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Abstract: This study utilizes the Data Envelopment Efficiency (DEA) model to assess input–output
efficiency from two perspectives. First, not considering the distribution of interval data, we introduce
an adjusted parameter to transform interval data to determination data. Second, by contrast, we take
into account the distribution characteristics of interval data and test the DEA model with interval data
based on linear uniform distribution and normal distribution with uncertainty. Based on the normal
distribution DEA evaluation model, this paper aims to evaluate the input–output performance of the
manufacturing industry with the constraint of environmental pollution in the Yangtze River Delta
(YRD) region, China. Research has shown that the optimal solution of the normal distribution model
is better than that of linear distribution. Therefore, it is imperative to adopt an appropriate method to
evaluate the energy and environmental efficiency of this region.
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1. Introduction

To maintain sustainable economic development, China is now subject to a number of crucial
constraints, including but not limited to: the outstanding supply–demand discrepancies in energy,
severe environmental pollution, and regional discrepancies in energy efficiency. Enhancing energy
efficiency and environmental efficiency is an important way to confront energy crisis and to prevent
environmental pollution, and, ultimately, to boost China’s sustainable development capability and
to promote economic restructuring. The Yangtze River Delta agglomeration is one of the regions
with the highest level of economic development in China. The heightened levels of industrialization,
urbanization and energy consumption have led to the dramatic decline in energy supply and the
deterioration of environmental quality. Drawing upon an investigation on the energy efficiency with
the environmental constraints of the Yangtze River Delta region, we explore the causes of low energy
efficiency and seek practical recommendations to improve energy efficiency in order to alleviate some
of the pressure on energy consumption. Many authors think it is useful to explain the productivity
efficiency of Chinese manufacturing sectors using DEA [1–4]. Hence, the efficiency evaluation method
of data envelopment analysis (DEA) is used to explore the energy efficiency differences of 16 cities in
the Yangtze River Delta region from 2005 to 2014 under the environmental constraints.

Data envelopment analysis (DEA) was originally proposed by Charnes [5] and is a system analysis
method based on “relative efficiency”. As a non-parametric evaluation method of the DEA model,
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the project efficiency evaluation problem with single-input and single-output gradually expanded
into a complex system evaluation problem with multi-inputs and multi-outputs, which is widely used
in many fields, such as mathematical economics and operations research. If the input–output data
of decision-making units (DMUs) in the DEA model are accurate, the DEA method belongs to the
definite type of DEA. However, in practice, due to measurement errors and data noise, amongst other
reasons, the evaluation indicator values of each DMU often cannot be accurately determined, so the
CCR [6–8], BCC [9–11], SBM [12], SBI DEA [13,14] and TurboDEA [15] models were derived.

Furthermore, in practice, problems such as policy strength assessment and investment projects
evaluation arise and some or even all of the input–output indicators of DMUs can only be uncertain
values due to the qualitative policy strength and uncertainty of economic phenomena. To overcome the
limitations of the traditional DEA method, many authors have expanded to the random DEA [16,17],
interval DEA [18–21] and normal DEA models [22–24], amongst others, which are mainly used to
solve the problem relating to the DEA model with uncertain values.

(1) When the input and output variables are denoted as stochastic, the corresponding DEA
model is known as the stochastic DEA model. The distribution of the input–output variables includes
logarithmic normal, exponential and normal distributions. Cooper et al. [25] supposed that the variable
obeys logarithmic normal distribution and as there was no abnormal variable, and the original addition
model was converted to the multiplication model for efficiency solution. The study of the stochastic
DEA model with logarithmic normal distribution also includes [26–31]. Zhang [32] further proposed a
chance constraint to the stochastic DEA model based on exponential distribution, since input–output
indicators obeyed the same distribution, and analyzed the effectiveness of corresponding DMUs
in theory. The stochastic DEA model of exponential distribution also includes [33–36]. Jeang [37]
assumed that the stochastic variables in the chance constraint model obeyed normal distribution.
Consequently, the nonlinear stochastic DEA model was applied to solve the maximum output scale by
using computer software (such as computer-aided engineering and DEA software).

(2) Under normal conditions, the stochastic DEA model is frequently solved by the stochastic
simulation method. The concept of the satisfaction degree was introduced into the stochastic DEA
problem and the consensus DEA model was proposed, e.g., by [38–43]. Furthermore, the confidence
region or level was introduced into the stochastic DEA model, e.g., by [44–48]. The Monte Carlo
simulation algorithm was used to solve the problem of stochastic input and output variables and
the study of stochastic DEA is one of the directions of current research, such as studies by [49–54].
The stochastic DEA model including the Bayesian method, such as in studies by [55–60], was used to
deduce the efficiency value of a finite sample.

(3) For special stochastic DEA models, the isometric transformation method is an effective
method for solving the stochastic DEA model. Khodabakhshi and Asgharian [61] constructed a
general deterministic stochastic DEA model that can replace the nonlinear model under normal
conditions. Eslami et al. [62] dealt with a real decision problem with fuzzy constraints and uncertain
information (stochastic data). The fuzzy probability constraint in the uncertain constraint DEA
model was transformed into the equivalent form of certainty. Zhou et al. [63] took advantage of
chance-constrained programming, the key value reduction method and equivalent transformation to
solve stochastic uncertain problems and to measure the effectiveness, efficiency and productivity in
uncertain environments and for different confidence levels. Yu et al. [64] combined time series and
regression methods to construct a new stochastic chance constrained model and used it to evaluate
and analyze the efficiency of 15 commercial banks from 2005 to 2011.

This study utilizes DEA model to assess input–output efficiency from two perspectives. First, not
considering the distribution of interval data, we introduce an adjusted parameter to transform interval
data to determination data. Second, by contrast, we take into account the distribution characteristics
of interval data and test the DEA model with interval data based on linear uniform distribution and
normal distribution with uncertainty. Research has shown that the optimal solution of the normal
distribution model is better than that of linear distribution. Based on the normal distribution DEA
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evaluation model, this paper aims to evaluate the input–output performance of the manufacturing
industry with the constraint of environmental pollution in the YRD region, China.

In practical efficiency evaluation, interval input–output variables often exist. In conventional
interval DEA model processing, the efficiency solution of the DMUs is restricted by the interval
endpoint values (upper and lower limits) if only the intervals are considered. In this study, we
investigate the relative effectiveness of DMUs with different distributions, based on two cases of
intervals obeying linear and normal distribution, respectively.

2. Preliminaries and Methodology

2.1. Standard DEA Model with Crisp Data

Supposing that there are n DMUs (DMUj(j = 1, 2, · · · , n)), m types of different resources invested
and s kinds of different outputs yielded, input–output vectors of DMUj would be denoted separately
as follows:

xij = (x1j, x2j, · · · , xmj)
T , i = 1, 2, · · · , m,

yrj = (y1j, y2j, · · · , ysj)
T , r = 1, 2, · · · , s.

For DMUj0 , compared to other DMUs in efficiency solving, the traditional CCR model is
constructed as follows [5]:

Z1
j0
= Max.{(

s
∑

r=1
µryrj0)/(

m
∑

i=1
ωixij0), }

s.t.


(

s
∑

r=1
µryrj)/(

m
∑

i=1
ωixij) ≤ 1, j = 1, 2, · · · , n, (1-1),

µr ≥ 0, r = 1, 2, · · · , s, (1-2),
ωi ≥ 0, i = 1, 2, · · · , m, (1-3),

(1)

where µr and ωi are the weight coefficients of outputs and inputs, respectively, and their values are
not negative. The objective function is the maximum efficiency for DMUj0 , and DMUj0 is evaluated
DMU in this model. DMUj0 is reference target for non-efficient DMU [65].

In Model (1), to keep the input unchanged and maximize the output, we construct a linear
programming Model (2) as follows:

Z2
j0
= Max.{

s
∑

r=1
µrj0 yrj0},

s.t.



m
∑

i=1
ωixij0 = 1, (2-1),

s
∑

r=1
µryrj −

m
∑

i=1
ωixij ≤ 0, j = 1, 2, · · · , n, (2-2),

µr ≥ 0, r = 1, 2, · · · , s, (2-3),
ωi ≥ 0, i = 1, 2, · · · , m, (2-4).

(2)

Constraint (2-1) represents the unchanged input of the DMUs and the objective function is to
maximize the output of the DMUj0 , DMUj0 is evaluated DMU in this model.

The duality of linear programming can be denoted by the real variable and the non-negative
vector λ = (λ1, λ2, · · · , λn) [66]. To avoid the weakly efficient problem with a non-zero slack variable,
we add the constraint of the sum of the maximum slack variables in the objective function. In this
paper, Model (2) is transformed into Model (3) as follows:
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Z3
j0
= Min. {θ − (ε

s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
λjyrj − S+

r = yrj0 , r = 1, 2, · · · , s, (3-1),

n
∑

j=1
λjxij + S−i = θxij0 , i = 1, 2, · · · , m, (3-2),

λj ≥ 0, S−i ≥ 0, S+
r ≥ 0, j = 1, 2, · · · , n, (3-3).

(3)

DMUj0 is evaluated DMU in this model. S+
r and S−i are introduced as slack variables in the model

and the selection of slack variables do not affect the value of the optimal solution θ∗. With the same
output, the objective function of the dual model is to find the difference between the minimum variable
elasticity and the slack variable. If θ∗ = 1 and all the slack variables are zero, i.e., S+∗

r = 0 and S−∗i = 0,
then it is absolutely efficient. If θ∗ = 1 and all the slack variables are not zero, i.e., S+∗

r 6= 0 or S−∗i 6= 0,
then the DMUs are weaklyefficient.

In Model (3), the constraint
n
∑

j=1
λj = 1 is added and the model could subsequently be transformed

into the following BCC model:

Z4
j0
= Min. {θ − (ε

s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
λjyrj − S+

r = yrj0 , r = 1, 2, · · · , s, (4-1),

n
∑

j=1
λjxij + S−i = θxij0 , i = 1, 2, · · · , m, (4-2),

n
∑

j=1
λj = 1, j = 1, 2, · · · , n, (4-3),

λj ≥ 0, S−i ≥ 0, S+
r ≥ 0, j = 1, 2, · · · , n, (4-4).

(4)

DMUj0 is evaluated DMU in this model. Constraint (4-3) represents the variable scale returns, i.e., the
ratio of the output increment of the DMUs is not equal to that of the increment of the input factor.

2.2. Interval DEA model

In Model (4), the input and output indicators are all accurate numbers. In practice, the input and
output indicators may be intervals, and DEA Model (5) based on the interval indicators is constructed
as follows:

Z5
j0
= Min. {θ − (ε

s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
λjyrj − S+

r = yrj0 , r = 1, 2, · · · , s, (5-1),

n
∑

j=1
λjxij + S−i = θxij0 , i = 1, 2, · · · , m, (5-2),

ỹrj = [yrjL, yrjU ], (5-3),
x̃ij = [xijL, xijU ], (5-4),

n
∑

j=1
λj = 1, j = 1, 2, · · · , n, (5-5),

λj ≥ 0, S−i ≥ 0, S+
r ≥ 0, j = 1, 2, · · · , n, (5-6).

(5)

In Model (5), the input–output indicators, ỹrj = [yrjL, yrjU ]; x̃ij = [xijL, xijU ], are interval data,
DMUj0 is evaluated DMU in this model.

From the perspective of optimization, we first transform the input and output interval into an
accurate number to obtain the optimal solution for Model (5). That is, let ỹrj = (αrjyrjU + (1− αrj)yrjL),
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0 ≤ αrj ≤ 1, x̃ij = (αijxijU + (1− αij)xijL), and 0 ≤ αij ≤ 1 , respectively. The interval DEA model
could be transformed into the conventional accurate DEA Model (6) as follows:

Z6
j0
= Min. {θ − (ε

s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
λjyrj − S+

r = yrj0 , r = 1, 2, · · · , s, (6-1),

n
∑

j=1
λjxij + S−i = θxij0 , i = 1, 2, · · · , m, (6-2),

ỹrj = αrjyrjU + (1− αrj)yrjL, (6-3),
x̃ij = αijxijU + (1− αij)xijL, (6-4),

n
∑

j=1
λj = 1, j = 1, 2, · · · , n, (6-5),

λj ≥ 0, S−i ≥ 0, S+
r ≥ 0, j = 1, 2, · · · , n, (6-6).

(6)

DMUj0 is evaluated DMU in this model.

2.2.1. Examples of Interval DEA Model

There were six DMUs and the input indicator x1, and output indicators y1 and y2 are intervals
(Table 1).

Table 1. Input and output data of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

x1 [1,2] [2,3] [4,6] [3,4] [1,3] [3,4]
y1 [3,5] [5,7] [30,34] [10,13] [27,29] [25,26]
y2 [7,8] [6,8] [32,35] [4,5] [20,21] [85,90]

Taking the input–output data in Table 1 as the example data, which are similar to those in the
traditional Model (2), the interval DEA nonlinear model is constructed as follows:

Z7
j0
= Max. {u1 ∗ (3 + 2 ∗ a11) + u2 ∗ (7 + a21)},

s.t.



w1 ∗ (1 + a11) = 1, (7-1),
u1 ∗ (3 + 2 ∗ a11) + u2 ∗ (7 + a21)− w1 ∗ (1 + a11) ≤ 0, (7-2),
u1 ∗ (5 + 2 ∗ a12) + u2 ∗ (6 + 2 ∗ a22)− w1 ∗ (2 + a12) ≤ 0, (7-3),
u1 ∗ (30 + 4 ∗ a13) + u2 ∗ (32 + 3 ∗ a23)− w1 ∗ (4 + 2 ∗ a13) ≤ 0, (7-4),
u1 ∗ (10 + 3 ∗ a14) + u2 ∗ (4 + a24)− w1 ∗ (3 + a14) ≤ 0, (7-5),
u1 ∗ (27 + 2 ∗ a15) + u2 ∗ (20 + a25)− w1 ∗ (1 + 2 ∗ a15) ≤ 0, (7-6),
u1 ∗ (25 + a16) + u2 ∗ (85 + 5 ∗ a26)− w1 ∗ (3 + a16) ≤ 0, (7-7),
0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, 0 ≤ a13 ≤ 1, (7-8),
0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, 0 ≤ a16 ≤ 1, (7-9),
0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, 0 ≤ a13 ≤ 1, (7-10),
0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, 0 ≤ a16 ≤ 1, (7-11),
0 ≤ a21 ≤ 1, 0 ≤ a22 ≤ 1, 0 ≤ a23 ≤ 1, (7-12),
0 ≤ a24 ≤ 1, 0 ≤ a25 ≤ 1, 0 ≤ a26 ≤ 1, (7-13).

(7)

DMU1 is evaluated DMU in this model. Let Arj = µr ∗ αrj, for 0 ≤ αrj ≤ 1, so 0 ≤ Arj ≤ µr;
and let Bij = ωi ∗ αij, for 0 ≤ αij ≤ 1, so 0 ≤ Bij ≤ ωi.
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The nonlinear interval DEA Model (7) is transformed into a linear Model (8) as follows:

Z8
j0
= Max. {3 ∗ u1 + 2 ∗ A11 + 7 ∗ u2 + A21},

s.t.



w1 + B11 = 1, (8-1),
(3 ∗ u1 + 2 ∗ A11) + (7 ∗ u2 + A21)− (w1 + B11) ≤ 0, (8-2),
(5 ∗ u1 + 2 ∗ A12) + (6 ∗ u2 + 2 ∗ A22)− (2 ∗ w1 + B12) ≤ 0, (8-3)
(30 ∗ u1 + 4 ∗ A13) + (32 ∗ u2 + 3 ∗ A23)− (4 ∗ w1 + 2 ∗ B13) ≤ 0, (8-4, )
(10 ∗ u1 + 3 ∗ A14) + (4 ∗ u2 + A24)− (3 ∗ w1 + B14) ≤ 0, (8-5),
(27 ∗ u1 + 2 ∗ A15) + (20 ∗ u2 + A25)− (w1 + 2 ∗ B15) ≤ 0, (8-6),
(25 ∗ u1 + A16) + (85 ∗ u2 + 5 ∗ A26)− (3 ∗ w1 + B16) ≤ 0, (8-7),
A11− u1 ≤ 0; A12− u1 ≤ 0; A13− u1 ≤ 0, (8-8),
A14− u1 ≤ 0; A15− u1 ≤ 0; A16− u1 ≤ 0, (8-9),
A21− u2 ≤ 0; A22− u2 ≤ 0; A23− u2 ≤ 0, (8-10),
A24− u2 ≤ 0; A25− u2 ≤ 0; A26− u2 ≤ 0, (8-11),
B11− w1 ≤ 0; B12− w1 ≤ 0; B13− w1 ≤ 0, (8-12),
B14− w1 ≤ 0; B15− w1 ≤ 0; B16− w1 ≤ 0, (8-13).

(8)

DMU1 is evaluated DMU in this model.
According to the dual equivalence principle, the linear interval DEA Model (8) is transformed

into a dual linear Model (9) as follows:

Z9
j0
= Min. {y1},

s.t.



y1− y2− 2 ∗ y3− 4 ∗ y4− 3 ∗ y5− y6
−3 ∗ y7− y20− y21− y22− y23− y24− y25 ≥ 0, (9-1),
3 ∗ y2 + 5 ∗ y3 + 30 ∗ y4 + 10 ∗ y5 + 27 ∗ y6
+25 ∗ y7− y8− y9− y10− y11− y12− y13 ≥ 3, (9-2),
7 ∗ y2 + 6 ∗ y3 + 32 ∗ y4 + 4 ∗ y5 + 20 ∗ y6
+85 ∗ y7− y14− y15− y16− y17− y18− y19 ≥ 7, (9-3),
2 ∗ y2 + y8 ≥ 2; 2 ∗ y3 + y9 ≥ 0; 4 ∗ y4 + y10 ≥ 0, (9-4),
3 ∗ y5 + y11 ≥ 0; 2 ∗ y6 + y12 ≥ 0; y7 + y13 ≥ 0, (9-5),
y2 + y14 ≥ 1; 2 ∗ y3 + y14 ≥ 0; 3 ∗ y4 + y15 ≥ 0, (9-6),
y5 + y16 ≥ 0; y6 + y17 ≥ 0; 5 ∗ y7 + y18 ≥ 0, (9-7),
y1− y2 + y20 ≥ 0;−y3 + y21 ≥ 0;−2 ∗ y4 + y22 ≥ 0, (9-8),
−y5 + y23 ≥ 0;−2 ∗ y6 + y24 ≥ 0;−y7 + y25 ≥ 0, (9-9).

(9)

Yagi et al. [67] regard the variables Y = {y1, y2, · · · , y25} of the above model as shadow price,
DMUj is efficient when the profit of shadow price equals zero. DMU1 is evaluated DMU in this model.
We use Lingo 11 software (LINDO SYSTEMS Inc., Chicago,IL,USA) to solve the aforementioned model
and the optimal solution is shown in Table 2.

Table 2. Relative efficiency of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

θ0 0.6345 0.4148 0.9896 0.4815 1 1
s−0

1 0 0 0 0 0 0
s+0

1 0 0 0 0 0 0
s+0

2 0 0 0 4.6296 0 0

From Table 2, DMU1–DMU4 are not efficient, whereas DMU5–DMU6 are efficient; the efficiency
from DMU1 to DMU6 therefore increases. In the next section, we discuss the improvement of the
non-efficient DMUs in the DEA model.
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2.2.2. The Improvement of the Non-Efficient DMU

Definition 1. The DEA’s relative efficiency (efficient production frontier) is π : ω0T ∗X0−µ0T ∗Y0 = 0. If the
DMUK0 is DEA efficient, and the optimal solution ω0T , µ0T of linear programming (P) satisfies the condition

Vp = µ0T ∗Y0 = 1, ω0 ≥ 0, µ0 ≥ 0.

Furthermore, ω0T ∗ X0 = 1, so ω0T ∗ X0 = µ0T ∗Y0. Therefore, the point (X0, Y0) is on the hyper plane
π and the other points (X, Y) on the hyper plane π are also DEA efficient. Therefore, we use the method of

“projection” on the relative efficient surface to improve the DMUs that were non-efficient for DEA.

Definition 2. Assume that λ0, s0−, s0+, θ0 are the optimal solution to the duality of linear programming,
and let

X̂0 = θ0 ∗ X0 − s0−, Ŷ0 = Y0 + s0+

We call (X̂0, Ŷ0) of DMUK0 the projection of the corresponding (X0, Y0) on the DEA relative efficient surface π.

Non-efficient DMU1 could be constructed into a new DMU7, as seen in Table 3.

Table 3. Input and output data of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7

x1 [1,2] [2,3] [4,6] [3,4] [1,3] [3,4] [0.32,0.95]
y1 [3,5] [5,7] [30,34] [10,13] [27,29] [25,26] [5,7]
y2 [7,8] [6,8] [32,35] [4,5] [20,21] [85,90] [8,9]

The dual nonlinear Model (10) of a new interval DEA is constructed as follows:

Z10
j0

= Min. {u1 ∗ (5 + 2 ∗ a17) + u2 ∗ (8 + a27)}

s.t.



w1 ∗ (0.32 + 0.63 ∗ a11) = 1, (10-1),
u1 ∗ (3 + 2 ∗ a11) + u2 ∗ (7 + a21)− w1 ∗ (1 + a11) ≤ 0, (10-2),
u1 ∗ (5 + 2 ∗ a12) + u2 ∗ (6 + 2 ∗ a22)− w1 ∗ (2 + a12) ≤ 0, (10-3),
u1 ∗ (30 + 4 ∗ a13) + u2 ∗ (32 + 3 ∗ a23)− w1 ∗ (4 + 2 ∗ a13) ≤ 0, (10-4),
u1 ∗ (10 + 3 ∗ a14) + u2 ∗ (4 + a24)− w1 ∗ (3 + a14) ≤ 0, (10-5),
u1 ∗ (27 + 2 ∗ a15) + u2 ∗ (20 + a25)− w1 ∗ (1 + 2 ∗ a15) ≤ 0, (10-6),
u1 ∗ (25 + a16) + u2 ∗ (85 + 5 ∗ a26)− w1 ∗ (3 + a16) ≤ 0, (10-7),
u1 ∗ (5 + 2 ∗ a17) + u2 ∗ (8 + a27)− w1 ∗ (0.32 + 0.63 ∗ a17) ≤ 0, (10-8),
0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, 0 ≤ a13 ≤ 1, (10-9),
0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, 0 ≤ a16 ≤ 1, (10-10),
0 ≤ a17 ≤ 1, 0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, (10-11),
0 ≤ a13 ≤ 1, 0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, (10-12),
0 ≤ a16 ≤ 1, 0 ≤ a17 ≤ 1, 0 ≤ a21 ≤ 1, (10-13),
0 ≤ a22 ≤ 1, 0 ≤ a23 ≤ 1, 0 ≤ a24 ≤ 1, (10-14),
0 ≤ a25 ≤ 1, 0 ≤ a26 ≤ 1, 0 ≤ a27 ≤ 1, (10-15),

(10)

DMU1 is evaluated DMU in this model. DMU1 is evaluated DMU in this model. If the efficiency
of DMU7 is 1, then the new DMU7 is efficient and DMU1 could be constructed in accordance with the
data of new DMU. Similarly, other non-efficient DMUs could be changed into new DMUs, as shown
in Table 4.
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Table 4. Transformation data of efficient DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

x1 [0.32,0.95] [0.3472,0.762] [1.5657,3.5449] [0.4815,0.963] [1,3] [3,4]
y1 [5,7] [7,9] [34,38] [13,16] [27,29] [25,26]
y2 [8,9] [8,10] [35,38] [5.2346,6.2346] [20,21] [85,90]
θ0 1 1 1 1 1 1

s−0
1 0 0 2.4763 0 0 0

s+0
1 0 3.5265 0 0 0 0

s+0
2 0 0 0 4.6296 0 0

2.3. Uncertain DEA Model

There are disordered, probable, vague and approximate attributes, i.e., uncertainty in the process
of contact and development of objective things. Therefore, Liu [68] introduced the uncertainty theory
mainly to solve decision-making optimization under the uncertain information environment. It is a
mathematical theory concerning the quantitative characteristics of various uncertain phenomena.

In this section, the input–output objectives ỹrj = [yrjL, yrjU ]; x̃ij = [xijL, xijU ], are assumed
separately to obey the uncertain linear distribution (as seen in Section 2.1) and the uncertainty of the
normal distribution (as seen in Theorem 1 in Supplementary Materials).

Based on the dual Model (3), we construct the unchanged inputs, maximum outputs and
opportunity constraint DEA Model (11) as follows:

Z11
j0

= Min. {θ − (ε
s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



M{
n
∑

j=1
λjỹrj ≥ ỹrj0 + S+

r } ≥ 1− αrj, r = 1, 2, · · · , s, (11-1),

M{
n
∑

j=1
λj x̃ij ≤ θx̃ij0 − S−i } ≥ 1− αij, i = 1, 2, · · · , m, (11-2),

n
∑

j=1
λj = 1, λj ≥ 0, j = 1, 2, · · · , n, (11-3),

0 ≤ αrj ≤ 1, 0 ≤ αij ≤ 1, (11-4).

(11)

DMUj0 is evaluated DMU in this model, where ε is a non-Archimedes infinitesimally small
constant, namely 10−6, and M is the uncertainty measure. Model (11-1) shows that the probability
of occurrence of expected outputs of the DMUs being larger than the actual outputs is 1 − αrj,
which improves the expected outputs. Model (11-2) shows that when DMUj0’s outputs ỹrj0 remain
unchanged, we should assure that the input values x̃ij0 decrease as the same ratio θ, i.e., the probability
of occurrence of expected inputs being less than the actual investment is 1− αij and the corresponding
adjustments are made to the DMUs that are deficient compared to DMUs that are efficient for DEA.

The objective function can be seen as having two parts, one of which is to minimize the real
number θ of the linear programming dual model and the other is to maximize the value of the
total slack variables in the input–output constraint. Assuming that the optimal problem is given by
Model (11), we obtained the optimal solution that λ0, S0−

ij , S0+
rj , θ0. Furthermore, there is θ0 = 1 and

S0−
ij = 0, S0+

rj = 0. We subsequently call the evaluation DMU is efficient compared to other DMUs

and satisfied both the technical and scale effectiveness. If θ0 = 1, but S0−
ij or S0+

rj are not equal to
the zero vector at the same time, then we call that the DMUs are weakly efficient and the DMUs are
not technically and scale efficient at the same time. If θ0 < 1, then the DMUs are evaluated as DEA
non-efficient.

2.3.1. Uncertain DEA Model Based on Linear Distribution

Definition 3. Assume that an uncertain variable ξ obeys the linear uncertainty distribution as follows:
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φ(x) =


0, x ≤ a,

(x− a)/(b− a), a ≤ x ≤ b,
1 x ≥ b.

Consequently, φ(x) obeys the linear probability distribution, where a and b are definite numbers and a < b.
Then, we call ξ obeys the linearly uniform distribution of a, b, expressed as ξ ∼ `(a, b).

Definition 4. Let ξ be the uncertain variable obeying the linear uncertainty distribution φ(x) (Figure 1).
The inverse function φ−1(x) is called the inverse uncertain distribution function of an uncertain variable φ(x).
The inverse uncertain distribution function of linear uncertain distribution `[a, b] is as follows:

φ−1(α) = (1− α)a + αb.

Figure 1. Linear uncertainty distribution.

Based on the certain input and the largest output background, the uncertain DEA model based on
linear distribution is constructed as follows:

Z12
j0

= Min. {θ − (ε
s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



M{
n
∑

j=1
λjỹrj − ỹrj0 ≥ S+

r } ≥ 1− αrj, r = 1, 2, · · · s, (12-1),

M{
n
∑

j=1
λj x̃ij + S−i ≤ θx̃ij0} ≥ 1− αij, i = 1, 2, · · · , m, (12-2),

ỹrj ∼ ` [yrjL, yrjU ], x̃ij ∼ ` [xijL, xijU ], (12-3),
n
∑

j=1
λj = 1, λj ≥ 0, j = 1, 2, · · · , n, (12-4),

0 ≤ αrj ≤ 1, 0 ≤ αij ≤ 1, (12-5),
S−i ≥ 0, i = 1, 2, · · · , m, (12-6),
S+

r ≥ 0, r = 1, 2, · · · , s, (12-7).

(12)

DMUj0 is evaluated DMU in this model. Theorem 2 and Proof 0.2 (see Supplementary Materials).
According to Definition 5, Model (12) is transformed into a deterministic DEA Model (13).
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Definition 5. Uncertain linear distribution of DEA Model (12) with chance constraints is equivalent to the
determined DEA Model (13):

Z13
j0

= Min. {θ − (ε
s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
−λj(αrjyrjU + (1− αrj)yrjL) ≤ (−S+

r )− ((1− αrj)yrj0U + αrjyrj0L), r = 1, · · · , s, (13-1),

n
∑

j=1
λj(αijxijL + (1− αij)xijU) + (S−i ) ≤ θ((1− α)ijxij0L + αijxij0U), i = 1, · · · , m, (13-2),

n
∑

j=1
λj = 1, λj ≥ 0, j = 1, 2, · · · , n, (13-3),

0 ≤ αrj ≤ 1, 0 ≤ αij ≤ 1, (13-4),
S−i ≥ 0, r = 1, 2, · · · , s, (13-5),
S+

r ≥ 0, i = 1, 2, · · · , m, (13-6).

(13)

DMUj0 is evaluated DMU in this model. As αij and αrj increases, the objective function ϕ is an
increasing function of the probability αij and αrj, and the objective function ϕ becomes larger. Similarly,
if αij increases, the objective function ϕ also becomes larger.

2.3.2. A Numerical Example of Uncertain Linear Distribution DEA Model Based on
Opportunity Constraint

Assuming that there are still six DMUs for the interval model, the input indicators x1, and the
output indicators y1 and y2 are the interval data in Table 1, which are subjected to linear uncertain
distribution. The data can be seen in Table 5.

Table 5. Input and output data of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

x1 `[1, 2] `[2, 3] `[4, 6] `[3, 4] `[1, 3] `[3, 4]
y1 `[3, 5] `[5, 7] `[30, 34] `[10, 13] `[27, 29] `[25, 26]
y2 `[7, 8] `[6, 8] `[32, 35] `[4, 5] `[20, 21] `[85, 90]

2.4. A Numerical Example of Equivalent DEA Nonlinear Transformation Model for Uncertainty Distribution

The input and output interval data (Table 5) indicators of the DMUs subjected to linear distribution
are taken as the numerical example. We construct the equivalent nonlinear DEA Model (14) from the
linear distribution model, which is similar to the certain linear distribution DEA Model (13):

Z14
j0

= Min. {x7− 0.000001 ∗ (s1 + s2 + s3)},

s.t.



−u1 ∗ (3 + 2 ∗ a11)− u2 ∗ (5 + 2 ∗ a12)− u3 ∗ (30 + 4 ∗ a13)− u4 ∗ (10
+3 ∗ a14)− u5 ∗ (27 + 2 ∗ a15)− u6 ∗ (25 + a16) + s1 ≤ 2 ∗ a11− 5, (14-1),
−u1 ∗ (7 + a21)− u2 ∗ (6 + 2 ∗ a22)− u3 ∗ (32 + 3 ∗ a23)− u4 ∗ (4 + a24)
−u5 ∗ (20 + a25)− u6 ∗ (85 + 5 ∗ a26) + s2 ≤ a21− 8, (14-2),
w1 ∗ (2− a11) + w2 ∗ (3− a12) + w3 ∗ (6− 2 ∗ a13) + w4 ∗ (4− a14),
+w5 ∗ (3− 2 ∗ a15) + w6 ∗ (4− a16) + s3 ≤ x7 ∗ (1 + a11), (14-3),
0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, 0 ≤ a13 ≤ 1, (14-4),
0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, 0 ≤ a16 ≤ 1, (14-5),
0 ≤ a11 ≤ 1, 0 ≤ a12 ≤ 1, 0 ≤ a13 ≤ 1, (14-6),
0 ≤ a14 ≤ 1, 0 ≤ a15 ≤ 1, 0 ≤ a16 ≤ 1, (14-7),
0 ≤ a21 ≤ 1, 0 ≤ a22 ≤ 1, 0 ≤ a23 ≤ 1, (14-8),
0 ≤ a24 ≤ 1, 0 ≤ a25 ≤ 1, 0 ≤ a26 ≤ 1, (14-9).

(14)

DMU1 is evaluated DMU in this model.The parameter “x7 ”is the representation of shadow price.
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2.4.1. A Linear Equivalent Model for Nonlinear DEA Transformation Model

Let Arj = µr ∗ αrj, for 0 ≤ αrj ≤ 1, so 0 ≤ Arj ≤ µr; and let Bij = ωi ∗ αij, for 0 ≤ αij ≤ 1,
so 0 ≤ Bij ≤ ωi.

The linear equivalent Model (15) of the nonlinear DEA transformation model is as follows:

Z15
j0

= Min. {x7− 0.000001 ∗ (s1 + s2 + s3)},

s.t.



−3 ∗ x1 ∗ −2 ∗ A11− 5 ∗ x2 ∗ −2 ∗ A12− 30 ∗ x3− 4 ∗ A13− x4 ∗ 10
−3 ∗ A14− x5 ∗ 27− 2 ∗ A15− x6 ∗ 25− A16 + s1 ≤ 2 ∗ a11− 5, (15-1),
−x1 ∗ 7− A21− x2 ∗ 6− 2 ∗ A22− x3 ∗ 32− 3 ∗ A23− x4 ∗ 4− A24,
−x5 ∗ 20− A25− x6 ∗ 85− 5 ∗ A26 + s2 ≤ a21− 8 (15-2),
x1 ∗ 2− B11 + x2 ∗ 3− B12 + x3 ∗ 6− 2 ∗ B13 + x4 ∗ 4− B14 + x5 ∗ 3
−2 ∗ B15 + x6 ∗ 4− B16 + s3 ≤ x7 ∗ 1 + B11, (15-3),
A11− u1 ≤ 0; A12− u2 ≤ 0; A13− u3 ≤ 0, (15-4),
A14− u4 ≤ 0; A15− u5 ≤ 0; A16− u6 ≤ 0, (15-5),
A21− u1 ≤ 0; A22− u2 ≤ 0; A23− u3 ≤ 0, (15-6),
A24− u4 ≤ 0; A25− u5 ≤ 0; A26− u6 ≤ 0, (15-7),
B11− w1 ≤ 0; B12− w2 ≤ 0; B13− w3 ≤ 0, (15-8),
B14− w4 ≤ 0; B15− w5 ≤ 0; B16− w6 ≤ 0, (15-9).

(15)

DMU1 is evaluated DMU in this model. Model (15) is solved by Lingo 11 software and the
optimal solution is shown in Table 6.

Table 6. Relative efficiency of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

θ0 0.1231 0.081 0.223 0.086 0.3148 0.7908
s−0

1 0 0 0 0 0 0
s+0

1 0 0 0 3.2414 0 0
s+0

2 0 0 0 0 0 0

As seen from Table 6, DMU1–DMU6 are not efficient and the efficiency is lower than that of the
original interval model (compared with those in Table 2). The efficiencies of DMU1 to DMU6 present
an increasing trend.

2.4.2. The Concept of Normal Uncertainty Distribution

Definition 6. Assume an uncertain variable ξ obeys normal uncertain distribution [68]:

φ(x) = (1 + exp((π(e− x))/(
√

3σ)))−1, x ∈ <.

Consequently, φ(x) obeys normal distribution, where e denotes the mean value, and σ denotes the variance
(which differ from the expression in probability). Then, we call ξ obeys the normal distribution of e, σ as mean
and variance, denoted by ξ ∼ N(e, σ).

The figure of normal uncertainty distribution function can be seen in Figure 2.

Definition 7. The inverse uncertainty distribution of normal uncertain variable N(e, σ) is as follows:

φ−1(α) = e + (
√

3σ)/(π)ln((α)/(1− α)).
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Figure 2. Normal uncertainty distribution.

2.5. Correlation between Interval Distribution and Normal Uncertainty Distribution

Assume that an uncertain variable ξ obeys the normal distribution, i.e., ξ ∼ N(e, σ), and the
distribution function is

φ(x) = (1 + exp(π(e− x))/(
√

3σ)))−1, x, e, σ ∈ R, σ > 0.

The inverse function is as follows:

φ−1(α) = e + (
√

3σ)/(π)ln((α)/(1− α)), e, σ ∈ R, σ > 0.

If the function obeys the standard normal distribution, the probability of the normal uncertainty
distribution variable x falling within [µ− 4σ, µ + 4σ] (we call it “4σ ”criterion) is as follows:

φ(e + 4σ)− φ(e− 4σ) = (1 + exp((π(e− (e + 4σ)))/(
√

3σ))−1 − (1 + exp((π(e− (e− 4σ)))/(
√

3σ))−1.

This is reorganized as follows:

φ(e + 4σ)− φ(e− 4σ) = (1 + exp(−4π)/(
√

3))−1 − (1 + exp((4π)/(
√

3))−1)) = 99.86%,

i.e.,
M{µ− 4σ ≤ x ≤ µ + 4σ} = φ(4)− φ(−4) = 99.86%.

According to the “small probability event “principle, the probability of x falling outside
[µ− 4σ, µ + 4σ] is less than 0.16%. In reality, we would consider the corresponding event happening
as being almost impossible.

Since the intervals themselves originate from the results of fuzzy judgments or random sampling,
we only know the upper and lower limits of the interval. It is difficult to determine the specific value,
so the interval can be regarded as fuzzy numbers and can also be seen as uncertain variables. It is
possible to replace the intervals with uncertain variables, taking into account the good nature of normal
distribution, for an uncertain variable ξ that follows the normal distribution N(e, σ), according to the
ı4σı principle, its probability of falling within [µ− 4σ, µ + 4σ] is 99.86%. Therefore, we can use the
constant variable ξ obeying normal distribution N(e, σ) to approximately replace the interval [a−, a+]:

[a−, a+] = [µ− 4σ, µ + 4σ], µ = (a− + a+)/2, σ = (a+ − a−)/8.
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2.5.1. Uncertain DEA Model Based on Normal Distribution

Definition 8. The equivalent uncertain normal distribution of the interval ỹrj ∼ ` [yrjL, yrjU ],
x̃ij ∼ ` [xijL, xijU ] is as follows:

x̃ij ∼ Normal (eij, σij), ỹrj ∼ Normal (erj, σrj),

where
erj = (yrjL + yrjU)/2, σrj = (yrjU − yrjL)/8

and
eij = (xijL + xijU)/2, σij = (xijU − xijL)/8.

In the DEA model with interval input and output variables, where ỹrj ∼ ` [yrjL, yrjU ],
x̃ij ∼ ` [xijL, xijU ] , respectively, we construct an equivalent uncertain DEA Model (16) with a certain
input and the largest output as follows:

Z16
j0

= Min. {θ − (ε
s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



M{
n
∑

j=1
λjỹrj − ỹrj0 ≥ S+

r } ≥ 1− αrj, r = 1, 2, · · · s, (16-1),

M{
n
∑

j=1
λj x̃ij + S−i ≤ θx̃ij0} ≥ 1− (αij), i = 1, 2, · · · , m, (16-2),

x̃ij ∼ Normal (eij, σij), ỹrj ∼ Normal (erj, σrj), (16-3),
n
∑

j=1
λj = 1, λj ≥ 0, j = 1, 2, · · · , n, (16-4),

0 ≤ αrj ≤ 1, 0 ≤ αij ≤ 1, (16-5),
S−i ≥ 0, r = 1, 2, · · · , s, (16-6),
S+

r ≥ 0, i = 1, 2, · · · , m, (16-7).

(16)

DMUj0 is evaluated DMU in this model. The equivalent deterministic form of the Constraint
(16-1) in the model is as follows:

n

∑
j=1
−λj(eyrj +

√
3σyrj /πln((αrj)/(1− αrj))) ≤ (−S+

r )− (eyrj0
−
√

3σyrj0
/πln((αrj)/(1− αrj)))

(Theorem 3 and Proof 0.3, see Supplementary Materials)
The Model (16)’s equivalent deterministic DEA Model (17) is as follows:

Z17
j0

= Min. {θ − (ε
s
∑

r=1
S+

r + ε
m
∑

i=1
S−i )},

s.t.



n
∑

j=1
−λj(eyrj + (

√
3σyrj)/πln((αrj)/(1− αrj))),

≤ (−S+
r )− (eyrj0

− (
√

3σyrj0
)/πln((αrj)/(1− αrj))), (17-1),

n
∑

j=1
λj(eij − (

√
3σij)/πln((αij)/(1− αij))) + S−i

≤ θ(exij0
− (
√

3σxij0
)/πln((αij)/(1− αij))), (17-2),

n
∑

j=1
λj = 1, λj ≥ 0, j = 1, 2, · · · , n, (17-3),

0 ≤ αrj ≤ 1, 0 ≤ αij ≤, 1, (17-4),
S−i ≥ 0, r = 1, 2, · · · , s, (17-5),
S+

r ≥ 0, i = 1, 2, · · · , m, (17-6).

(17)

DMUj0 is evaluated DMU in this model.
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2.5.2. A Numerical Example of DEA Model Based on Normal Distribution

Assuming that there are still six DMUs of the interval model, the input indicators x1, and the
output indicators y1 and y2 are interval data in Table 1, which are subjected to normal distribution.
The data are shown in Table 7.

Table 7. Input and output data of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

x1 N[1.5, 0.016] N[2.5, 0.016] N[5, 0.063] N[3.5, 0.016] N[2, 0.063] N[3.5, 0.016]
y1 N[4, 0.063] N[6, 0.063] N[32, 0.25] N[11.5, 0.141] N[28, 0.063] N[25.5, 0.016]
y2 N[7.5, 0.016] N[7, 0.063] N[33.5, 0.141] N[4.5, 0.016] N[20.5, 0.016] N[87.5, 0.391]

2.5.3. A Numerical Example of Equivalent Non-Linear DEA Model for Normal Distribution

Taking input and output indicators of the DMUs obeying the normal distribution of the interval
data (Table 7) as the numerical example, similar to the normal distribution of the DEA Model (17),
nonlinear DEA Model (18) for linear distribution is constructed as follows:

Z18
j0

= Min. {x7− 0.000001 ∗ (s1 + s2 + s3)},

s.t.



−u1 ∗ (4 + 0.034 ∗ B11)− u2 ∗ (6 + 0.034 ∗ B12)− u3 ∗ (32 + 0.138 ∗ B13)
−u4 ∗ (11.5 + 0.078 ∗ B14)− u5 ∗ (28 + 0.034 ∗ B15)
−u6 ∗ (25.5 + 0.086 ∗ B16) + s1 ≤ 0.034 ∗ B11− 4, (18-1),
−u1 ∗ (7.5 + 0.0086 ∗ B21)− u2 ∗ (7 + 0.034 ∗ B22)− u3 ∗ (33.5 + 0.078 ∗ B23)
−u4 ∗ (4.5 + 0.0086 ∗ B24)− u5 ∗ (20.5 + 0.0086 ∗ B25)
−u6 ∗ (87.5 + 0.2154 ∗ B26) + s2 ≤ 0.0086 ∗ B21− 7.5, (18-2),
w1 ∗ (1.5− 0.0086 ∗ B11) + w2 ∗ (2.5− 0.0086 ∗ B12) + w3 ∗ (5− 0.0034 ∗ B13)

+w4 ∗ (3.5− 0.0086 ∗ B14) + w5 ∗ (2− 0.034 ∗ B15)

+w6 ∗ (3.5− 0.086 ∗ B16) + s3 ≤ x7 ∗ (1.5− 0.0086 ∗ B11), (18-3),
B11 = ln((a11)/(1− a11)), B12 = ln((a12)/(1− a12)), (18-4),
B13 = ln((a13)/(1− a13)), B14 = ln((a14)/(1− a14)), (18-5),
B15 = ln((a15)/(1− a15)), B16 = ln((a16)/(1− a16)), (18-6),
B21 = ln((a21)/(1− a21)), B22 = ln((a22)/(1− a22)), (18-7),
B23 = ln((a23)/(1− a23)), B24 = ln((a24)/(1− a24)), (18-8),
B25 = ln((a25)/(1− a25)), B26 = ln((a26)/(1− a26)), (18-9),
B11 = ln((a11)/(1− a11)), B11 = ln((a12)/(1− a12)), (18-10),
B13 = ln((a13)/(1− a13)), B14 = ln((a14)/(1− a14)), (18-11),
B15 = ln((a15)/(1− a15)), B16 = ln((a16)/(1− a16)), (18-12).

(18)

DMU1 is evaluated DMU in this model.

2.5.4. A Numerical Example of Determined DEA Model for Normal Distribution

Let Crj = µr ∗ Brj, for αrj ⊆ [0, 1], 1 − αrj ⊆ [0, 1], so Brj = ln((αrj)/(1 − αrj)), i.e., Bij
have no upper and lower constraints. Similarly, Cij = ωi ∗ Bij, for αij ⊆ [0, 1], 1 − αij ⊆ [0, 1],
so Bij = ln((αrj)/(1− (αrj))), i.e., Bij have no upper and lower constraints. The equivalent certain
DEA model that obeys normal distribution is transformed into a linear Model (19) as follows:
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Z19
j0

= Min. {x7− 0.000001 ∗ (s1 + s2 + s3)},

s.t.



−x1 ∗ 4− 0.034 ∗ C21− x2 ∗ 6− 0.034 ∗ C22− x3 ∗ 32− 0.138 ∗ C23
−x4 ∗ 11.5− 0.078 ∗ C24− x5 ∗ 28− 0.034 ∗ C25
−x6 ∗ 25.5− 0.086 ∗ C26− s1 ≤ 0.034 ∗ C21− 4, (19-1),
−x1 ∗ 7.5− 0.0086 ∗ C31− x2 ∗ 7− 0.034 ∗ C32− x3 ∗ 33.5− 0.078 ∗ C33
−x4 ∗ 4.5− 0.0086 ∗ C34− x5 ∗ 20.5− 0.0086 ∗ C35
−x6 ∗ 87.5− 0.2154 ∗ C36 + s2 ≤ 0.0086 ∗ C31− 7.5, (19-2),
x1 ∗ 1.5− 0.0086 ∗ (C11) + x2 ∗ 2.5− 0.0086 ∗ (C12) + x3 ∗ 5− 0.0034 ∗ (C13)

+x4 ∗ 3.5− 0.0086 ∗ (C14) + x5 ∗ 2− 0.034 ∗ (C15)

+x6 ∗ 3.5− 0.086 ∗ (C16) + s3 ≤ x7 ∗ 1.5− 0.0086 ∗ (C11), (19-3).

(19)

DMU1 is evaluated DMU in this model. Model (19) is solved by Lingo 11 software and the
optimal solution is shown in Table 8.

Table 8. Relative efficiency of DMUs.

DMUs DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

θ0 0.2612 0.1932 0.4993 0.2294 0.5618 0.9967
s−0

1 0 0 0 0 0 0
s+0

1 0 0 0 3.8647 0 0
s+0

2 0 0 0 0 0 0

As can be seen from Table 8, DMU1–DMU6 are non-efficient and the efficiency is lower than that
of the original interval model but higher than that of the linear model. The efficiency from DMU1 to
DMU6 presents an increasing trend.

2.5.5. Results Analysis of Three Uncertain Intervals Distribution DEA Model

The relative efficiency figures of the original Models (7)–(9), the linear Model (15) and the normal
distribution Model (19) are as follows.

The comparison analysis of the efficiency value in Figure 3 shows that efficiency sorting of DMUs
is the same, but the value of the same DMU in different models is different. At the same time, the
results of the normal distribution model are much better than those of the uncertain model. Therefore,
we use the uncertain normal distribution model to conduct empirical analyses in the following section.

Figure 3. DEA efficiency comparisons of three kind of uncertainty distribution.
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2.6. Research on the Manufacturing Output Performance of Yangtze River Delta Region Based on
Environmental Pollution Constraints

For this section, we select input–output indicators of the manufacturing industry in 16 cities in the
Yangtze River Delta region, China, from 2005 to 2014 to conduct relative efficiency empirical analyzes
and construct uncertain DEA models based on normal distribution. We assess and rank these cities
according to the relative efficiency value and conduct a corresponding analysis. Furthermore, we
validate the practicability and rationality of the uncertain normal distribution DEA model.

2.6.1. Concept Definition

The geographical range of the Yangtze River Delta can be measured in narrow and generalized
terms. In the narrow sense, the Yangtze River Delta encompasses 16 member cities of the Yangtze
River Delta Urban Economic Coordination Committee, including the cities of Shanghai, Nanjing, Wuxi,
Changzhou, Suzhou, Nantong, Yangzhou, Zhenjiang and Taizhou in Jiangsu Province and Hangzhou,
Ningbo, Jiaxing, Huzhou, Shaoxing, Zhoushan and Taizhou in Zhejiang Province. In the general sense,
the Yangtze River Delta refers to all regions in Shanghai, Jiangsu Province and Zhejiang Province.
This study takes the narrow sense as research objectives.

Environmental quality is an intrinsic property that exists objectively in an environmental system.
The deterioration of environmental quality includes ecological damage and environmental pollution.
The destruction of the ecological environment is usually due to human activities, which directly or
indirectly damage biological communities and non-biological elements ecosystems, and ultimately
leads to the deterioration of the human living environment. Environmental pollution is the discharge of
pollutants from human activities into the environment, exceeding the capacity and the self-purification
capacity of the environment, so that the composition of the environment is altered, leading to the
deterioration of environmental quality, affecting and undermining people’s normal production and
living conditions. Pollutants mainly refer to substances that are discharged into the atmosphere, water
and soil. In this paper, changes in environmental quality mainly refer to environmental pollution with
less consideration of eco-environment content, so that the content of the study is targeted.

Manufacturing refers to the industry that transforms manufacturing resources (materials, energy,
equipment, tools, funds, technology, information and manpower), in accordance with market demand
through the manufacturing process, into large tools and useful industrial and consumer products.
Manufacturing embodies a country’s productivity level, which is an important factor in distinguishing
between developing and developed countries. It occupies an important share in the national economy
of the developed world. The manufacturing industry referred to in this paper starts with the agro-food
processing industry and ends with metal products, machinery and equipment repairing (including
31 industries: agricultural and foodstuff processing industry; food manufacturing; liquor, beverage
and refined tea manufacturing; the tobacco industry; textiles; leather, fur, feather and garment industry;
wood processing and footwear; bamboo, rattan, palm, straw products; furniture manufacturing;
printing and recording media reproduction industry; education, engineering, sports and entertainment
products manufacturing; petroleum processing, coking and nuclear fuel processing; chemical
raw materials and chemical manufacturing; pharmaceutical manufacturing; rubber and plastics
products industry; nonmetal mineral products industry; ferrous metals smelting and calendering
processing; nonferrous metals smelting and calendering processing; metal products industry;
general equipment manufacturing; special equipment manufacturing; automotive manufacturing;
railways, ships, aerospace and other transport equipment manufacturing; electrical machinery and
equipment manufacturing; computer, communications and other electronic equipment manufacturing;
instrumentation manufacturing; other manufacturing industries; waste resources comprehensive
utilization industry; metal products, machinery and equipment repair industry).
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2.6.2. Indicators Selection and Data Resources

Referring to the literature [69–73], this paper constructs environmental indicators shown in Table 9.
With regards to these indicators, water pollution is characterized by the emission of waste water and
air pollution is characterized by soot and sulphur dioxide emission. The treatment of solid wastes is
characterized by comprehensive utilization of waste and, lastly, energy consumption is characterized
by comprehensive energy consumption.

Table 9. Explanation of empirical indicators.

General Indicators Sub-Indicators Unit

Input Indicators

Capital CIFA (Million Dollar)
Labor Force AANE (Hundreds of People)

Energy CEC ( Tons of Standard Coal)
Waste Water Emissions IWWD (Million Tons)

Industrial Soot Emissions ISE (Tons)
Sulfur Dioxide Emissions ISD (Tons)

Output Indicators Environmental Regulation CUW (percentage)
Gross Output Value GOV (Billion Yuan)

According to the actual development situation and data feasibility of the manufacturing industry
in the Yangtze River Delta, this paper studies the output–input performance of this manufacturing
industry based on the constraint of environmental pollution. The 16 cities in the Yangtze River Delta
include Shanghai, eight cities in Jiangsu Province, namely Nanjing, Wuxi, Changzhou, Yangzhou,
Suzhou, Zhenjiang, Nantong and Xuzhou, and seven cities in Zhejiang Province, namely Hangzhou,
Ningbo, Shaoxing, Jiaxing, Zhoushan, Quzhou and Taizhou.

The data in this paper are gathered from the annual statistic yearbook of each city. The waste
utilization rate, waste water emission, soot emission and sulphur dioxide emission are collected with
industry data calibre. The remaining indicators are collected with manufacturing calibre (Shanghai
comprehensive energy consumption uses industry-calibre), minimizing the regional differences due
to factors such as population and administrative area. Except for the comprehensive utilization of
waste, the remaining indicators are based on the total population of each city as the denominator for
processing. All monetary data is deflated in real prices based on constant price value index in 2013.

2.6.3. Indicator Elaboration

This study selects average annual number of employees (AANE), completed investment in fixed
assets (CIFA), and comprehensive energy consumption (CEC) of each city, industrial waste water
discharge (IWWD), industrial soot emission (ISE), industrial sulphur dioxide emission (ISD) as the
input indicators and comprehensive utilization of waste(CUW), and manufacturing gross output value
(GOV) as the output indicators [74–77].

2.7. Empirical Data

We process the data collected from 2005 to 2014 and the corresponding means and variances are
transformed into normal distribution data, as shown in Tables 10–13.
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Table 10. Empirical indicators.

DMUs Shanghai Nanjing Wuxi Changzhou

Input Indicators

CIFA N(105586,5047) N(153931,46165) N(110321,18084) N(102264,24189)
AANE N(26847,993) N(6923,585) N(12475,733) N(9644,1936)
CEC N(10094,6295) N(7070,570) N(2020,128) N(1585,196)

IWWD N(221800,7898) N(33390,4964) N(36454,6652) N(28174,5445)
ISE N(58470,15487) N(48790,10931) N(48516,4426) N(38306,15207)

ISDE N(264620,46622) N(128380,8251) N(104328,13394) N(56916,10867)

Output Indicators CUW N(96,1) N(87,4) N(95,2) N(98,1)
GOV N(25190,3236) N(8199,1779) N(11238,1818) N(6603,1589)

Table 11. Empirical indicators.

DMUs Yangzhou Suzhou Zhenjiang Nantong

Input Indicators

CIFA N(69530,19505) N(152959,28544) N(56470,17558) N(118301,28312)
AANE N(6258,795) N(29314,3079) N(4535,434) N(7884,942)
CEC N(606,69) N(3077,257) N(578,57) N(694,55)

IWWD N(9652,908) N(66976,3596) N(10167,958) N(16250,1204)
ISE N(12879,1704) N(50021,9908) N(27546,7248) N(40528,3253)

ISDE N(67284,11246) N(197259,20239) N(74044,9279) N(75753,7911)

Output Indicators CUW N(94,4) N(98,0.2) N(92.5,3) N(97,2)
GOV N(5038,1543) N(21519,4073) N(4040,1277) N(6888.44,1920)

Table 12. Empirical indicators.

DMUs Xuzhou Hangzhou Ningbo Shaoxing

Input Indicators

CIFA N(88585,30323) N(58528,8477) N(67685,11423) N(64686,12283)
AANE N(5075,879) N(11980,516) N(15843,801) N(7994,280)
CEC N(1125,109) N(1970,88) N(1308,175) N(1195,76)

IWWD N(9746,1475) N(63888,10972) N(17558,1354) N(28311,1839)
ISE N(32752,6556) N(47515,15058) N(26425,2031) N(22383,3951)

ISDE N(109118,11980) N(89183,14146) N(150393,19314) N(63048,3237)

Output Indicators CUW N(98,2) N(94,1) N(88,2) N(88,5)
GOV N(5009,2021) N(9478,1333) N(9098,1557) N(6188,1213)

Table 13. Empirical indicators.

DMUs Jiaxing Zhoushan Quzhou Taizhou

Input Indicators

CIFA N(59441,9775) N(11634,2686) N(20687,4221) N(35372,6469)
AAE N(8637,338) N(1752,104) N(1336,121) N(8061,1873)
CEC N(912,128) N(62,24) N(666,40) N(168,7)

IWWD N(18886,1596) N(1876,115) N(14209,793) N(5556,356)
ISE N(24113,2222) N(12252,3256) N(29885,12655) N(10486,1802)

ISDE N(89829,10235) N(20768,3589) N(35248,6020) N(48820,10539)

Output Indicators CUW N(96,2) N(98,1) N(96,1) N(95,1)
GOV N(4360,915) N(844,227) N(920,241) N(2894,374)

2.7.1. Empirical Model

We take the interval data (Tables 10–13) of the output indicators of the DMUs that obey the
normal distribution as the empirical data, which resemble the deterministic DEA Model (17) of normal
distribution. The equivalent nonlinear equilibrium output Model (20) is constructed as follows:
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Z20
j0

= Min. {x7− 0.000001 ∗ (s1 + s2 + s3 + s4)},

s.t.



−x1 ∗ (96 + A71)− x2 ∗ (87 + 4 ∗ A72)− x3 ∗ (95 + 2 ∗ A73)
−x4 ∗ (98 + A74)− x5 ∗ (94 + 4 ∗ A75)− x6 ∗ (98 + 0.2 ∗ A76)
−x7 ∗ (92 + 5.3 ∗ A77)− x8 ∗ (97 + 2 ∗ A78)− x9 ∗ (98 + 2 ∗ A79)
−x10 ∗ (94 + A7.10)− x11 ∗ (88 + 2 ∗ A7.11)− x12 ∗ (88 + 5 ∗ A7.12)
−x13 ∗ (96 + 2 ∗ A7.13)− x14 ∗ (98 + A7.14)− x15 ∗ (96 + A7.15)
−x16 ∗ (95 + A7.16) + s1 ≤ −96 + 1 ∗ A71
−x1 ∗ (25190 + 3236 ∗ A81)− x2 ∗ (8199 + 1779 ∗ A82)− x3 ∗ (11238 + 1818 ∗ A83)
−x4 ∗ (6603 + 1589 ∗ A84)− x5 ∗ (5038 + 1543 ∗ A85)− x6 ∗ (21519 + 4073 ∗ A86)
−x7 ∗ (4040 + 1277 ∗ A87)− x8 ∗ (6888 + 1920 ∗ A88)− x9 ∗ (5009 + 2021 ∗ A89)
−x10 ∗ (9478 + 1333 ∗ A8.10)− x11 ∗ (9098 + 1557 ∗ A8.11)− x12 ∗ (6188+
1213 ∗ A8.12)− x13 ∗ (4360 + 915 ∗ A8.13)− x14 ∗ (844 + 227 ∗ A8.14)− x15 ∗ (950+
241 ∗ A8.15)− x16 ∗ (2894 + 374 ∗ A8.16) + s2 ≤ −25190+
3236 ∗ A81.

(20)

DMU1 is evaluated DMU in this model. We subsequently take the interval data (Tables 10–13)
of the input indicators of the DMU that obeyed the normal distribution as the empirical data, which
resemble the deterministic DEA Model (17) with normal distribution. The equivalent nonlinear
equilibrium input Model (21) is constructed as follows:

s.t.



x1 ∗ (105586− 5047 ∗ A11) + x2 ∗ (153931− 46165 ∗ A12) + x3 ∗ (110321− 18084 ∗ A13)
+x4 ∗ (102264− 24189 ∗ A14) + x5 ∗ (69503− 19505 ∗ A15) + x6 ∗ (152959− 28544 ∗ A16)
+x7 ∗ (56470− 17558 ∗ A17) + x8 ∗ (118301− 28312 ∗ A18) + x9 ∗ (88585− 30323 ∗ A19)
+x10 ∗ (58528− 8477 ∗ A1.10) + x11 ∗ (67685− 11423 ∗ A1.11) + x12 ∗ (64686− 12283 ∗ A1.12)
+x13 ∗ (58441− 9775 ∗ A1.13) + x14 ∗ (11634− 2686 ∗ A1.14) + x15 ∗ (20687− 4221 ∗ A1.15)
+x16 ∗ (35372− 6469 ∗ A1.16) + s3 ≤ x7 ∗ (105586− 5047 ∗ A11)
x1 ∗ (26847− 993 ∗ A21) + x2 ∗ (6923− 584.6 ∗ A22) + x3 ∗ (12475− 733 ∗ A23)
+x4 ∗ (9644 + 1936 ∗ A24) + x5 ∗ (6258− 795 ∗ A25) + x6 ∗ (29314− 3079 ∗ A26)
+x7 ∗ (4535− 434 ∗ A27) + x8 ∗ (7884− 942 ∗ A28) + x9 ∗ (5075− 879 ∗ A29)
+x10 ∗ (11980− 516 ∗ A2.10) + x11 ∗ (15843− 801 ∗ A2.11) + x12 ∗ (7994− 280 ∗ A2.12)
+x13 ∗ (8637− 338 ∗ A2.13) + x14 ∗ (1752− 104 ∗ A2.14) + x15 ∗ (1336− 121 ∗ A2.15)
+x16 ∗ (8061− 1873 ∗ A2.16) + s4 ≤ x7 ∗ (26847− 993 ∗ A21)
x1 ∗ (10094− 629 ∗ A31) + x2 ∗ (7070− 570 ∗ A32) + x3 ∗ (2020− 128 ∗ A33)
+x4 ∗ (15854 + 196 ∗ A34) + x5 ∗ (606− 69 ∗ A35) + x6 ∗ (3077− 257 ∗ A36)
+x7 ∗ (578− 57 ∗ A37) + x8 ∗ (694− 55 ∗ A38) + x9 ∗ (1125− 109 ∗ A39)
+x10 ∗ (1970− 88 ∗ A3.10) + x11 ∗ (1308− 175 ∗ A3.11) + x12 ∗ (1195− 76 ∗ A3.12)
+x13 ∗ (912− 128 ∗ A3.13) + x14 ∗ (62− 24 ∗ A3.14) + x15 ∗ (666− 40 ∗ A3.15)
+x16 ∗ (168− 7 ∗ A3.16) + s5 ≤ x7 ∗ (10094− 629 ∗ A31)
x1 ∗ (221800− 7898 ∗ A41) + x2 ∗ (33390− 4964 ∗ A42) + x3 ∗ (36454− 6652 ∗ A43)
+x4 ∗ (28174 + 5445 ∗ A44) + x5 ∗ (9652− 908 ∗ A45) + x6 ∗ (66976− 3596 ∗ A46)
+x7 ∗ (10167− 958 ∗ A47) + x8 ∗ (16250− 1204 ∗ A48) + x9 ∗ (9746− 1475 ∗ A49)
+x10 ∗ (63888− 10972 ∗ A4.10) + x11 ∗ (17558− 1354 ∗ A4.11) + x12 ∗ (28311− 1839 ∗ A4.12)
+x13 ∗ (18886− 1596 ∗ A4.13) + x14 ∗ (1876− 115 ∗ A4.14) + x15 ∗ (14209− 793 ∗ A4.15)
+x16 ∗ (5556− 356 ∗ A4.16) + s6 ≤ x7 ∗ (221800− 7898 ∗ A41)
x1 ∗ (58470− 15487 ∗ A51) + x2 ∗ (48790− 10931 ∗ A52) + x3 ∗ (48516− 4426 ∗ A53)
+x4 ∗ (38306 + 15207 ∗ A54) + x5 ∗ (12879− 1704 ∗ A55) + x6 ∗ (50021− 9908 ∗ A56)
+x7 ∗ (27546− 7248 ∗ A57) + x8 ∗ (40528− 3253 ∗ A58) + x9 ∗ (32752− 6556 ∗ A59)
+x10 ∗ (47515− 15058 ∗ A5.10) + x11 ∗ (26425− 2031 ∗ A5.11) + x12 ∗ (29885− 12655 ∗ A5.12)
+x13 ∗ (24113− 2222 ∗ A5.13) + x14 ∗ (12252− 3256 ∗ A5.14) + x15 ∗ (666− 40 ∗ A5.15)
+x16 ∗ (10486− 1802 ∗ A5.16) + s7 ≤ x7 ∗ (58470− 15487 ∗ A51)
x1 ∗ (264620− 46622 ∗ A61) + x2 ∗ (128380− 8251 ∗ A62) + x3 ∗ (104328− 13394 ∗ A63)
+x4 ∗ (56916 + 10867 ∗ A64) + x5 ∗ (67284− 11246 ∗ A65) + x6 ∗ (197259− 20239 ∗ A66)
+x7 ∗ (74044− 9279 ∗ A67) + x8 ∗ (75753− 7911 ∗ A68) + x9 ∗ (10918− 11980 ∗ A69)
+x10 ∗ (89183− 14146 ∗ A6.10) + x11 ∗ (150393− 19314 ∗ A6.11) + x12 ∗ (63048− 3237 ∗ A6.12)
+x13 ∗ (89829− 10235 ∗ A6.13) + x14 ∗ (20768− 3589 ∗ A6.14) + x15 ∗ (35248− 6020 ∗ A6.15)
+x16 ∗ (48820− 10539 ∗ A6.16) + s8 ≤ x7 ∗ (264620− 46622 ∗ A61)
s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 = 1.

(21)
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The constraints of the empirical model are as follows:

s.t.



Ai1 = ln((ai1)/(1− ai1)), Ai2 = ln((ai2)/(1− ai2))
Ai3 = ln((ai3)/(1− ai3)), Ai4 = ln((ai4)/(1− ai4))
Ai5 = ln((ai5)/(1− ai5)), Ai6 = ln((ai6)/(1− ai6))
Ai7 = ln((ai7)/(1− ai7)), Ai8 = ln((ai8)/(1− ai8))
Ai9 = ln((ai9)/(1− ai9)), A(i− 10) = ln((a(i.10)/(1− a(i.10))))
A(i.11) = ln((a(i.11)/(1− a(i.11))))
A(i.12) = ln((a(i.12)/(1− a(i.12))))
A(i.13) = ln((a(i.13)/(1− a(i.13))))
A(i.14) = ln((a(i.14)/(1− a(i.14))))
A(i.15) = ln((a(i.15)/(1− a(i.15))))
A(i.16) = ln((a(i.16)/(1− a(i.16)))), i = 1, 2, · · · , 9.

(22)

By combining Models (20)–(22), we obtain the equivalent nonlinear equilibrium DEA model of
normal distribution.

2.7.2. The Results of the Empirical Model

From Figure 4 and Table 14, the following can be seen:

• Under the constraint of environmental pollution, the top four manufacturing input–output
performance cities are found to be Yangzhou, Taizhou, Nantong and Shanghai, of which Yangzhou
and Taizhou’s energy consumption and negative output are lower, but the per capital positive
outputs are insufficient, belonging to the low-energy-consumption, low-pollution and low-output
industrial structure. The energy consumption and negative output of Nantong and Shanghai are
higher, but the per capital positive outputs have advantages in that they belong to the industrial
structure with high energy, high pollution and high yield. However, Shanghai is at a stage
of industrial transformation and the focus gradually shift from traditional to high-technology
manufacturing. Nonetheless, it is still in the leading position in terms of scale and technology,
so that the manufacturing output performance advantage is maintained under environmental
pollution constraints.

• Under the constraint of environmental pollution, Jiaxing, Quzhou and Shaoxing rank as the last
three regions in manufacturing input–output performance. Their inputs and negative outputs are
high, while the positive outputs are at a disadvantage, belonging to the high-input, high-pollution
and low-output industrial structure

• Under the restriction of environmental pollution, although their efficiency is higher, Ningbo and
Zhoushan have a slight advantage in terms of positive outputs, but the negative outputs and
environmental costs of manufacturing development are higher and these regions consequently
belonged to the high-pollution development model.

• The Changzhou manufacturing development model is different from that of other cities.
Regarding inputs, energy consumption and positive or negative outputs, Changzhou’s is
significantly higher than those of other cities. Although its performance is top-ranking, the
development model’s high yield is accompanied by high input, high energy consumption and
high pollution. Therefore, such a model is unhealthy.

• In general, except for Taizhou and Zhoushan, from the aspect of environmental pollution control
of manufacturing input–output performance, cities in Zhejiang Province rank lower than other
cities; there is a gap in the development level of the manufacturing industry between Shanghai
and Jiangsu Province.

• As for the Yangtze River coast, except for Shanghai, Yangzhou and Nantong, the manufacturing
output performance under the constraint of environmental pollution of regions in the south is
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lower than that of regions in the north. Although the manufacturing levels in the south are high,
the environmental costs are also higher.

Table 14. Empirical results.

DMUs Shanghai Nanjing Wuxi Changzhou Yangzhou Suzhou Zhenjiang Nantong

θ0 0.9499 0.5710 0.5297 0.8071 0.9987 0.4761 0.5265 0.9851

DMUs Xuzhou Hangzhou Ningbo Shaoxing Jiaxing Zhoushan Quzhou Taizhou

θ0 0.6838 0.7087 0.7875 0.4827 0.3987 0.9429 0.3435 0.9570

Figure 4. DEA efficiency comparison of different DMUs.

3. Conclusions

In practice, input and output variables are usually interval data in the complex efficiency
evaluation. The traditional approach is to consider the upper and lower limits of the interval data and
many researchers consequently constructed models with upper and lower limits for evaluation, which
inevitably leads to the lack of some important information. This study attempted to overcome these
defects by studying the problems of input–output efficiency evaluation with interval data through two
research angles.

The first perspective did not consider the distribution of interval data. Introducing the tuning
parameters, α, the interval data were transformed into determination data. By using optimization
methods, the input–output performance evaluation value was acquired. The advantage of this method
was that the overall interval information could be considered more comprehensive and was conducive
to the improvement of the non-efficient decision units.

The second perspective did consider the distribution characteristics of interval data. Based on the
uncertainty theory proposed by Liu [68], the DEA evaluation model with interval data was constructed
from dimensions of linear uniform distribution and normal distribution with uncertainty:

i Linear uniform distribution model: According to the uncertain optimization theory, the DEA
uncertainty evaluation model for linear uniform distribution was transformed into a deterministic
nonlinear DEA evaluation model, which was further transformed into a deterministic linear DEA
evaluation model.

ii Uncertainty model of normal distribution: Based on uncertain optimization theory, we adopted
the ‘4σ’ rule. First, we transformed the input–output interval indicators into an approximate
normal distribution of the input–output DEA evaluation efficiency uncertainty optimization
model. Then, we transformed it into an equivalent normal distribution of input–output DEA
deterministic evaluation model.

iii The advantage of these two kinds of transformation is that it can further reduce the computational
cost of the model optimization solution and obtain the optimal solution of the uncertain model.
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iv The results of empirical analysis showed that the optimal solution of the normal distribution
model was better than that of the linear distribution. Therefore, based on the normal
distribution DEA evaluation model, this paper studied the input–output performance
evaluation of the manufacturing industry in the Yangtze River Delta under the constraint of
environmental pollution.

The paper focused on the regions of 16 member cities of Yangtze River Delta Regional Urban
Economic Coordination Committee. We collected the manufacturing data of these cities from
2005 to 2014. According to the means and variances of these data, they were transformed into
approximate normal distribution data indicators. Using the previously constructed normal distribution
input–output DEA evaluation efficiency deterministic optimization model, we analyzed each city’s
sorted input–output performance results. We consequently offered corresponding countermeasures
and suggestions according to the differences in industrial structure in different cities.

Supplementary Materials: The following are available online at www.mdpi.com/2071-1050/9/12/2080/s1.

Acknowledgments: The authors would like to thank the editor and all anonymous referees for their valuable
comments and suggestions. This research was supported by the National Natural Science Foundation of China
(71171115, 71571104), the Six Talent Peaks Project in Jiangsu Province (2014-JY-014), and the Natural Science
Foundation of Jiangsu (BK20141481), ’333 Project’ research projects funded project (BRA2017456).

Author Contributions: Xiaoqing Chen was responsible for the model development and first draft, and finalized
the manuscript. Zaiwu Gong conceived the main idea of the experiments and supervised the whole process
of model development and manuscript drafting. All coauthors made significant contributions to the research
contained in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DEA Data Envelopment Analysis
DMU decision-making units
YRD Yangtze River Delta
TP Total Population
CUW comprehensive utilization of waste
AANE average annual number of employees
CIFA completed investment in fixed assets
CEC comprehensive energy consumption
IWWD industrial waste water discharge
ISE industrial soot emission
ISD industrial sulphur dioxide emission
GOV manufacturing gross output value
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