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Abstract: This study establishes an optimization model of emergency material dispatch with the
objectives of the highest reliability and lowest cost when the time frame is uncertain and the
emergency material must be dispatched from multiple depot locations to multiple disaster sites.
Because the two objectives are not consistent with one another, we propose an algorithm for solving
the model by introducing the concept of ideal points, whereby the ideal point between the two
objectives is considered the best plan. The study also proves the feasibility and validity of the
algorithm with real-life examples.
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1. Introduction

Sudden disasters and accidents pose a substantial threat to society, safety, and property.
Sudden events are characterized by uncertainty, urgency, and a high level of destructiveness and can
inflict substantial losses. China is a country with frequent natural disasters. Over the past 10 years,
natural disasters, accidents, and public-health and security-related catastrophes have caused more
than 200,000 deaths and more than 2 million injuries per year on average. To reduce the casualties and
economic loss caused by such emergencies as much as possible, it is important to study the emergency
dispatch of relief supplies.

In recent years, researchers have conducted in-depth research on the transportation of emergency
materials. For example, Nolz et al. studied the risk of discontinued transportation paths due
to damaged infrastructure and addressed such risk as a multi-objective optimization problem [1].
Zheng and Ling proposed a multi-objective fuzzy optimization approach to emergency transportation
planning and developed a collaborative optimization method [2]. Yamada viewed the emergency
materials dispatch problem in terms of the shortest transport route within a network, which he
transformed into an investigation of a network flow algorithm under the condition of road capacity
limitation [3]. Huang et al. proposed an assessment method that involved continuous route evaluation
while minimizing total transportation time, with the goal of the timely delivery of relief supplies [4].

Several researchers have studied emergency material transportation in combination with location.
For instance, focusing on location transportation, Abounacer et al. revealed that the transportation
route choice depends on the number and location of disaster relief distribution centers and the
needs of disaster victims. They established a multi-objective location transportation model [5].
Ghaffari-Nasab et al. calculated the location-routing problem (LRP) based on probabilistic transport
time and used different stochastic programming methods to propose dual-objective mathematical
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programming models. Their aim was to minimize overall system cost while ensuring the principles
conformed to minimization of the maximum delivery time [6].

In recent years, research on emergency material dispatch has primarily focused on how
multi-objective constrained planning with time- and cost-oriented objectives. Specific research
topics include the dispatch of relief supplies and personnel, post-disaster vehicle coordination, and
rescue-service distribution and dispatch [7,8]. Other researchers have used case studies for qualitative
analysis [9]. These studies are based on the assumption of deterministic demand. However, in practice,
because of the sudden and unpredictable nature of natural disasters, the demand for relief supplies
often exhibits substantial uncertainty. Based on the characteristic of demand uncertainty, researchers
have performed a series of studies on the problem of a single depot location and multiple disaster sites
under the condition of uncertainty [10,11]. In contrast, in connection with the issue of multiple depot
locations and a single disaster site, Liu et al. studied a single target problem, a two-stage problem,
and the multi-objective problem of the shortest time and the least number of depot locations [12].

In previous studies, most researchers have addressed the problem of the transport and dispatch of
relief supplies using quantitative models. These studies involved various methods, were comprehensive,
and achieved useful results. In addition, they promoted the advance of research on emergency material
dispatch. However, few studies have focused on the problem of supply dispatch from multiple depot
locations to multiple disaster sites under uncertain conditions. For example, extending a robust
optimization model, Ben-Tal et al. established an optimal dynamic traffic distribution model based
on cell transport to reduce the risk of uncertain demand in the relief supply chain [13]. However, a
systematic, in-depth study remains lacking. Thus, this study constructs an optimal emergency material
dispatch model from multiple depot locations to multiple disaster sites with multiple objectives of the
highest reliability and the lowest cost. An additional variable is time-frame uncertainty. The study
introduces the concept of ideal points and proposes an algorithm to solve the problem.

2. Problem Description

Consider n rescue stations (indexed by i), and m disaster sites (indexed by j). Each rescue station
i (i = 1, 2, · · · , n) has a1, a2, · · · , an stock of a certain supply, each disaster site j (j = 1, 2, · · · , m) has
b1, b2, · · · , bm amount of demand for this supply and the supply stock at the rescue stations can satisfy

the supply demand at the disaster sites, that is,
n
∑

i=1
ai ≥

m
∑

j=1
bj.

The impact of uncertain factors—such as traffic congestion, weather, and road conditions—on the
supply dispatch transportation time from rescue station i to disaster site j is uncertain and expressed
by the interval number t̃ij =

[
t1
ij, t2

ij

]
. Let t denote the emergency time-limit period, cij the unit

transportation cost between rescue station i to disaster site j, t1
ij the upper limit value, and t2

ij the lower

limit value of t̃ij. The decision objective is to maximize the reliability and minimize the transportation
cost for plans with an emergency time frame not exceeding t under the condition that the supply
demand is met.

Let p the number of rescue stations. Let ϕj denote the scheme for disaster site j, which represents
the set of the amount of emergency resources from emergency depot locations to disaster site j. It is
defined as a set, ϕj =

{
a1j, a2j, . . . , anj

}
, where aij denotes the amount of emergency resource from

rescue station i to disaster site j (0 < aij ≤ ai). Let Z denote the set of all feasible schemes, CF
(
t̃ij, t

)
the

certainty factor of event
{

t̃ij ≤ t
}

, P
(

ϕj, t
)

the possibility that scheme ϕj, Ψ the scheme for all disaster

sites (Ψ =
m
∪

j=1
ϕj), and C(Ψ) the cost of scheme Ψ.
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3. Model Construction

3.1. Model Assumptions

The model is based on the following assumptions:

(1) Because of the impact of uncertain factors during transport—such as traffic congestion,
weather, and road conditions—the uncertainty of the transportation time is expressed by an
interval number.

(2) The unit transport cost from each rescue station to each disaster site is a certain number.
(3) The demand for emergency supplies of all disaster sites at different disaster rating levels is known.
(4) The total quantity of supplies at all rescue stations can meet the needs of all disaster sites.

3.2. Model Construction

As the emergency time limit is t, introducing a certainty factor and expressing the certainty factor
of event

{
t̃ij ≤ t

}
with CF

(
t̃ij, t

)
can help avoid plans whose emergency time frame does not exceed t.

According to the preceding problem description, we define

CF
({

t̃ij ≤ t
})

=


0 t < t1

ij
t−t1

ij

t2
ij−t1

ij
t1
ij ≤ t ≤ t2

ij

1 t ≥ t2
ij

(1)

When t1
ij = t2

ij, t̃ij degrades to a real number, and we define

CF
({

t̃ij ≤ t
})

=

{
0 t < t1

ij = t2
ij

1 t1
ij = t2

ij ≤ t
(2)

We use P
(

ϕj, t
)

to express the possibility that scheme ϕj (there are p rescue stations in scheme ϕj)
completes the task of dispatching bj quantity of a certain supply required by disaster site j within

emergency time limit period t. In addition, P
(

ϕj, t
)
= minCF

(
∩

α=1,2,··· ,p

{
t̃iα j ≤ t

})
, which means that

the minimum value of the certainty factor when the time of each rescue station corresponding to the
scheme is not greater than t is the probability that the dispatching task can be completed. Using fuzzy
reasoning, we have

P
(

ϕj, t
)
= minCF

(
∩

α=1,2,··· ,p

{
t̃iα j ≤ t

})
= min

α=1,2,··· ,p
CF
({

t̃iα j ≤ t
})

= min
α=1,2,··· ,p

CF
(
t̃iα j, t

)
(3)

We use P(Ψ, t) to express the possibility that scheme Ψ =
m
∪

j=1
ϕj completes the task of

dispatching a certain supply required by all disaster sites within the emergency time limit period t:
P(Ψ, t) = min

j=1,2,··· ,m
P
(

ϕj, t
)
. This study’s goal is to determine the scheme with the highest possibility

of success among Z on this basis of establishing the lowest rescue cost. With C(Ψ) expressing the cost
of scheme Ψ, we establish Model (4) as

max P
Ψ⊆Z

(Ψ, t)

minC(Ψ)
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S.T.



P(Ψ, t) = min
α = 1, 2, · · · , p
j = 1, 2, · · · , m

CF
(
t̃iα j, t

)

Ψ ∈ Z

C(Ψ) =
m
∑

j=1
{

p−1
∑

α=1
ciα jaiα j + cip j(bj −

p−1
∑

α=1
aip j)}

(4)

4. Algorithm for Solving the Model

The problem is a typical multi-objective programming problem, and this paper uses ideal points to
solve it. We obtain the positive ideal points P(Ψ, t) and C(Ψ) and the negative ideal points P(Ψ, t) and
C(Ψ) for objective functions P(Ψ, t) and C(Ψ). Then, we calculate proximity ε according to Equation (5)
to verify the relative proximity of each feasible scheme to the ideal points. A greater ε indicates a better
solution. At this point, the original multi-objective problem is transformed into a problem of achieving
maximum proximity.

ε = R
R+r (0 ≤ ε ≤ 1)

R = ω1
P(Ψ,t)
P(Ψ,t)

+ ω2
C(Ψ)
C(Ψ)

r = ω1
P(Ψ,t)
P(Ψ,t) + ω1

C(Ψ)
C(Ψ)

(5)

where ω1 and ω2 are the weights of the feasible scheme’s possibility and the cost of rescue, respectively.
Their values are provided by experts, and ω1 + ω2 = 1.

4.1. Obtaining Positive and Negative Ideal Points of the Objective Function

First, we place CF
(
t̃ij, t

)
(i = 1, 2, · · · , n) into a set of descending sequences ordered from large

to small: CF
(
t̃i1 j, t

)
≥ CF

(
t̃i2 j, t

)
≥ · · · ≥ CF

(
t̃ip j, t

)
≥ CF

(
t̃ip+1 j, t

)
≥ · · · ≥ CF

(
t̃in j, t

)
. Here, p is the

critical subscript index of sequences ai1 j, ai2 j, · · · , ain j for demand bj (j = 1, 2, · · · , m), and we establish

ϕj
′ =

{
ai1 j, ai2 j, · · · , bj −

p−1

∑
α=1

aiα j

}
(6)

Ψ′ =
m
∪

j=1
ϕj
′ (7)

At this time, it is most probable that the corresponding emergency demand satisfaction time of
scheme Ψ′ does not exceed the emergency limit time, and the positive ideal point of the objective
function P(Ψ, t) is P(Ψ, t) = P

(
Ψ′, t

)
= min

j=1,2,··· ,m
CF
(

t̃ip j, t
)

. Accordingly, when we place CF
(
t̃ij, t

)
(i = 1, 2, · · · , n) into a set of ascending sequences ordered from small to large, we obtain the negative
ideal point of the objective function as P(Ψ, t) = min

j=1,2,··· ,m
CF
(
t̃in j, t

)
.

Similarly, when sequences a1j, a2j, · · · , anj are sorted in ascending order based on the size of the
cost cij (i = 1, 2, · · · , n), we obtain a new set of sequences, ac1 j, ac2 j, · · · , acn j. Here, q is the critical
subscript index of sequences ac1 j, ac2 j, · · · , acn j for demand bj (j = 1, 2, · · · , m), and we establish

ϕj
′′ =

{
ac1 j, ac2 j, · · · , bj −

q−1

∑
α=1

acα j

}
(8)

Ψ′′ =
m
∪

j=1
ϕj
′′ (9)

The cost of rescue that corresponds to scheme Ψ′′ is the lowest: C(Ψ) =
m
∑

j=1
{

q−1
∑

α=1
ccα jacα j + ccq j(bj −

q−1
∑

α=1
acα j)}. In the same way, when we place sequences a1j, a2j, · · · , anj into a
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set of descending sequences based on the size of cost cij (i = 1, 2, · · · , n), we obtain the scheme with
the highest cost of rescue and C(Ψ)’s negative ideal point C(Ψ).

4.2. Obtaining Feasible Schemes

If a scheme shows P(Ψ, t) = 0, it indicates that the scheme is infeasible. If a scheme shows
P(Ψ, t) > 0, it indicates that the scheme is feasible. If there is no P(Ψ, t) > 0 for a scheme, it indicates
that there is no feasible solution.

4.3. Algorithm Procedures

(1) Calculate the positive and negative ideal points.
(2) First, we obtain the certainty factors CF

(
t̃ij, t

)
for each rescue station i to each disaster site

j according to the definition equation of the certainty factor (1). Next, we place the obtained
certainty factors CF

(
t̃ij, t

)
into a descending sequence, merge the equivalent items in the sequence,

delete the items of number 0, and obtain sequence CF(k)(k = 1, 2, · · · L), with k = 1.

(3) When establishing c′ij =

{
+∞ CF(t̃ij, t) < CF(k)
cij CF(t̃ij, t) ≥ CF(k)

, we obtain that the supply stock at rescue

station i (i = 1, 2, · · · , n) is a1, a2, · · · , an and the supply demand at disaster site j (j = 1, 2, · · · , m)
is b1, b2, · · · , bm. The transport problem of minimizing unit transport cost c′ij is a classic operations
research problem and can be solved with the table operation method. If the problem has solutions,
use (4). If the problem has no feasible solutions, use (5).

(4) Calculate the corresponding P
(

ϕj, t
)

and C
(

ϕj
)
, and use Equation (5) to obtain the corresponding

ε value of each feasible scheme.
(5) When we establish k = k + 1, the algorithm is terminated if k > L. Otherwise, return to (3).

After the preceding calculation, if the problem has no feasible solution, it indicates that the
problem has no solution. Otherwise, determine the corresponding ε value of each feasible scheme.
Based on the definition of the ideal point, the scheme with the maximum ε value is the optimal plan.

5. Numerical Examples

We assume there are three disaster sites whose demand for a certain emergency material is
b1 = 70, b2 = 80, and b3 = 90, and nine rescue stations with emergency limit time t = 9. The time
from each rescue station to the disaster sites, the supply stock and the transport cost are shown in
Table 1: CF(k) = (1, 0.8, 0.75, 0.714, 0.667, 0.6, 0.5, 0.4). We use LINDO 9.0 (LINDO SYSTEMS, Inc,
Chicago, USA) to solve the transportation problem. The calculation process and results are shown
in Table 2.

Table 1. Known data from each rescue station to the disaster sites.

Item A1 A2 A3 A4 A5 A6 A7 A8 A9

t̃ij

B1 3,5 8,9 5,10 5,10 6,10 4,11 5,11 7,10 6,12
B2 5,10 6,10 4,11 5,10 7,10 7,12 3,5 2,3 5,10
B3 7,10 6,11 3,5 2,3 8,9 5,10 5,10 4,11 5,11

CF
(
t̃i1, t

)
1 1 0.8 0.8 0.75 0.714 0.667 0.667 0.5

CF
(
t̃i2, t

)
0.8 0.75 0.714 0.667 0.667 0.4 1 1 0.8

CF
(
t̃i3, t

)
0.667 0.6 1 0.8 1 0.8 0.8 0.714 0.667

ai 50 42 40 20 24 14 36 50 46

cij
B1 9 8 12 6 7 8 4 9 7
B2 6 7 8 4 9 7 9 8 12
B3 4 9 7 9 8 12 6 7 8
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Table 2. Calculation process and results.

k CF(k) j Best Solutions P
(
Ψy, t

)
C
(
Ψy
)

1 1 No solution

2 0.8
j = 1 x11 = 8, x21 = 42, x31 = 20

0.8 1692j = 2 x12 = 41, x82 = 38
j = 3 x33 = 40, x53 = 14, x73 = 36

3 0.75
j = 1 x21 = 40, x41 = 20, x51 = 10

0.75 1656j = 2 x12 = 50, x22 = 2, x82 = 28
j = 3 x33 = 40, x53 = 14, x73 = 36

4 0.714
j = 1 x21 = 12, x41 = 20, x51 = 24, x61 = 14

0.714 1600j = 2 x12 = 50, x22 = 30
j = 3 x33 = 4, x73 = 36, x83 = 50

5 0.667
j = 1 x51 = 24, x61 = 10, x71 = 36

0.667 1390j = 2 x22 = 42, x32 = 18, x42 = 20
j = 3 x13 = 50, x83 = 40

6 0.6
j = 1 x51 = 24, x61 = 10, x71 = 36

0.6 1390j = 2 x22 = 42, x32 = 18, x42 = 20
j = 3 x13 = 50, x83 = 40

7 0.5
j = 1 x51 = 24, x71 = 36, x91 = 10

0.5 1380j = 2 x22 = 42, x32 = 18, x42 = 20
j = 3 x13 = 50, x83 = 40

8 0.4
j = 1 x51 = 24, x71 = 36, x91 = 10

0.4 1366j = 2 x22 = 42, x32 = 4, x42 = 20, x62 = 14
j = 3 x13 = 50, x83 = 40

From Table 2, we can observe that P(Ψ, t) = 0.8, P(Ψ, t) = 0.4, C(Ψ) = 1366 and C(Ψ) = 2446.
When a disaster occurs, time and reliability are of substantially more importance to emergency rescue
than the emergency dispatch cost. Therefore, we assign ω1 = 0.8 and ω2 = 0.2, and the calculated ε of
each scheme is ε2 = 0.6411, ε3 = 0.6195, ε4 = 0.6044, ε5 = 0.5927, ε6 = 0.5518, ε7 = 0.4811, and ε8 = 0.3969.
Thus, when k = 2, the corresponding scheme is the optimal one. The specifics of the optimal scheme are
as follows: the supplies at rescue stations A1, A2, and A3 are transported to disaster site B1; the supplies
at rescue stations A1 and A8 are transported to disaster site B2; and the supplies at rescue stations A3,
A5, and A7 are transported to disaster site B3.

Numerical results show that a higher reliability level results in a higher emergency dispatch cost.
It indicates that improving the reliability of road networks is crucial to emergency rescue. Comparing to
the objective of reducing the emergency dispatch cost in emergency rescue, the objectives of reducing
the response time and increasing the reliability are more important. In addition, numerical results also
show the effectiveness of the proposed algorithm since the algorithm can find the best scheme by only
several iterations.

6. Conclusions

Taking into account the impact of uncertain factors during the emergency rescue process—such
as traffic congestion, weather, and road conditions—this paper uses an interval number to indicate the
uncertainty of the transport time and investigates the problem of the emergency dispatch of emergency
materials from multiple depot locations to multiple disaster sites under the condition of an uncertain
rescue time frame. We establish a multi-objective model that obtains the maximum certainty factor and
the minimum transport cost when the emergency time limit does not exceed t. In addition, we provide
the corresponding solutions and verify the effectiveness of the algorithm with numerical examples.
Related research findings include that (1) a higher reliability level led to a higher emergency dispatch
cost, which indicates that improving the reliability of road networks is crucial to emergency rescue;



Sustainability 2017, 9, 1978 7 of 8

(2) both time and reliability were much important than the emergency dispatch cost in emergency
rescue; and (3) the algorithm proposed was effective since it could find the best scheme by only
several iterations.

The paper contributes practical research results and provides solution schemes for the emergency
dispatch of relief supplies from multiple depot locations to multiple disaster sites. The algorithm
proposed in the study is simple and easy to calculate, and the requisite basic data are easy to obtain.
The results can help decision-makers quickly determine a rescue plan after a disaster and thus save
valuable rescue time during emergency relief operations.

This research has several limitations as well. This research addressed single-stage emergency
resources scheduling. However, multi-stage emergency resources scheduling in a continuous resource
consumption process needs to be handled in the real world. This research assumed that the demands
of emergency resources were pregiven in all disaster sites. However, it is hard to measure the accurate
resources demands of disaster sites due to the uncertainties in emergency rescue. In addition, different
types of disasters, roadings, and terrains could have effects on emergency resources scheduling, which
have not been investigated in this research. These limitations need to be overcome in the future work.
For example, the future work could mathematically handle the grade of roads in the model, as they
could affect the time needed from the emergency depot to disaster sites.
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