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Abstract: This paper experiments an artificial neural networks model with Bayesian approach on
a small real estate sample. The output distribution has been calculated operating a numerical
integration on the weights space with the Markov Chain Hybrid Monte Carlo Method (MCHMCM).
On the same real estate sample, MCHMCM has been compared with a neural networks model (NNs),
traditional multiple regression analysis (MRA) and the Penalized Spline Semiparametric Method
(PSSM). All four methods have been developed for testing the forecasting capacity and reliability of
MCHMCM in the real estate field. The Markov Chain Hybrid Monte Carlo Method has proved to be
the best model with an absolute average percentage error of 6.61%.
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1. Introduction

In general, the appraisal theory is based upon the hypothesis that a real estate sample is randomly
drawn by a normal population with real estate sales characterized by known prices [1]. These
hypotheses are rarely mirrored in practice because [2]: (a) the subjects that treat the sampling, rarely
follow criteria based on random logic; (b) the atypicality of real estate properties systematically
invalidates the normal distribution of the population.

In the field of real estate appraisals often there is low transparency with regard to market
information, together with stationary conditions, and these aspects force the analysts to work with
single and small datasets for the implementation of hedonic pricing models.

In the last decades, many deterministic and probabilistic models for hedonic analysis of housing
sales prices were developed.

Hedonic price models assume that the values of real estate properties are influenced by their
characteristics, with predicted values strongly influenced by dimension and quality of available real
estate data. In particular, is it understood that the minimum dimension of real estate sample necessary
to implement a statistical inference model is correlated to the number of independent variables
explaining real estate characteristics [3–18].

Traditional statistical models used to determine the econometric function of the real estate prices
assume that the price distribution (depend variable) is representative of a deterministic function of the
real estate characteristics considered (independent variables). The noisiness of statistical sample is
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generally modelled hypothesizing that the outputs are affected by a Gaussian noise with a zero mean
and constant variance, which does not depend on input variables. Then, the interpolating function is
chosen using the maximum likelihood criterion. In this sense, it has been demonstrated that in the case
of an output noise independent from the input variables, the maximum likelihood criterion provides
distorted results because it systematically underestimates the variance of the noise itself [19–22].

The possibility to characterize the interpolating function in probabilistic terms and, thus, to obtain
as output a distribution of sales prices instead of deterministic values, jointly with the capability to
work with small samples, are aspects that mainly make us lean in favour of the use of the Bayesian
approach to artificial neural networks (ANNs or NNs) for real estate appraisals.

ANNs are techniques programmed to function as human neural networks, with learning capacity
about complex function approximations from input/output. ANNs can be combined with Bayesian
approaches in order to avoid some problems of stochastic optimization. Bayesian learning is
particularly suited to real estate appraisals, because Bayesian inference techniques lead to reliable
results, especially with small and noisy samples within the framework of probabilistic inference carried
out with ANNs. Taking into account these aspects, a neural networks model with Bayesian learning
has been experimented for an urban central area of Naples (Vomero neighbourhood).

2. Target and Research Design

This paper experiments a neural networks model (NNs) with a Bayesian approach on a small
real estate sample. The output distribution is calculated by operating a numerical integration on the
weights space with the Markov Chain Hybrid Monte Carlo Method (MCHMCM).

The basic goal of the paper is to test the forecasting potentialities and the reliability of MCHMCM
in the real estate field.

On the same real estate sample, MCHMCM is compared with a NNs model, traditional multiple
regression analysis (MRA) and the Penalized Spline Semiparametric Method (PSSM). All four methods
are developed to compare the forecasting capacity of MCHMCM, with all of these methods sharing
the same application fields.

More precisely, the NNs model was chosen to understand the difference compared to NNs
with Bayesian learning. MRA has been chosen for comparison purposes since it has become
a well-established methodology over time that provides robust and reliable results in real estate
appraisals. Finally, PSSM has been chosen because it is a more flexible method than MRA and,
potentially, it is in able to provide better results than MRA in real estate appraisals.

The paper consists of four parts. The first part contains a literature review on NNs starting from
the hedonic price model. In the second part, the Bayesian approach for NNs is dealt with in analytic
terms. In the third part, a hedonic analysis of housing sales prices is developed for the four methods
mentioned, also describing real estate data and the main aspects of MCHMCM. At the end of the third
part a results comparison is presented. Finally, in the fourth part, some concluding remarks are given.

3. Background

In the 1960s, Lancaster [23] defined the utility as function of the characteristics of goods. However,
Lancaster aimed his studies on the fundamental aspects of consumers; only with Rosen [24] a model
of market equilibrium was formulated, taking into account consumers and producers and, thus, all
interactions between supply and demand.

The basic model of the real estate market equilibrium [25] assumes that real estate involves
complex goods, with sales prices (Pi) which depend on location-specific environmental characteristics
(qi), structural characteristics (Si), social and neighbourhood characteristics (Ni), and locational
characteristics (Li):

Pi = P(qi, Si, Ni, Li)
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Obviously, the above hedonic equilibrium equation applies to all real estate goods falling in the
same market, but this aspect creates problems when different submarkets are present in the same urban
area (with consequent spatial heterogeneity) [26]. Large-scale implementation of linear or nonlinear
hedonic models can be found in the literature, but their usefulness depends on how models minimize
pricing errors due to the large samples from which dataset are extrapolate. Specification error is almost
always unavoidable because values does not map linearly onto real estate characteristics, and so errors
are due to neglected nonlinearities [27].

In general, nonlinear models would be the preferred choice for real estate appraisals, but the exact
nonlinear form is neither apparent nor are there necessarily practical steps one could take to find the
correct form.

Artificial neural networks (ANNs) provide a practical alternative to conventional least squares
forms (including nonlinear least squares) that is easily implementable and which efficiently models
nonlinearities in the underlying relationships (including the parameters).

There are conflicting views on the superiority of ANNs compared to hedonic pricing models
based on multiple regression analysis (MRA). Tsukuda and Baba [28], Do and Grudnitski [29],
Tay and Ho [30], and Huang et al. [31] state that ANNs are superior to MRA. Our study supports
these conclusions. Allen and Zumalt [32] and Worzala et al. [33] suggested otherwise. Guan et al. [34]
combine fuzzy set theory in ANNs architecture to assess property values, and also argue that ANNs
better replicate the heuristic thought processes and the imprecision in their decision calculus. Nguyen
and Cripps [35] found that ANNs outperformed MRA with large datasets. Worzala, Lenk, and Silva [33]
compared two ANNs to MRA with a small set of real estate transactions, concluding that ANNs were
not superior to MRA in housing real estate appraisals, and warned appraisers who wish to use ANNs
to do so with caution, citing inconsistent results between different software packages. It is indeed true
that ANNs can be over-trained, resulting in good training runs but poor out-of-sample performance,
that there is some sensitivity to outliers in training, and that results may be inconsistent in small
samples. Results may also appear inconsistent for the simple reason that network weights are often
randomly initialized; thus, gradient descent algorithms produce different solutions for the network’s
weight vectors simply because they begin iterating from different points on the loss surface.

More recently, in literature others studies have been proposed to confirm the superiority of
ANNs or to show possible integrations with others techniques. Most relevant and recent studies have
been proposed by Lam et al. [36], McCluskey et al. [37,38], Zurada et al. [39], Morano et al. [40,41],
Tajani et al. [42], Ding et al. [43]. Critics of the ANNs also cite the relative ease of interpretation of
hedonic MRA with respect to ANNs; in particular, the partial differentiation of linear models easily
isolates each explanatory variable’s contribution to value. Although the differentiation of ANNs is
more difficult given variable interdependencies, it is relatively straightforward to uncover individual
variable attributions [44,45].

4. Bayesian Approach for Neural Networks

Neural networks (NNs) had wide interest due to empirical achievements on a wide range of
learning issues. NNs are highly expressive models that can learn complex function approximations
from input/output examples [46], with a particular ability to train them on massive data sets with
stochastic optimization [47] and the backpropagation algorithm [48]. These aspects have resulted in
successes for NNs in many fields of applied science and the economy.

The Bayesian approach to NNs can potentially avoid some of the problems of stochastic
optimization [49,50]. In fact, Bayesian methods consider the uncertainty in parameter estimates
and can extend and transform this uncertainty into predictions. Often, Bayesian approaches are more
robust to overfitting, since they average over parameter values instead of choosing a single point
estimate. Different approaches have been proposed in literature for Bayesian learning of NNs, based
on, for example, the Laplace approximation [49,50], Hamiltonian Monte Carlo [51–53], expectation
propagation [54], and variational inference [55]. These approaches have not seen widespread adoption
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due to their lack of scalability for network architecture and data size. An exception is the scalable
variational inference approach of Graves [56], but this method seems to perform poorly in practice due
to noise from Monte Carlo approximations within the stochastic gradient computations. A different
scalable solution based on expectation propagation was proposed by Soudry et al. [57], although its
extension to continuous weights is unsatisfying as it does not produce estimates of posterior variance.

The central goal in network training is to model the underlying generator of the data, so that the
best possible predictions for the output vector t can be made for the input vector x.

The most general and complete description of the generator of the data is in terms of the probability
density p(x, t). For associative prediction problems it is convenient to decompose the joint probability
density into the product of the conditional density of the target data, conditioned on the input data,
and the unconditional density of input data, so that:

p(x, t) = p(t|x)p(x) (1)

where p(t|x) indicates the probability density of t given that x takes a particular value, and p(x)
represents the unconditional density of x. For making predictions of t for values of x, it is the
conditional density p(t|x) which we need to model.

Often, the error function is based on the principle of maximum likelihood.
If {xn, tn} is a set of training data the likelihood L can be written as:

L = ∏
n

p(tn|xn) = ∏
n

p(tn|xn)p(xn) (2)

where we have assumed that each data point (xn, tn) is drawn independently from the same distribution,
and hence we can multiply the probabilities. For computational reasons, instead of maximizing the
likelihood, it is more convenient to minimize the negative logarithm of the likelihood, so that the error
function (E) is given by:

E = − ln L = −∑
n

ln p(tn|xn)−∑
n

ln p(xn) (3)

A feed-forward neural network can be regarded as a framework for modelling the conditional
probability density p(t|x), then the second term in Equation (3) does not depend on the network
parameters, and so represents an additive constant which can be dropped from the error function:

E = − ln L = −∑
n

ln p(tn|xn) (4)

Consider the case of c target variables tk where k = (1, ..., c), and suppose that the distributions of
the different target variables are independent:

p(tx) =
c

∏
k=1

p(tk|x) (5)

If the distribution of the target data is Gaussian, or the target variable tk is given by some
deterministic function of x added Gaussian noise ε, then:

tk = hk(x) + εk (6)

We can assume that the errors εk have a normal distribution with zero mean, and a standard
deviation σ which does not depend on x or k. In these cases, the distribution of εk is given by:

ρ(εk) =
1

(2πσ2)
1/2 ·exp

(
−

ε2
k

2σ2

)
(7)
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The hk(x) function can be chosen with parametric or nonparametric approach. In the first case,
it needs to define the functional form that better than anyone else nears to dataset observations. In the
second case, as in the neural networks, the input-output mapping is connected to the realization of
pattern learning phase. In both cases, models parameters must be selected (coefficients that define in
univocal way the interpolating function for parametric approaches, or synaptic weights matrix for
neural networks).

The hk(x) function can be modelled with a neural network with outputs yk(x, w), where w is the
set of weight parameters governing the neural network mapping. Using (6) and (7), the probability
distribution of target variables is given by:

p(tk|x) =
1

(2πσ2)
1/2 ·exp

(
−{yk(x, w)− tk}2

2σ2

)
(8)

Together with Equations (4) and (5), we have the following expression for the error function:

E =
1

2σ2

N

∑
n=1

c

∑
k=1
{yk(xn, w)− tn

k }
2 + Nc ln σ +

Nc
2

ln(2π) (9)

The second and third terms, as also the overall factor 1/σ2, do not depend from the weights w
and they can be omitted:

E =
1

2σ2

N

∑
n=1

c

∑
k=1
{yk(xn, w)− tn

k }
2 =

1
2

N

∑
n=1
‖y(xn, w)− tn‖2 (10)

The expression of the error function E has been derived in the hypothesis that the target data
distribution is Gaussian. In case it is not reasonable to assume a similar hypothesis, for example, when
the distribution is multimodal, the previously approach can lead to distorted results that very difficult
to interpret.

The real estate sample may be also subject to noise not always distributed uniformly and
independently by the input vectors. Bayesian approaches may provide reliable results with small and
noisy samples in the field of probabilistic inference using neural network models [58].

A Bayesian approach makes it possible to express the uncertainty in the weights value through
a probability distribution p(w|D) conditioned on the dataset. In this way the neural network is no
longer represented by a single vector of the synaptic weights obtained by applying the maximum
likelihood criterion, but by a density probability on the weights space. The main operative consequence
is that the model output will have probabilistic features and can be represented by any distribution,
calculating the most probable values and confidence interval of each single prevision.

Also, Bayesian approaches make it possible to select the regularization coefficients and, thus,
the model complexity, only using a training set without a validation set. This latter circumstance is
particularly important when there is a limited dataset, as in real estate appraisals often occurs.

Bayesian methods make it possible to avoid overfitting problems which are typical of conventional
approaches used for the network training and, at least on principle, they do not limit the model
complexity [53].

The issue of determination of the value distribution of outputs can be solved using the integration
on multidimensional space of the synaptic weights. With the rule of probability marginalization it is
possible to express the output distribution for a given input vector x as follows:

p(t|x, D) =
∫

p(t|x, w)p(w|D)dw (11)
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where p(w|D) is the posterior weights distribution on the target data D ≡ (t1, ..., tN), that can be
expressed starting from a prior distribution p(w) using the Bayes theorem:

p(w|D) =
p(D|w)p(w)

p(D)
(12)

where in (12) the denominator of arithmetical ratio is a normalization factor.
The integration over the weights space is analytically untreatable, so that the main approximation

methods are two. The first leads to an analytical integration in the restrictive hypothesis that the
posterior weights distribution is expressed with a Gaussian distribution centred on the most probable
weights vector [49,50]. The second applies a numerical integration using the Monte Carlo technique
considering the high dimensionality of the problem [51–53].

5. Hedonic Analysis of Housing Sales Prices

5.1. Data Description

The application has been made with a real estate sample relative to a urban central area of Naples
(Vomero neighbourhood).

The sample consists of 65 housing sales occurred in the last 12 months. The housing units present
the same building typology and are situated in a homogeneous urban area under the profile of the
distribution of public and private services. The age of buildings where real estate units are located
dates back to the 1960s.

Only non-homogeneous real estate characteristics have been detected for each sampled unit
and, in particular (see Table 1): the sale price (PRC) is expressed in €/total square metres (×1000);
the number of bathrooms (BATH) of housing unit; the outer surface (OUT) is expressed in square
metres; floor level (FLOOR) of the housing unit; maintenance and preservation status (MAIN) is
expressed with a score scale (1 = mediocre; 3 = good; 5 = very good); panoramic quality of housing
unit (PAN) is expressed with a score scale (1 = without panoramic views; 3 = half of views of the
housing unit are panoramic; 5 = all views of the housing unit are panoramic); the occupancy status
of the property (LOC) is expressed with a dichotomous measure (1 = not rented property; 0 = rented
property); the distance from the funicular station (STAT) is expressed with a dichotomous measure
(1 = if the distance between the housing unit and the station is lower than 500 m; 0 = if otherwise).

Table 1. Statistical description of variables. Sale price (PRC); number of bathrooms (BATH); outer
surface (OUT); floor level (FLOOR); maintenance status and preservation status (MAIN); panoramic
quality of housing unit (PAN); occupancy status of the property (LOC); distance from the funicular
station (STAT).

Variable Std. Dev. Median Mean Min Max

PRC 1.06 3.44 3.40 1.18 6.11
BATH 0.50 1.00 1.45 1.00 2.00
OUT 11.75 12.00 13.89 0.00 40.00

FLOOR 1.45 3.00 2.65 0.50 7.00
MAIN 1.46 3.00 2.94 1.00 5.00
PAN 1.28 1.00 1.89 1.00 5.00
LOC 0.49 1.00 0.62 0.00 1.00
STAT 0.50 0.00 0.46 0.00 1.00

The property characteristics and the relative amounts have been considered in the same way in
each technique applied (MCHMCM, NNs, MRA, PSSM).

Other real estate characteristics (like noise level, accessibility, etc.), manifesting with the same
modalities in all the sampled units, have been excluded from the analysis.
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The selection of the most significant real estate characteristics has been verified on the basis
of direct knowledge of authors about the real estate market of Naples and following a statistical
pre-processing (verification of normal data distribution, correlation test on variables) connected to the
need to determine the intrinsic dimensionality of the data set used [59]. This has been done to reduce
the effects of correlation among the variables and to obtain a better coverage of the characteristics
space. The reduction of dimensionality has been conducted to enable the identification of the optimal
balance between loss of information (e.g., elimination of a variable) and the need to conserve relevant
information contained in the dataset [60].

For small real estate sample sizes [15], Green [61] used statistical power analysis in order to
compare the performance of several rules of thumb for how many subjects were required for multiple
regression analysis. Marks et al. [62] specifies a minimum of 200 subjects for any regression analysis.
Tabachnick and Fidell [63] suggested that although 20 subjects per variable would be preferable, the
minimum required subjects should be five. Harris [64] argued that the number of subjects should
exceed the sum of 50 and number of predictor variables. Schmidt [65] determined that the minimum
number of subjects per variables lies in the range of 15 to 20, while Harrell [66] suggested that
10 subjects per variable was the minimum required sample size for linear regression models to ensure
accurate prediction in subsequent subjects. Finally, Del Giudice [67] argued that the required sample
size minimum is equal to four to five subjects per independent variable.

As detailed above, also considering the opacity of Italian real estate markets conditions [68,69],
the small real estate sample used in this work should not prejudice the operational usability of
statistical techniques.

5.2. Markov Chain Hybrid Monte Carlo Method

The type of proposed Bayesian model is Multi Layer Perceptron (MLP) with a single hidden
layer. It consists of 30 housing units and it is trained using just 35 housing sales drawn from the real
estate sample. This is done in order to verify the approach capacity of working with small dimension
samples also related to the input vector dimensionality. The remaining part of the sample (30 housing
sales) serves to test the network generalization capacity.

In the first stage there is the choose of weights prior distribution which, in some way, should
reflect a possible prior knowledge that the analyst may have on the input-output mapping form.
Various are the possible functions for the prior distribution of weights, but generally the form used is
exponential [53,70]:

p(w) =
1

Zw(α)
exp(−αEw) (13)

where Zw(α) is a normalization factor, α is called hyperparameter inasmuch it controls the distribution
of other parameters (weights and biases) and is determined during the training phase, while:

Ew =
1
2
‖w‖2 (14)

Ew is a function that favours small values for the network weights in order to encourage the
network smooth mapping. To achieve a good balance between bias and variance in order to avoid
overfitting phenomena by training data, it is an advisable choice for a function smooth network [19].

In the same way, for a p(D|w) distribution an exponential form may be chosen so that:

p(D|w) =
1

ZD(β)
exp(−βED) (15)

where ZD(β) is a normalization factor, β is a hyperparameter determined during the training
phase that controls the noise variance, and ED is the classical square function derived from the
maximum likelihood.
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Using the Bayes theorem (12) the posterior weights conditioned on the training set is given by the
following relation:

p(w|D) =
1

ZS
exp(−βED − αEw) (16)

where ZS is a normalization factor. It can be verified that, with α and β fixed, increasing the training set
dimension, the first term represents the maximum likelihood while the second term represents the prior
knowledge that decreases, so that larger is the set and better the maximum likelihood approximates
the most probable weights distribution [53].

The output distribution (11) is calculated operating a numerical integration on the weights space
with the help of the Markov Chain Hybrid Monte Carlo Method (MCHMCM) [51,52]. The basic idea
is to select a random sample of points wi, in the weights space paying attention to generate such
sample so that it may be representative of the distribution p(w|D). Then it is necessary to make sure
that the selected weights vectors are in the region where p(w|D) is reasonably large. This can be
done considering the vector sequence, where each following vector depends on the previous, adding
a stochastic component so that:

wnew = wold + ε (17)

where ε is a small random vector chosen, for example, by a spherical Gaussian distribution with small
variance parameter. In order to avoid wnew orientating towards the direction where the posterior
probability is low, it is possible to use the information about the gradient which can be obtained using
a standard back-propagation algorithm. This is the so-called Hybrid Monte Carlo method [71]. With the
Hybrid Monte Carlo Algorithm it is possible to generate a sample wi and, in correspondence to each x
input vector, we can calculate the network prevision y(xi, wi) so we can assess the distribution p(t|x, D)
as sum of the single y(xi, wi). At the same time, during the training phase, the hyperparameters can be
assessed with the Gibbs sampling technique (the elaborations have been carried out with Netlab free
software, Aston University, Birmingham, UK).

In Table 2 the most probable values, the confidence interval at 95% and the percentage error,
are given for each housing unit of the test set (the test set contains housing units not used to assess
the model and, thus, completely unknown to it). The model shows good performance in terms of
forecasting capacity with an absolute average percentage error of 6.61%. Also, the confidence intervals
are less wide where the given input density is larger, this is because in the region with a high data
density the contribution to the output variance due to the weights uncertainty has a trend with
an inverse relation to the probability density (and, thus, the variance on the output is mostly due to
the noise term) [72].

Table 2. Model Performances of Markov Chain Hybrid Monte Carlo Algorithm.

No. BATH OUT FLOOR MAIN PAN LOC STAT PRC Lower
Bound

Most Probable
Value

Upper
Bound

%
Error

1 2 0 2 5 1 1 0 5.00 4.34 4.63 4.95 −7.40
2 2 10 5 3 1 1 1 4.65 4.06 4.37 4.67 −6.10
3 1 0 0.5 1 1 1 1 4.00 3.80 4.14 4.44 3.55
4 2 0 3 5 1 0 1 2.24 2.22 2.42 2.62 8.04
5 2 20 1 3 1 1 1 4.00 4.13 4.40 4.67 10.00
6 1 10 2 5 3 1 1 4.32 3.60 3.86 4.12 −10.63
7 1 10 3 3 1 0 1 3.04 2.57 2.72 2.87 −10.53
8 2 20 5 1 1 1 0 4.61 4.18 4.42 4.68 −4.12
9 2 20 1 3 5 1 1 3.14 2.69 2.99 3.29 −4.76

10 1 15 1 1 3 1 1 3.66 3.31 3.61 3.91 −1.34
11 1 30 3 3 3 1 0 4.07 3.86 4.12 4.38 1.20
12 1 0 1 3 3 0 0 2.22 2.16 2.40 2.84 8.11
13 2 25 3 3 1 1 1 6.11 4.99 5.22 5.45 −14.57
14 2 10 2 1 3 0 0 2.42 2.35 2.53 2.72 4.55
15 2 15 2 3 1 0 1 2.36 2.27 2.54 2.81 7.63
16 2 20 4 3 1 0 0 2.89 2.99 2.86 3.14 −1.00
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Table 2. Cont.

No. BATH OUT FLOOR MAIN PAN LOC STAT PRC Lower
Bound

Most Probable
Value

Upper
Bound

%
Error

17 2 20 4 1 1 1 1 4.39 3.66 3.93 4.20 −10.47
18 1 0 2 3 1 1 1 5.15 4.16 4.46 4.76 −13.40
19 2 15 4 3 1 1 0 4.23 3.85 4.10 4.35 3.07
20 2 0 0.5 5 1 1 0 2.89 2.35 2.68 2.97 −7.34
21 1 15 4 5 1 1 0 4.34 3.71 3.98 4.25 −8.23
22 2 10 3 1 3 0 0 4.00 3.48 3.72 3.96 −7.00
23 2 20 3 3 5 1 0 3.91 3.74 4.01 4.27 2.43
24 1 20 1 1 1 0 0 1.22 0.88 1.18 1.19 −2.96
25 1 10 4 3 3 1 0 3.20 3.26 3.52 3.78 10.00
26 1 30 2 3 1 1 0 2.13 1.97 2.27 2.57 6.57
27 2 15 5 5 3 1 0 2.67 2.23 2.50 2.74 −6.37
28 2 15 6 1 1 1 0 2.27 2.00 2.40 2.72 5.73
29 1 10 4 3 3 1 0 4.19 3.56 3.82 4.03 −8.83
30 1 12 3 5 1 1 0 3.44 3.37 3.52 3.72 2.33

5.3. Neural Network Model

On the same real estate sample, a neural networks model has been developed to compare the
forecasting capacity of the Markov Chain Hybrid Monte Carlo Method.

In Table 3, the dataset is divided into a learning set, a validation set and a test set.

Table 3. Real estate sample for neural network model: learning set, validation set, and test set.

No. BATH OUT FLOOR MAIN PAN LOC STAT PRC Description

1 2 0 2 5 1 1 0 5.00 Learning
2 2 0 3 1 1 1 0 4.00 Test
3 1 10 1 5 1 1 0 4.06 Validation
4 1 0 0.5 3 3 0 0 2.17 Learning
5 2 10 5 3 1 1 1 4.65 Learning
6 1 0 0.5 1 1 1 1 4.00 Learning
7 1 0 3 1 1 1 0 5.00 Test
8 2 30 3 5 1 0 1 2.61 Validation
9 2 0 3 5 1 0 1 2.24 Test

10 1 10 3 3 1 0 1 3.04 Test
11 2 20 1 3 1 1 1 4.00 Learning
12 1 30 0.5 1 5 0 1 1.18 Validation
13 2 35 4 5 1 0 1 3.82 Learning
14 1 10 3 5 1 0 1 2.77 Learning
15 2 25 4 1 1 0 0 2.87 Test
16 1 10 2 5 3 1 1 4.32 Learning
17 1 10 2 1 1 1 1 3.02 Validation
18 1 10 0.5 3 1 1 0 2.56 Test
19 1 10 4 3 1 0 1 4.44 Test
20 2 20 5 1 1 1 0 4.61 Learning
21 2 20 3 3 3 1 1 4.17 Learning
22 1 0 1 3 1 1 0 3.79 Validation
23 2 20 1 3 5 1 1 3.14 Learning
24 1 15 1 1 3 1 1 3.66 Learning
25 1 0 0.5 5 1 1 0 2.40 Learning
26 2 0 3 3 3 1 1 4.20 Validation
27 1 30 3 3 3 1 0 4.07 Learning
28 1 0 1 3 3 0 0 2.22 Test
29 1 0 1 1 3 0 0 2.72 Learning
30 1 0 4 3 3 1 1 3.62 Test
31 2 20 2 5 3 1 1 3.33 Validation
32 2 25 3 3 1 1 1 6.11 Learning
33 2 15 3 5 1 1 0 4.12 Learning
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Table 3. Cont.

No. BATH OUT FLOOR MAIN PAN LOC STAT PRC Description

34 1 40 3 5 1 0 0 2.25 Test
35 1 0 2 3 1 0 1 4.07 Learning
36 1 0 3 1 1 0 1 2.78 Learning
37 2 10 2 1 3 0 0 2.42 Test
38 1 20 3 3 1 0 0 2.81 Learning
39 2 15 2 3 1 0 1 2.36 Test
40 2 20 4 3 1 0 0 2.89 Test
41 2 40 3 1 3 0 1 2.87 Test
42 1 40 2 1 5 0 0 3.47 Validation
43 2 20 4 1 1 1 1 4.39 Learning
44 2 20 2 5 3 1 1 4.16 Learning
45 1 0 2 3 1 1 1 5.15 Learning
46 2 15 4 3 1 1 0 4.23 Learning
47 1 30 0.5 3 1 1 1 5.58 Validation
48 2 0 0.5 5 1 1 0 2.89 Learning
49 1 15 4 5 1 1 0 4.34 Learning
50 2 10 3 1 3 0 0 4.00 Learning
51 2 20 3 3 5 1 0 3.91 Learning
52 1 0 4 3 3 0 0 3.17 Test
53 1 20 1 1 1 0 0 1.22 Validation
54 1 0 0.5 3 1 1 0 2.00 Test
55 1 10 4 3 3 1 0 3.20 Learning
56 1 40 2 3 1 0 1 1.21 Validation
57 1 30 2 3 1 1 0 2.13 Learning
58 2 15 5 5 3 1 0 2.67 Test
59 2 10 3 3 1 0 1 1.69 Learning
60 2 15 6 1 1 1 0 2.27 Validation
61 1 15 3 1 3 1 1 4.39 Test
62 1 10 4 3 3 1 0 4.19 Test
63 2 16 7 3 5 1 0 2.95 Learning
64 1 12 3 5 1 1 0 3.44 Learning
65 1 10 4 3 1 1 0 3.67 Validation

For the selection of subdata it is necessary to guarantee a high level of homogeneity, thereby
eliminating outliers data that may compromise the performance of the neural networks model. The test
set contains 19 housing sales (about 25% of real estate data), and the validation set contains 12 housing
sales obtained with random extraction (about 20% of real estate data). Consequently, the learning set
contains 33 housing sales (about 55% of real estate data).

Homogeneity among the above subdata has been checked through some analysis of descriptive
statistics (variance analysis, cluster analysis) with some modification of the test set and learning set.
Statistical analysis becomes necessary when a random extraction is carried out on the basis of a small
dimension sample, which does not guarantee a high homogeneity among subdata.

The dataset has been normalized dividing each variable with its maximum amount in order to
obtain matrixes and vectors with number values between zero and one, and to avoid the possible
phenomenon of saturation of the activation functions.

The normalized data have been used to train a neural net with seven inputs (locational and
physical parameters), with two hidden layers each made up of seven neurons and with single
output neuron representing the unitary price. The net has been trained over 6000 cycles with
activation function of logsig type for the neurons of the hidden layers and linear for the output
neuron. The learning has been carried out through backpropagation algorithm. The validation set
has been used for the tuning of parameters and the control of overfitting phenomenon, interrupting
the learning phase in correspondence with the error level representative of threshold, beyond which
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the error function on the validation patterns starts to grow, while the error function on the training
patterns keeps decreasing [48].

The forecasting capacity of neural networks model has been tested with the help of test set made
up with patterns completely unknown to the net. Results are reported in Table 4 where the last column
contains the percentage error between sale price and predicted price.

The absolute average percentage error is 7.33%, and this value is under the acceptability threshold
of 10% for real estate appraisals.

Table 4. Results of neural networks model.

No. Price Predicted Value % Error

2 4.00 3.64 −9.00%
7 5.00 4.58 −8.40%
9 2.24 2.10 −6.25%
10 3.04 3.06 0.66%
15 2.87 2.66 −7.32%
18 2.56 2.54 −0.78%
19 4.44 4.24 −4.50%
28 2.22 2.02 −9.01%
30 3.62 3.87 6.91%
34 2.25 2.38 5.78%
37 2.42 2.53 4.55%
39 2.36 2.60 10.17%
40 2.89 2.81 −2.77%
41 2.87 3.06 6.62%
52 3.17 3.51 10.73%
54 2.00 2.26 13.00%
58 2.67 3.03 13.48%
61 4.39 3.98 −9.34%
62 4.19 3.79 −9.55%

In order to further confirm the results, some nonparametric statistical tests with a validation
set have been carried out. In particular, Spearman’s rank correlation coefficient or Spearman’s Rho
has been calculated (rs = 0.780) and compared with rs critical (0.746) with a α0.05. This comparison
shows a positive association between ranked housing prices and predicted housing values at the 1%
confidence level. The calculus of the Spearman coefficient has been carried out as follows:

rs = 1− 6× ∑n
0 a2

n(n2 − 1)
(18)

where a is the difference between the ranked housing prices and predicted housing values, and n is the
number of observations for validation set [73].

Spearman’s rank correlation coefficient is a nonparametric measure of rank correlation (statistical
dependence between the ranking of two variables). It assesses how well the relationship between two
variables can be described using a monotonic function. If there are no repeated data values, a perfect
Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone function of
the other. Intuitively, the Spearman correlation between two variables will be high when observations
have a similar (or identical for a correlation of 1) rank (i.e., relative position label of the observations
within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have
a dissimilar (or fully opposed for a correlation of −1) rank between the two variables. Spearman’s
coefficient is appropriate for continuous and discrete variables, including ordinal variables.
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5.4. Multiple Regression Analysis

With the aim to show the forecasting potentialities of the Markov Chain Hybrid Monte Carlo
Method (MCHMCM), a traditional multiple regression analysis (MRA) with and without intercept
(MRAint, MRAno.int.) on the same real estate sample (all 65 housing units) has been implemented. From
a general point of view MCHMCM and MRA have the same potentialities and application fields, thus,
the comparison between the two techniques may be performed in terms of residue analysis.

With respect to MCHMCM, the MRA also provides the marginal prices for each real
estate characteristic.

The output data of MRAint (with intercept) show a determination index (R2) equal to 0.367,
a determination index corrected (R2

C) equal to 0.289, and a standard error equal to 0.890 and a negative
F-test (under 95% of significance level). The absolute average percentage error is 23.16%; this value is
over the acceptability threshold of 10% for real estate appraisals.

Output data of MRAno.int. (without intercept) show a determination index (R2) equal to 0.921,
a determination index corrected (R2

C) equal to 0.895, a standard error equal to 1.060, and a positive
F-test (over 95% of significance level). The absolute average percentage error is 26.22%, and the
acceptability threshold of 10% is also overcome in this case.

Table 5 shows a detailed comparison between the residuals of the Markov Chain Hybrid Monte
Carlo Method, the neural networks model, multiple regression analysis and the Penalized Spline
Semiparametric Method.

5.5. Penalized Spline Semiparametric Method

The relationship between sales price and explanatory variables can be examined with
a semi-parametric additive model, characterized by the combination of a generalized additive model,
which expresses the relationship between non-linear response of model and explanatory variables, and
a linear mixed effects model, which expresses the spatial correlation of observed values [8,9,11,12,16]:

P = yj = β0 + β1x1 + . . . .. + βkxk + fk+1(xk+1) + . . . .. + fn(xn) + ε (19)

In expression (19) the additive component, the mixed effects and the erratic component (ε), are
independent. In order to obtain a function estimated using the procedures relating to models mixed
effects, it is considered a version of low rank both for the additive component both for the mixed effects.

For non-linear components of the model (outer surface, OUT; floor level of the housing unit,
FLOOR) are used in the Penalized Spline functions qualified by the following general expression:

f (x) = α0 + α1x + . . . .. + αpxp +
Z

∑
z=1

αpz(x− κz)
p
+ (20)

where the generic function (x− κz)
p
+ has (p − 1 ) continuous derivatives.

For p > 0 the expression that can be used to determine the fitted values is the following:

ŷ = X(XTX + λ2pD)
−1

XTy (21)

where:

X =


1 x1 .. x1

p (x1 − κ1)
p
+ . . . . (x1 − κz)

p
+

.. .. .. . . . . . . . . . . . .

.. .. .. . . . . . . . . . . . .

.. .. .. . . . . . . . . . . . .
1 xp .. xn

p (xn − κ1)
p
+ . . . . (x1 − κz)

p
+


D = diag

(
0p+1, 1Z

)
.
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The smoothing parameter λ intervenes for determination of freedom degrees in the nonlinear
component of model and makes it possible to control the trade-off between fitting model to the
observed values (smoothing parameter near to zero value) and the smoothness of the same model
(high values of smoothing parameters).

Selection the smoothing parameter, for a spline function of p-degree, occurs with the restricted
maximum likelihood condition.

The tool used for the analysis of real estate data is R-project software (SemiPar package) [74].
Like MRA, PSSM is also able to provide the marginal prices for each real estate characteristic.

However, given that the main aim of this paper is to show the forecasting potentialities of the
MCHMC method for real estate appraisals, for brevity of discussion the results of the Penalized
Spline Semiparametric Method (PSSM) are synthetically shown only graphically (see Figure 1),
and the comparison between MCHMCM and PSSM has been performed in terms of residue analysis
(see Table 5).

From the statistical point of view, for PSSM the determination index is equal to 0.830, the corrected
determination index is equal to 0.819, and the standard error is equal to 0.326 and a positive F-test (over
95% of significance level). On the same real estate sample PSSM provides an absolute average
percentage error equal to 20.92% (this value is over the acceptability threshold of 10% for real
estate appraisals).
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5.6. Results Comparison

In general, all four methods compared have the same forecasting potentialities and application
fields, but unlike those of the Markov Chain Hybrid Monte Carlo Method (MCHMCM) and the neural
networks model (NNs), multiple regression analysis (MRA) and the Penalized Spline Semiparametric
Method (PSSM) are able to provide the marginal price for each real estate characteristic.

From a statistical point of view, even if PSSM shows better results than MRA, these two
methods show obvious predictive limits due to the small sample size, and their predictive results
are unacceptable.
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MCHMCM and NNs show much better performances with respect to PSSM (20.92%) and
MRA (better result 23.16% with intercept), in terms of forecasting capacity with an absolute average
percentage error of 6.61% and 7.33%, respectively.

The analysis has shown an excellent prevision capacity of MCHMCM and NNs, even if the first
method is better than the second (about 9.82% more precise), also considering that the learning set
is not very numerous (35 housing sales). This is because Bayesian learning, by its nature, does not
need a set for model validation and overfitting checking. For MCHMCM the confidence intervals
have a good appraising coherence, showing themselves to be larger where the input data set density
is smaller.

MCHMCM is the best model for maximum overestimation (10.00%), absolute average
percentage error (6.61%), percentage of overestimation in the sample (0.00%) and total percentage
of overestimation/underestimation (16.67%). NNs is the best model for maximum underestimation
(9.55%), and the percentage of underestimation in the sample (0.00%). Among the four methods
compared, MRA has shown the worst results.

Table 5. Comparison between the Markov Chain Hybrid Monte Carlo Method (MCHMCM),
neural networks (NN), multiple regression analysis (MRA) and the Penalized Spline Semiparametric
Method (PSSM).

Description MCHMCM NN MRA PSSM

Max overestimation (%) 10.00% 13.48% 40.02% 51.22%
Max underestimation (%) 14.67% 9.55% 129.33% 126.45%

Absolute average percentage error (%) 6.61% 7.33% 20.92% 23.16%
% of overestimation in the sample (>10%) 0.00% 21.05% 30.77% 26.15%

% of underestimation in the sample (≤10%) 16.67% 0.00% 32.31% 32.31%
% of overestimation/underestimation in the sample (Total) 16.67% 21.05% 63.08% 58.46%

6. Conclusions

Real estate appraisals carried out with the Bayesian approach follow a probabilistic model that,
not undergoing the traditional theoretical hypothesis of statistical inference (Gaussian noise with
zero mean and constant standard deviation not dependent from input vectors), makes it possible to
characterize the appraisals according to the real phenomena of the real estate market analysed.

With the aim of showing the forecasting potentialities of the Markov Chain Hybrid Monte Carlo
Method (MCHMCM), it has been compared, using the same real estate sample, with the neural
networks model (NNs), traditional multiple regression analysis (MRA) and the Penalized Spline
Semiparametric Method (PSSM). From a general point of view all four methods have the same
potentialities and application fields, but considering the small real estate sample, only MCHMCM and
NN have shown good forecasting capacity with an absolute average percentage error of 6.61% and
7.33%, respectively.

MCHMCM has proved to be the best model. For this method the possibility to associate each
prevision the corresponding confidence interval endogenously with the model represents an important
appraisal advancement towards the improvement in the reliability of the real estate appraisals. From
the point of view of model selection, it should be noted that there is the possibility to use a high
number of regularization coefficients in order to obtain smoother interpolating functions with reduced
computational costs if compared with traditional parametric approaches.

Further developments may concern the possibility to obtain, during the model assessment phase,
information indicating the need to introduce further data in order to improve the prevision capability
of the model itself (active learning). Besides, the possibility to consider the relative importance of
several input vectors using different values of the hyperparameters for each input (automatic relevance
determination) appears very interesting.
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