CORE set, and some others would be in both of the CORE sets. Therefore, the influential
raw weight of the ith attribute from DANP weights could be further adjusted as wAdji for
i = 1, 2, . . . , n in Equation (8).
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wAdji = λ× wGross
i + (1− λ)× wNet

i = wraw
i (8)

In Equation (7), λ denotes a DM’s emphasis on the gross profit objective, and (1− λ) denotes the
emphasis on the net profit objective. If the ith attribute was only included in COREGross, then wGross

i
equals the influential raw weight of wi (i.e., wraw

i ) in Step 9, and wnet
i = 0. If the ith attribute was

included in both COREGross and CORENet, then wraw
i = λ× wGross

i + (1− λ)× wNet
i = wAdji , termed

as λ-adjustment. Thus, the adjusted influential weight of each attribute can be normalized (sum up to
one) as the adjusted DANP weight (i.e., wN

adj) considering the dual financial objectives.

3.4. Improvement Planning by the Modified VIKOR

By Step 10, the required influential weight of each attribute (after adjustment) based on a DM’s
self-defined emphasis on the dual financial objectives can be obtained. In the next, the modified VIKOR
method not only can rank objects (or called alternatives) but also has strength in supporting companies
for improvement planning—by identifying its priority gaps—towards excellence. The original idea of
VIKOR begins with an LH

k -metric as Equation (9), in which, m objectives can be expressed as O1, O2,
. . . , Om; the performance score on the ith attribute is denoted as pki for the object k, and wN

Adji
is the

adjusted (after normalization) influential weight of the ith attribute for object k (i = 1, 2, . . . , n).

LH
k =

{
n

∑
i=1

[
wN

Adji (|p
∗
i − pki|)/

(
p∗i − p−i

)]H
} 1

H

, 1 ≤ H ≤ ∞; i = 1, . . . , n (9)

Then, while H = 1 and H = ∞, the indices Sk and Rk for object k can be calculated as
Equations (10) and (11).

Sk = LH=1
k =

n

∑
i=1

[
wN

Adji

(∣∣∣p∗j − pkj

∣∣∣)/
(∣∣∣p∗j − p−j

∣∣∣) ] (10)

Rk = LH=∞
k = maxi

{
wN

Adji (|p
∗
i − pki|)/

(∣∣p∗i − p−i
∣∣) ∣∣∣i = 1, 2, . . . , n

}
(11)

The modified VIKOR enhances the settings of the classical VIKOR (in the classical approach,
p∗i = maxk pki and p−i = mink pki); in the modified VIKOR, paspire

i (replace p∗i ) denotes the best/ideal
value on the ith attribute and pworst

i (replace p−i ) the worst value on the ith attribute [29]. For example,
if the score on each attribute for all the objects were collected from questionnaires, and it ranged from
0 to 10 (Worst performance← 0,1,2,..,5, . . . ,9,10→ Best performance), then the aspired level and the
worst value can be set as paspire

i = 10 and pworst
i = 0 for each attribute. This modified approach may

indicate an object’s performance gap—use the aspired level as its target—on each attribute.
In Equations (10) and (11), if p∗i was replaced by paspire

i and p−i was replaced by pworst
i , the obtained

Sk and Rk can be synthesized as a new ranking index Qk based on the weighted average opinions (i.e.,
weight = v) and the individual regret (i.e., weight = 1 − v) in Equation (12) to modify the classical
VIKOR method.

Qk = v× Sk + (1− v)× Rk (12)

Step 11 Obtain each object’s performance scores on the attributes that are under evaluation,
and calculate the performance gap for each object on each attribute for identifying the priority
gap. The obtained priority gap can be applied as a guidance for a systematic improvement.

The required steps and the involved soft computing and MCDM methods are summarized in
Figure 2, which shows to apply the proposed approach to reach the long-term business sustainability
through continuous improvement.
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4. Empirical Case Analysis and Discussions

Considering the complicated relationship between R&D and future FP, an understandable
guidance for companies to improve its performance would provide high business value in practice.
Therefore, this study adopted the semiconductor industry in Taiwan as a case study, to illustrate how
to form a hybrid decision model to reach this goal.

4.1. Data for VC-DRSA Model

For the availability and the consistency of data sources, this study adopted all the semiconductor
companies listed on the Taiwan stock market to retrieve the patterns of FP changes, considering the
effect of R&D. The covered period spanned from 2006 to 2013. Since the effect of R&D would take time
to reveal its influence, a 2-year moving time window was used for setting the condition attributes and
the corresponding decision attribute (as different DCs) in the VC-DRSA model.

Take the data laid down in the first period, for example, the averaged results of condition attributes
(includes financial and R&D attributes) in 2006 and 2007 were matched with the associated average
results in 2008 and 2009 of decision attribute (FP measurement). The remaining two data sets in the
following periods were organized in the same approach, and Figure 3 illustrates the framework of the
2-year moving average time windows from 2006 to 2013 (three sets of data); there were total 105 objects
(observations) collected during this period.
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The condition attributes comprised of two parts: the financial and the R&D ones. There were
total 16 condition attributes included for modeling: 14 commonly used financial ratios (from four
dimensions, categorized by the authority of stock market in Taiwan) and two R&D attributes. Since two
financial objectives will lead to two different VC-DRSA models, the initially involved number of
attributes exceed 30. The adopted attributes and the corresponding symbols are summarized in
Table 1.

Table 1. Condition and decision attributes for VC-DRSA.

Financial Objectives

Decision Attributes Symbols Definitions

Gross profit GrossProfit (revenue- cost)/total revenue

Net profit NetProfit (revenue- cost-expense)/total revenue

Dimensions Condition Attributes Symbols Brief explanations

Capital Structure
Debt to total asset Debt Higher debt to asset ratio often increases the

financial risk

Long-term capital to total asset LongCap Higher long-term capital ratio is beneficial for a
company’s financial stability

Payback Capability

Liquidity ratio Liquidity Higher liquidity implies better payback capability

Quick ratio Quick Similar effect as the liquidity ratio

Interest coverage ratio IntCov Higher interest coverage ratio decrease the
financial risk

Operational Efficiency

Accounts receivable AR_turnover Higher AR_turnover implies superior efficiency

Days for collecting AR AR_days Shorter AR_days implies superior efficiency

Inventory turnover InvTurnover Higher InvTurnover implies superior efficiency

Average days sales of inventory DAYs Shorter DAYs implies superior efficiency

Fixed asset turnover FAssetTurn Higher FAssetTurn implies superior efficiency

Asset turnover AssetTurnover Similar effect as FAssetTurn

Cash Flow

Operating cash-flow ratio CashFlow
CashFlow is a measure of how well current
liabilities are covered by the cash flow generated
from operations

Cash-flow adequacy ratio CashFlow_adq
It measures how well a company can cover its
payments of long-term debt by the cash flow
generated from operations

Cash-flow reinvestment ratio CashFlow_reinv It measures the amount of cash flow that a
company is routinely investing back into itself

R&D
R&D expense ratio RD_exp It measures a firm’s R&D expenses to its annual

revenue

Patent number Patent Annual patent number

The data for all the financial attributes and one R&D attribute (i.e., R&D expenditure ratio) were
collected from Taiwan Economic Journal (TEJ) database [42]; the remaining R&D attribute—Patent
(acquired number of patents in a year)—was retrieved from the Ministry of Science and Technology
in Taiwan, where only the patents issued by the United States Patent and Trademark Office were
counted). The decision attribute was defined by using the gross or the net profit ratio in the subsequent
time frame, to explore the associated antecedents/premises of Good FP prospect under each kind of
financial objective (in two VC-DRSA models).

4.2. VC-DRSA for Identifying CORE Attributes and Decision Rules

As the effect of R&D on the gross and the net profitability would not be the same, VC-DRSA
algorithm was conducted under these two profitability objectives separately. Data pre-processing was
conducted, for DMs to get intuitive understandings from the obtained decision rules. Two commonly
applied methods were used: the one-third and the normal-distribution based discretization methods.
The one-third method discretized the decision attribute in three states by ranking it from high to
low in each time frame, and the top 1/3, the middle 1/3, and the bottom 1/3 alternatives were
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classified as Good, Neutral, and Bad. For comparison, the other discretization method based on
normal-distribution was also conducted. And the objects above x + (0.25× SD), the objects between
x± (0.25× SD), and the objects below x− (0.25× SD) were classified as the aforementioned three
states. Similarly, the condition attributes were also discretized in three states (i.e., high (H), middle
(M), and low (L)) in each time frame by the aforementioned two discretization methods.

The jMAF [41] was adopted as the VC-DRSA classifier; the other two classifiers—decision tree (DT)
and support vector machine (SVM)—were also conducted for comparison, by using the DTREG [43].
A 5-fold cross-validation was repeated five times for each classifier, and VC-DRSA was examined
by setting several consistency levels (CLs). Classification accuracy (CA) was used to indicate the
approximation accuracy of these experiments, which calculated the correctly classified objects divided
by all objects in the training set. The results of CA in various classifiers are summarized in Table 2
(the gross profit objective) and Table 3 (the net profit goal); in those two tables, VC-DRSA (CL = 0.95,
with one-third discretization) all revealed the highest CA in average with acceptable results. Thus, the
VC-DRSA (CL = 0.95) classifier was adopted to induce the CORE attributes and decision rules for each
type of FP objective.

Table 2. Classification accuracy of various classifiers (Gross profit objective) (unit: %).

VC-DRSA
(CL = 1.00)

VC-DRSA
(CL = 0.95)

VC-DRSA
(CL = 0.90)

VC-DRSA
(CL = 0.85)

SVM
(RBF-Kernel) DT

Times * 1–3rd * Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm

1 72.38 63.81 69.52 69.62 64.76 63.81 67.62 63.81 61.33 61.65 61.63 62.24
2 68.57 65.71 71.43 66.67 67.62 65.71 66.67 63.81 61.47 60.24 64.13 61.47
3 69.52 65.71 72.38 69.52 65.71 63.81 68.57 65.71 64.62 59.17 63.81 60.24
4 69.52 66.67 73.33 67.62 66.67 64.76 63.81 64.62 62.02 57.39 60.24 61.63
5 67.62 67.62 70.48 68.57 66.67 64.62 67.62 63.81 61.24 62.02 62.16 59.38

Average 69.52 65.90 71.43 68.40 66.29 64.54 66.86 64.35 62.14 60.09 62.39 60.99

SD 1.78 1.41 1.51 1.26 1.09 0.79 1.83 0.84 1.42 1.89 1.60 1.16

Note: * “1–3rd” and “Norm” denote the one-third and the normal-distribution based discretization methods;
CL denotes consistency level in VC-DRSA model.

Table 3. Classification accuracy of various classifiers (Net profit objective) (unit: %).

VC-DRSA
(CL = 1.00)

VC-DRSA
(CL = 0.95)

VC-DRSA
(CL = 0.90)

VC-DRSA
(CL = 0.85)

SVM
(RBF-Kernel) DT

Times * 1–3rd * Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm 1–3rd Norm

1 74.29 70.48 75.24 71.43 71.43 68.57 70.48 66.67 67.71 63.81 64.62 58.10
2 73.33 69.52 77.14 70.48 71.43 68.57 68.57 67.62 65.71 62.16 63.81 62.12
3 70.48 69.52 77.14 73.33 71.43 69.52 70.48 71.43 63.81 61.63 62.16 63.81
4 73.33 67.62 75.24 73.33 72.38 67.62 71.43 64.76 66.67 62.02 61.63 62.16
5 74.29 70.48 79.05 71.43 73.33 69.52 69.52 68.57 67.62 64.62 64.54 63.81

Average 73.14 69.52 76.76 72.00 72.00 68.76 70.10 67.81 66.30 62.85 63.35 62.00

SD 1.56 1.17 1.59 1.27 0.85 0.79 1.09 2.47 1.61 1.29 1.38 2.33

Note: * “1–3rd” and “Norm” denote the one-third and the normal-distribution-based discretization methods;
CL denotes consistency level in VC-DRSA model.

In Tables 2 and 3, SD denotes standard deviation. The co-shared attributes and the distinct
attributes of each type of FP objective are summarized in Table 4; the union of the two CORE sets
comprises of 14 attributes, those attributes were further analyzed by the DEMATEL technique. Also,
the strong decision rules (i.e., with high supports) associated with the two types of profitability
prospects are shown in Table 5.

In Table 5, the top two strong decision rules of each model (i.e., the gross or net profit objective)
are shown with the number of supports. It can be observed that the RD_exp attribute appeared in both
models, which suggests the importance of R&D investment in reaching better financial prospects.
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Table 4. CORE attributes by the two types of FP objectives.

FP Objectives CORE Attributes Numbers

Gross profit LongCap, Liquidity, AR_days, AssetTurnover, CF, CF_reinv, RD_exp 7

Net profit Debt, LongCap, Quick, IntCov, Inventory, FAssetTurn, AssetTurnover, CF,
CF_adq, CF_reinv, RD_exp, Patents 12

Note: The union of the two sets of CORE attributes comprised of 14 attributes.

Table 5. Strong decision rules of the two types of FP objectives (DC ≥ Good).

FP Objectives Decision Rules Supports

Gross profit LongCap ≥M & AssetTurnover ≥M & RD_exp ≥ H 16
LongCap ≥ H & RD_exp ≥ H 14

Net profit CF ≥ H & CF_adq ≥ H & CF_reinv ≥ H 7
Liquidity ≥ H & CF_reinv ≥ H & RD_exp ≥ H 6

4.3. Adjusted DANP (DEMATEL-Based ANP) Influential Weights

In the previous subsection, Table 4 indicates the CORE attributes from the two types of objectives
(i.e., gross and net profitability). CORE attributes denote the minimal and indispensable attributes for
a VC-DRSA model to classify objects without decreasing its approximation accuracy. Therefore, the
union of the two sets of CORE attributes in Table 4 were further analysed by DANP, combined into a
single decision model by λ-adjustment (Step 10), for obtaining the DANP influential weights.

The opinions for the calculations of DANP were collected from domain experts (eight experts)
in the financial or information technology industry; all of them have working experience in these
domains for more than 15 years, and three of the experts are working in semiconductor companies.
Their job titles include Chief Financial Officer (CFO), Director of R&D, Manager, Senior Analyst, Senior
Consultant, and Fund Manager. The calculation details of DEMATEL and DANP can be found in
Appendix A. The analysis from DEMATEL may divide dimensions/attribute into a cause group,
and an effect group, the directional influences among dimensions (INRM) are shown in Figure 4.
The influences among dimensions and attributes are shown in Tables 6 and 7 (from Table A4 in
Appendix A).
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Table 6. Directional influences among dimensions (DEMATEL analysis).

Dimensions rD
i sD

i sD
i − dD

i rD
i + sD

i

Capital Structure (D1) 1.168 1.073 0.095 2.242
Pay Back (D2) 1.116 1.267 −0.151 2.383

Operational Efficiency (D3) 1.108 1.240 −0.132 2.349
Cash Flow (D4) 1.353 1.353 0.001 2.706

R&D (D5) 1.195 1.007 0.188 2.202

Table 7. Directional influences among condition attributes (by DEMATEL).

Attributes rA
i sA

i rA
i − sA

i rA
i + sA

i

Debt (A1) 3.120 2.801 0.318 3.438
LongCap (A2) 3.542 3.223 0.319 3.861
Liquidity (A3) 3.548 3.851 −0.302 3.246

Quick (A4) 3.301 3.333 −0.033 3.268
IntCov (A5) 2.711 3.419 −0.707 2.004

AR_days (A6) 3.652 2.881 0.771 4.423
Inventory (A7) 3.679 3.532 0.147 3.826

FixAssetTurn (A8) 2.325 3.185 −0.859 1.466
AssetTurnover (A9) 3.052 4.186 −1.133 1.919

CF (A10) 4.138 4.228 −0.090 4.048
CF_adq (A11) 3.320 3.421 −0.101 3.219

CF_reinv (A12) 4.041 3.683 0.358 4.399
RD_exp (A13) 4.282 3.857 0.424 4.706

Patent (A14) 2.625 1.737 0.888 3.514

The raw weights of DANP are listed in Table 8; besides, DM may adjust the final weights based
on his emphasis on the gross and the net profit objectives. In this case, the relative emphasis on the
gross and the net profit objectives was assumed to be 0.4 and 0.6 (i.e., put 40% weight on the gross
and 60% on the net profit objectives) respectively; the adjusted weights from DANP are also shown in
Table 8.

Figure 4 (INRM) only indicates the directional influence among the five dimensions; the influence
within each dimension (i.e., directional influence among attributes in each dimension) could be referred
to rA

i − sA
i in Table 7. This figure shows R&D dimension has the highest influence on the other aspects,

which affirms the importance of R&D efforts for the semiconductor industry.

4.4. Synthesized Performance Gaps by Modified VIKOR

To illustrate the proposed approach for guiding improvements, the data (the averaged financial
and R&D indicators in 2011 and 2012) from four semiconductor companies were adopted, namely: (A)
Siliconware Precision Industries (code: 2325); (B) VIA Technologies (code: 2388); (C) MediaTek (code:
2454); (D) ADATA Technology (code: 3260). All of the training data were used to transform the four
companies’ raw indicators (e.g., Liquidity) into performance scores, range from 0 (the worst) to 10
(the best).

A percentile transformation method was conducted; for example, if a company’s CF (cash flow)
ratio ranked among the top 10% of the 35 companies, then the company’s performance score on the
CF attribute would be nine. By setting v = 0.8 and 0.5 (refer Section 3.4), the modified VIKOR and
the simple additive weighting (SAW) methods all revealed the same ranking result: C � A � D � B,
which was consistent with their averaged FP in 2013 and 2014 (0.4 × Gross profit ratio + 0.6 × Net
profit ratio). The raw and adjusted weights of attributes by the DANP method is shown in Table 8.

The ranking result, by the two aggregation methods (SAW and modified VIKOR), is shown in
Table 9. If we extend the time-period to 2016, the four years’ averaged FP result with the same weighing
on the gross and net profit (i.e., 0.4 × Gross profit ratio + 0.6 × Net profit ratio), the top two are still the
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same, but the last two reverse (i.e., C � A � B � D). The actual averaged gross and net profit ratios
in different period for each company are organized in Table 10. Although some minor inconsistency
exists in the longer term (2013~2016), the model has shown its effectiveness for decision aids.

This study attempts to explore the complex/imprecise relationships among R&D, financial
attributes, and the FP objectives of semiconductor companies. Also, a hybrid MCDM model
was proposed to evaluate a company’s performance gaps—based on DMs’ emphasis on the dual
profitability objectives respectively—for improvement planning. Take company A for example, and we
may learn that its priority performance gaps would be different while the emphasis on the gross and
the net profit objectives varied (refer Table 11).

Table 8. Raw and adjusted weights of attributes by DANP.

Attributes Raw Weights λ-Adjustment (λ-adj) Raw Weight × λ-adj Adjusted Weights *

Debt (A1) 0.09 0.6 0.05 0.07
LongCap (A2) 0.10 (0.4 + 0.6) * 0.10 0.13
Liquidity (A3) 0.08 0.4 0.03 0.04

Quick (A4) 0.07 0.6 0.04 0.05
IntCov (A5) 0.07 0.6 0.04 0.05

AR_days (A6) 0.05 0.4 0.02 0.03
Inventory (A7) 0.06 0.6 0.04 0.05

FixAssetTurn (A8) 0.05 0.6 0.03 0.04
AssetTurnover (A9) 0.07 (0.4 + 0.6) 0.07 0.09

CF (A10) 0.09 (0.4 + 0.6) 0.09 0.11
CF_adq (A11) 0.07 0.6 0.04 0.05

CF_reinv (A12) 0.08 (0.4 + 0.6) 0.08 0.10
RD_exp (A13) 0.12 (0.4 + 0.6) 0.12 0.15

Patent (A14) 0.06 0.6 0.04 0.05

Note: * Adjusted weights are the normalized results wN
adj; The attribute LongCap (A2) was included in both sets of

the CORE attributes; its emphasis is (0.4 + 0.6).

Table 9. Ranking results of the empirical case by the modified VIKOR and SAW.

Criteria wN
adj

Companies (Performance Scores) Companies (Performance Gaps)

A B C D A B C D

Debt (A1) 0.07 6 6 8 2 0.4 0.4 0.2 0.8
LongCap (A2) 0.13 3 6 9 7 0.7 0.4 0.1 0.3
Liquidity (A3) 0.04 5 7 8 5 0.5 0.3 0.2 0.5

Quick (A4) 0.05 6 8 9 4 0.4 0.2 0.1 0.6
IntCov (A5) 0.05 7 1 9 4 0.3 0.9 0.1 0.6

AR_days (A6) 0.03 4 8 8 8 0.6 0.2 0.2 0.2
Inventory (A7) 0.05 9 3 4 8 0.1 0.7 0.6 0.2

FixAssetTurn (A8) 0.04 4 5 9 9 0.6 0.5 0.1 0.1
AssetTurnover (A9) 0.09 6 2 5 9 0.4 0.8 0.5 0.1

CF (A10) 0.11 9 0 8 4 0.1 1.0 0.2 0.6
CF_adq (A11) 0.05 7 1 9 3 0.3 0.9 0.1 0.7

CF_reinv (A12) 0.10 6 0 3 7 0.4 1.0 0.7 0.3
RD_exp (A13) 0.15 5 10 9 2 0.5 0.0 0.1 0.8

Patent (A14) 0.05 8 0 9 0 0.2 1.0 0.1 1.0
SAW * 6.02 4.25 7.63 5.05 VIKOR
Rank (2) (4) (1) (3) Si 0.41 0.59 0.25 0.51

Ri 0.7 1 0.7 1
Qi v = 0.8 0.47 0.67 0.34 0.60

(Rank) (2) (4) (1) (3)
Qi v = 0.5 0.55 0.79 0.47 0.70

(Rank) (2) (4) (1) (3)

Note: * In SAW method, the higher synthesized score the better the ranking result.

In Table 11, if company A puts 0.4 (i.e., 40%) emphasis on the gross profit and 0.6 (i.e., 60%)
emphasis on the net profit (i.e., put more emphasis on the net profit), the top three priority attributes
for it to improve would be: A2 (LongCap, the top priority), A13 (RD_exp, the second priority), and A12
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(CF_reinv, the third priority). It is obvious that if company A puts different emphasis on the two
profit objectives (e.g., put 100% emphasis on the net profit objective), the adjusted and normalized
weights would form a different weighting system (refer Step 10). As a result, the proposed hybrid
MCDM model can support a company—based on its emphasis on the two FP objectives—to identify
its improvement priority, which is the major novelty and contribution of the study.

Furthermore, incorporated with the previous findings (i.e., DEMATEL analysis and INRM),
semiconductor companies may identify the cause-effect relationships of dimensions/attributes, along
with the contexts of strong decision rules, to gain more insights by the combined DFG. Take the two
strong decision rules in Table 5—associated with the net profit objective—for example, it may be
integrated with the INRM to generate a DFG, which may indicate the influential paths of R&D that
may lead to “at least Good FP” in the next period. The DFG is shown in Figure 5.

Table 10. Averaged FP of the four companies in different time periods (Unit: %).

A B C D

* AvgGross 2013~2014 23.04 29.24 46.36 9.20
AvgNet 2013~2014 11.32 −22.76 20.99 4.36

(0.4G,0.6N) 2013~2014 16.01 * −1.96 31.14 6.29
(Rank) (2) (4) (1) (3)

AvgGross 2013~2016 27.32 28.72 42.90 9.67
AvgNet 2013~2016 11.22 −5.86 15.70 3.53

(0.4G,0.6N) 2013~2016 16.22 7.97 26.58 5.98
(Rank) (2) (3) (1) (4)

Note: * AvgGross 2013~2014 denotes the averaged gross profit of a company during 2013 to 2014; For example,
(0.4G,0.6N) 2013~2014 for A is calculated by: 16.01 = (0.4× 23.04) + (0.6× 11.32).

Table 11. Gaps of A while 40% on Gross and 60% on Net profit measures (0.4G,0.6N).

Attributes A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Gaps of A 0.40 0.70 0.50 0.40 0.30 0.60 0.10 0.60 0.40 0.10 0.30 0.40 0.50 0.20
wN

adj 0.07 0.13 0.04 0.05 0.05 0.03 0.05 0.04 0.09 0.11 0.05 0.10 0.15 0.05
* Weighted Gap (%) 2.80 9.10 2.00 2.00 1.50 1.80 0.50 2.40 3.60 1.10 1.50 4.00 7.50 1.00

(Priority) (1) (3) (2)

Note: * This weighted gaps of company A were calculated to indicate its improvement priority.

Sustainability 2017, 9, 1964  16 of 21 

integrated with the INRM to generate a DFG, which may indicate the influential paths of R&D that 
may lead to “at least Good FP” in the next period. The DFG is shown in Figure 5. 

Table 10. Averaged FP of the four companies in different time periods (Unit: %). 

 A B C D 
* AvgGross 2013~2014 23.04 29.24 46.36 9.20 

AvgNet 2013~2014 11.32 −22.76 20.99 4.36 
(0.4G,0.6N) 2013~2014 16.01 * −1.96 31.14 6.29 

(Rank) (2) (4) (1) (3) 
AvgGross 2013~2016 27.32 28.72 42.90 9.67 
AvgNet 2013~2016 11.22 −5.86 15.70 3.53 

(0.4G,0.6N) 2013~2016 16.22 7.97 26.58 5.98 
(Rank) (2) (3) (1) (4) 

* Note: AvgGross 2013~2014 denotes the averaged gross profit of a company during 2013 to 2014; For example, 
(0.4G,0.6N) 2013~2014 for A is calculated by: 16.01 (0.4 23.04) (0.6 11.32)= × + × . 

Table 11. Gaps of A while 40% on Gross and 60% on Net profit measures (0.4G,0.6N). 

Attributes A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

Gaps of A 0.40 0.70 0.50 0.40 0.30 0.60 0.10 0.60 0.40 0.10 0.30 0.40 0.50 0.20 

i

N
Adjw  0.07 0.13 0.04 0.05 0.05 0.03 0.05 0.04 0.09 0.11 0.05 0.10 0.15 0.05 

* Weighted 
Gap (%) 

2.80 9.10 2.00 2.00 1.50 1.80 0.50 2.40 3.60 1.10 1.50 4.00 7.50 1.00 

(Priority)  (1)          (3) (2)  
* Note: This weighted gaps of company A were calculated to indicate its improvement priority. 

 

 
Figure 5. Direction flow graph (DFG) based on the strong rules for net profit objective. 

According to Figure 5, semiconductor companies may learn that R&D efforts should have a 
positive influence on the Cash Flow dimension, and thus lead to higher liquidity to reaching superior 
net profitability in the future. The combination of VC-DRSA decision rules with the INRM may 
generate various influential patterns, which could guide semiconductor companies to examine the 
likely effects of their R&D investments for the net profit objective. 

5. Discussions and Concluding Remarks 

This study has explored the influences of R&D to reach the dual financial objectives of 
semiconductor companies to achieve business sustainability. The results indicate the existence of 
certain consistent patterns, which associate the influence of R&D with several financial attributes to 
the dual profitability objectives. Besides, four listed semiconductor companies’ R&D and financial 

 
 
 
 
 
 
 
 

At least Good FP
(for Net profit 
objective) 

RD_exp ≥ H 

CF_reinv ≥ H 

CF ≥ H

CF_adq ≥ H 
Cash Flow 

Liquidity ≥ H 

Figure 5. Direction flow graph (DFG) based on the strong rules for net profit objective.

According to Figure 5, semiconductor companies may learn that R&D efforts should have a
positive influence on the Cash Flow dimension, and thus lead to higher liquidity to reaching superior
net profitability in the future. The combination of VC-DRSA decision rules with the INRM may
generate various influential patterns, which could guide semiconductor companies to examine the
likely effects of their R&D investments for the net profit objective.
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5. Discussions and Concluding Remarks

This study has explored the influences of R&D to reach the dual financial objectives of
semiconductor companies to achieve business sustainability. The results indicate the existence of
certain consistent patterns, which associate the influence of R&D with several financial attributes to
the dual profitability objectives. Besides, four listed semiconductor companies’ R&D and financial
data were examined, and the ranking results of their FP are consistent with the four companies’ actual
FP from 2013 to 2014, which suggests the effectiveness of the proposed approach.

In practice, the research results and the proposed hybrid MCDM model incorporating domain
experts’ experience have delivered several implications to companies for their business applications:

(1) The critical role of R&D investment for the FP and financial sustainability is confirmed, which
echoes the findings in the previous research [3–6];

(2) The historical patterns revealed certain decision rules and the CORE attributes (Tables 4 and 5) to
support companies’ R&D investment;

(3) The proposed model obtains the influential weight of each attribute (Table 8) for achieving ideal
financial objectives;

(4) The proposed model supports a semiconductor company to identify its priority performance
gaps for improvements (Table 11);

(5) The proposed model explores the influence patterns of R&D from the historical patterns in the
form of decision rules and DFGs (Figure 5).

Compared with previous research, the importance of R&D expenses is highlighted in this study
and the outcomes can be referred to firms’ investment decisions. The proposed approach further
identifies the plausible R&D influential paths that may lead to the dual profitability objectives. In other
words, semiconductor companies may learn that R&D investments are crucial to the FP, but not all
R&D efforts may lead to satisfactory outcome. Take Figure 5 for example, to reach good FP on the net
profitability, R&D expenses should have positive influence to the cash flow dimension, and increase
the liquidity of a company’s short-term assets. Based on the findings above, semiconductor companies
should examine its R&D projects, to see if its R&D investments may cause the plausible effects to
match those influential patterns (i.e., decision rules or DFGs).

This finding underscores the linkage between R&D efforts and the associated cash flow from
operations, which should be aware by semiconductor companies. Furthermore, the case of company A
(in Section 4) shows how the hybrid model may identify a company’s priority gaps, and contributes to
improvement planning based on its emphasis on the dual objectives. The company A is a world-leading
IC design house, which also revealed outstanding FP records in the past several years. Nevertheless,
its top three priority gaps (except A1, which is mainly influenced by financial decisions) suggest that
it should increase its R&D expense (A13) from its operating cash flows, to reach a superior financial
outcome in the next period. The findings above and implications are the two primary contributions of
the present study.

Although this hybrid MCDM approach has shown its capability in identifying R&D influences
to the dual profitability objectives, the model still has several limitations. First, owing to the limited
sample size, the collected knowledge—regarding the effect of each CORE attribute on the other
ones—did not consider the differences in the sub-sectors (e.g., IC design, foundry, and packaging)
among the semiconductor industry. Second, this study mainly includes the financial and R&D
factors for analysis, and future research may incorporate more dimensions (e.g., marketing or
human resources) to enrich their findings. Despite the limitations, this study contributes to support
semiconductor companies to improve their FP, which thus facilitates the understanding of the complex
R&D influences in a real business environment.
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Appendix A. (Calculation Details of DEMTEL and DANP)

Refer to Step 4 to Step 9 in Sections 3.2 and 3.3 and Equations (1)–(7) for obtaining Tables A1–A7.
Multiply the initial weighted super-matrix (Table A7) with itself several times (refer Step 9) until the
stable raw weights were found.

Table A1. Initial average matrix B.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 Sum

A1 0.00 3.00 2.00 2.13 2.88 2.13 3.00 1.13 1.88 1.25 1.13 2.00 1.25 0.63 24.38
A2 3.88 0.00 1.25 1.25 3.00 1.13 1.25 1.13 2.88 3.00 2.00 2.13 3.63 1.13 27.63
A3 2.25 1.13 0.00 2.88 1.00 1.13 2.13 3.00 3.50 3.38 2.00 2.00 2.88 0.50 27.75
A4 1.13 1.38 2.75 0.00 1.13 1.25 1.13 1.38 3.00 3.38 2.13 2.88 2.88 0.75 25.13
A5 2.00 1.13 2.00 2.00 0.00 1.25 2.00 2.00 1.88 1.13 1.25 1.13 2.88 0.38 21.00
A6 2.00 2.00 3.75 2.88 2.00 0.00 3.75 2.00 2.88 2.88 1.25 1.38 1.25 0.75 28.75
A7 1.25 1.13 3.00 1.13 2.88 3.50 0.00 2.00 2.75 3.50 2.88 3.13 1.13 0.50 28.75
A8 1.25 2.00 2.00 1.13 1.25 1.13 2.00 0.00 2.75 1.13 1.00 1.25 0.63 0.63 18.13
A9 1.25 2.00 2.00 1.88 1.25 2.00 2.13 2.00 0.00 2.75 1.88 1.50 2.13 0.75 23.50
A10 2.25 3.50 3.38 3.50 3.25 1.88 1.13 1.25 2.13 0.00 3.00 3.50 3.13 0.50 32.38
A11 1.00 3.00 1.38 1.38 1.13 1.13 2.00 1.13 2.00 3.00 0.00 3.75 3.13 1.00 25.00
A12 1.38 2.88 2.00 2.25 2.75 1.00 2.88 2.75 2.63 3.50 2.88 0.00 3.25 1.88 32.00
A13 1.13 1.13 3.00 2.25 2.88 2.88 2.88 3.13 3.00 2.88 3.00 2.75 0.00 3.75 34.63 *
A14 1.00 0.63 1.88 1.00 1.38 2.25 2.00 1.88 2.00 1.25 2.13 1.13 2.00 0.00 20.50

Sum 21.76 24.88 30.38 25.63 26.75 22.63 28.25 24.75 33.25 33.00 26.50 28.50 30.13 13.13

Note: * φ = 34.63, refer Equation (2).

Table A2. Direct relation influence matrix D.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

A1 0.000 0.087 0.058 0.061 0.083 0.061 0.087 0.032 0.054 0.036 0.032 0.058 0.036 0.018
A2 0.112 0.000 0.036 0.036 0.087 0.032 0.036 0.032 0.083 0.087 0.058 0.061 0.105 0.032
A3 0.065 0.032 0.000 0.083 0.029 0.032 0.061 0.087 0.101 0.097 0.058 0.058 0.083 0.014
A4 0.032 0.040 0.079 0.000 0.032 0.036 0.032 0.040 0.087 0.097 0.061 0.083 0.083 0.022
A5 0.058 0.032 0.058 0.058 0.000 0.036 0.058 0.058 0.054 0.032 0.036 0.032 0.083 0.011
A6 0.058 0.058 0.108 0.083 0.058 0.000 0.108 0.058 0.083 0.083 0.036 0.040 0.036 0.022
A7 0.036 0.032 0.087 0.032 0.083 0.101 0.000 0.058 0.079 0.101 0.083 0.090 0.032 0.014
A8 0.036 0.058 0.058 0.032 0.036 0.032 0.058 0.000 0.079 0.032 0.029 0.036 0.018 0.018
A9 0.036 0.058 0.058 0.054 0.036 0.058 0.061 0.058 0.000 0.079 0.054 0.043 0.061 0.022
A10 0.065 0.101 0.097 0.101 0.094 0.054 0.032 0.036 0.061 0.000 0.087 0.101 0.090 0.014
A11 0.029 0.087 0.040 0.040 0.032 0.032 0.058 0.032 0.058 0.087 0.000 0.108 0.090 0.029
A12 0.040 0.083 0.058 0.065 0.079 0.029 0.083 0.079 0.076 0.101 0.083 0.000 0.094 0.054
A13 0.032 0.032 0.087 0.065 0.083 0.083 0.083 0.090 0.087 0.083 0.087 0.079 0.000 0.108
A14 0.029 0.018 0.054 0.029 0.040 0.065 0.058 0.054 0.058 0.036 0.061 0.032 0.058 0.000
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Table A3. Inverse of (I–D).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

A1 1.148 0.246 0.254 0.230 0.256 0.207 0.263 0.196 0.268 0.256 0.208 0.245 0.236 0.106
A2 0.268 1.192 0.261 0.233 0.285 0.202 0.244 0.219 0.321 0.326 0.256 0.275 0.324 0.136
A3 0.224 0.225 1.228 0.275 0.230 0.202 0.264 0.268 0.340 0.340 0.258 0.274 0.303 0.118
A4 0.185 0.218 0.285 1.186 0.220 0.192 0.224 0.215 0.310 0.325 0.248 0.282 0.292 0.119
A5 0.180 0.176 0.229 0.205 1.154 0.166 0.214 0.199 0.241 0.223 0.189 0.198 0.249 0.091
A6 0.226 0.249 0.335 0.281 0.261 1.175 0.311 0.248 0.332 0.336 0.243 0.263 0.268 0.123
A7 0.207 0.232 0.317 0.240 0.286 0.267 1.216 0.250 0.329 0.353 0.286 0.309 0.269 0.118
A8 0.144 0.179 0.202 0.160 0.166 0.143 0.190 1.123 0.236 0.196 0.160 0.176 0.167 0.083
A9 0.178 0.219 0.251 0.222 0.209 0.201 0.236 0.216 1.213 0.290 0.226 0.230 0.254 0.110
A10 0.256 0.316 0.352 0.324 0.322 0.245 0.273 0.255 0.346 1.294 0.316 0.348 0.354 0.137
A11 0.184 0.261 0.250 0.223 0.225 0.190 0.248 0.208 0.286 0.317 1.193 0.306 0.300 0.128
A12 0.226 0.294 0.312 0.284 0.304 0.222 0.311 0.287 0.351 0.377 0.309 1.250 0.347 0.169
A13 0.228 0.259 0.354 0.297 0.316 0.282 0.328 0.311 0.377 0.376 0.324 0.334 1.273 0.223
A14 0.148 0.158 0.220 0.174 0.185 0.188 0.210 0.191 0.237 0.220 0.207 0.192 0.220 1.076

Note: I denotes the identity matrix in (I–D)−1.

Table A4. Total influence relation matrix T.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 rA
i

A1 0.15 0.25 0.25 0.23 0.26 0.21 0.26 0.20 0.27 0.26 0.21 0.24 0.24 0.11 3.12
A2 0.27 0.19 0.26 0.23 0.29 0.20 0.24 0.22 0.32 0.33 0.26 0.28 0.32 0.14 3.54
A3 0.22 0.22 0.23 0.28 0.23 0.20 0.26 0.27 0.34 0.34 0.26 0.27 0.30 0.12 3.55
A4 0.18 0.22 0.29 0.19 0.22 0.19 0.22 0.21 0.31 0.32 0.25 0.28 0.29 0.12 3.30
A5 0.18 0.18 0.23 0.20 0.15 0.17 0.21 0.20 0.24 0.22 0.19 0.20 0.25 0.09 2.71
A6 0.23 0.25 0.33 0.28 0.26 0.18 0.31 0.25 0.33 0.34 0.24 0.26 0.27 0.12 3.65
A7 0.21 0.23 0.32 0.24 0.29 0.27 0.22 0.25 0.33 0.35 0.29 0.31 0.27 0.12 3.68
A8 0.14 0.18 0.20 0.16 0.17 0.14 0.19 0.12 0.24 0.20 0.16 0.18 0.17 0.08 2.33
A9 0.18 0.22 0.25 0.22 0.21 0.20 0.24 0.22 0.21 0.29 0.23 0.23 0.25 0.11 3.05
A10 0.26 0.32 0.35 0.32 0.32 0.25 0.27 0.25 0.35 0.29 0.32 0.35 0.35 0.14 4.14
A11 0.18 0.26 0.25 0.22 0.22 0.19 0.25 0.21 0.29 0.32 0.19 0.31 0.30 0.13 3.32
A12 0.23 0.29 0.31 0.28 0.30 0.22 0.31 0.29 0.35 0.38 0.31 0.25 0.35 0.17 4.04
A13 0.23 0.26 0.35 0.30 0.32 0.28 0.33 0.31 0.38 0.38 0.32 0.33 0.27 0.22 4.28
A14 0.15 0.16 0.22 0.17 0.19 0.19 0.21 0.19 0.24 0.22 0.21 0.19 0.22 0.08 2.63
sA

j 2.80 3.22 3.85 3.33 3.42 2.88 3.53 3.18 4.19 4.23 3.42 3.68 3.86 1.74

Note: Since T is a square matrix, therefore, i = j = 1, 2, . . . , 14.

Table A5. Un-weighted super-matrix W.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

A1 1.148 0.246 0.254 0.230 0.256 0.207 0.263 0.196 0.268 0.256 0.208 0.245 0.236 0.106
A2 0.268 1.192 0.261 0.233 0.285 0.202 0.244 0.219 0.321 0.326 0.256 0.275 0.324 0.136
A3 0.224 0.225 1.228 0.275 0.230 0.202 0.264 0.268 0.340 0.340 0.258 0.274 0.303 0.118
A4 0.185 0.218 0.285 1.186 0.220 0.192 0.224 0.215 0.310 0.325 0.248 0.282 0.292 0.119
A5 0.180 0.176 0.229 0.205 1.154 0.166 0.214 0.199 0.241 0.223 0.189 0.198 0.249 0.091
A6 0.226 0.249 0.335 0.281 0.261 1.175 0.311 0.248 0.332 0.336 0.243 0.263 0.268 0.123
A7 0.207 0.232 0.317 0.240 0.286 0.267 1.216 0.250 0.329 0.353 0.286 0.309 0.269 0.118
A8 0.144 0.179 0.202 0.160 0.166 0.143 0.190 1.123 0.236 0.196 0.160 0.176 0.167 0.083
A9 0.178 0.219 0.251 0.222 0.209 0.201 0.236 0.216 1.213 0.290 0.226 0.230 0.254 0.110
A10 0.256 0.316 0.352 0.324 0.322 0.245 0.273 0.255 0.346 1.294 0.316 0.348 0.354 0.137
A11 0.184 0.261 0.250 0.223 0.225 0.190 0.248 0.208 0.286 0.317 1.193 0.306 0.300 0.128
A12 0.226 0.294 0.312 0.284 0.304 0.222 0.311 0.287 0.351 0.377 0.309 1.250 0.347 0.169
A13 0.228 0.259 0.354 0.297 0.316 0.282 0.328 0.311 0.377 0.376 0.324 0.334 1.273 0.223
A14 0.148 0.158 0.220 0.174 0.185 0.188 0.210 0.191 0.237 0.220 0.207 0.192 0.220 1.076

Note: Ai denotes the ith attribute, for i = 1, 2, . . . , 14.

Table A6. Normalized directional influence relation matrix Tα
D.

D1 D2 D3 D4 D5

D1 0.1828 0.2167 0.2054 0.2234 0.1717
D2 0.1802 0.2003 0.2117 0.2327 0.1751
D3 0.1843 0.2202 0.2077 0.2307 0.1570
D4 0.1892 0.2132 0.1984 0.2224 0.1769
D5 0.1660 0.2158 0.2221 0.2305 0.1656
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Table A7. Initial weighted super-matrix WN (WN = Tα
D ×W).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

A1 0.068 0.106 0.090 0.083 0.092 0.087 0.087 0.083 0.083 0.085 0.078 0.083 0.078 0.080
A2 0.115 0.077 0.090 0.097 0.088 0.098 0.098 0.101 0.101 0.104 0.112 0.106 0.088 0.086
A3 0.074 0.074 0.062 0.082 0.078 0.084 0.084 0.084 0.081 0.075 0.077 0.075 0.080 0.082
A4 0.067 0.065 0.076 0.054 0.070 0.070 0.062 0.066 0.073 0.068 0.068 0.068 0.067 0.065
A5 0.076 0.080 0.062 0.064 0.052 0.066 0.075 0.068 0.068 0.068 0.068 0.072 0.071 0.069
A6 0.045 0.043 0.040 0.042 0.042 0.033 0.052 0.044 0.048 0.044 0.040 0.038 0.049 0.051
A7 0.058 0.051 0.053 0.051 0.055 0.060 0.042 0.056 0.056 0.048 0.054 0.054 0.056 0.056
A8 0.043 0.045 0.053 0.049 0.051 0.048 0.050 0.037 0.052 0.046 0.044 0.050 0.053 0.051
A9 0.060 0.068 0.068 0.070 0.061 0.064 0.064 0.071 0.052 0.062 0.062 0.060 0.064 0.064
A10 0.080 0.085 0.091 0.088 0.086 0.092 0.085 0.085 0.090 0.069 0.087 0.089 0.083 0.083
A11 0.065 0.067 0.070 0.067 0.072 0.067 0.069 0.069 0.069 0.073 0.053 0.073 0.071 0.076
A12 0.078 0.071 0.072 0.077 0.074 0.072 0.076 0.076 0.072 0.080 0.085 0.060 0.074 0.071
A13 0.118 0.120 0.126 0.124 0.128 0.108 0.108 0.105 0.110 0.127 0.124 0.119 0.091 0.123
A14 0.053 0.052 0.049 0.051 0.047 0.049 0.049 0.052 0.047 0.050 0.053 0.058 0.075 0.043
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