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Abstract: The incorporation of reverse logistics into production routing problems can promote
and coordinate the implementation of sustainable development for supply chains. This study aims
to incorporate reverse logistics into production routing problems and investigate the reduction of
carbon emissions under carbon cap-and-trade. Mixed-integer programming models are proposed
for the production routing problem with reverse logistics by considering simultaneous pickups and
deliveries in vehicle routing subproblems. To solve this problem, we propose a solution method
of a branch-and-cut guided search algorithm based on adaptation of known valid inequalities.
Computational results highlight the trade-offs among various performance indicators, including
emission levels and operational costs of production, inventory holding, fuel consumption, and drivers.
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1. Introduction

In the promotion and coordination of sustainable development for supply chains, environmental
concerns about production and logistic activities have greatly increased in recent years. Since integrated
operations can help achieve the goal of reduced environmental harm while remaining operational
effectiveness [1], supply chain optimization problems such as the production routing problem (PRP)
that aim at optimal joint decisions of production, inventory, distribution, and routing, have recently
received a considerable attention [2]. Production-related and distribution-related CO2 emissions along
supply chains have also been a hot topic ([3,4], respectively).

Besides integrating operations forward, closed-loop supply chain optimization exhibited a
reduction in environmental impact [5]. Return flow processes in a closed-loop supply chain usually
consist of: (1) product collection from consumers; (2) reverse logistics to take collected products back;
(3) screening, assorting, and disposal to specify the most economically attractive reuse alternatives;
(4) remanufacturing; and (5) remarketing to produce and utilize new markets [6]. The PRP can be
extended naturally to involve reverse logistics.

After the importance of considering production, inventory, and routing decisions simultaneously
was stressed in [7], the PRP was extended in various ways to consider, for example, multiple
plants and heterogeneous fleets of vehicles [8], incapacitated production [9], multiple homogeneous
capacitated vehicles [10], demand uncertainty [11], multi-item back-order [12], perishable products [13],
and multiscale production [14] in the past decade. The environmental impact of the PRP has seldom
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been addressed, with only a few notable exceptions such as the PRP with carbon emissions [1], and the
multi-objective pollution production routing problem with a time window [15]. However, reverse
logistics, to the best of our knowledge, have been largely ignored.

Pickup-and-delivery problems for goods transportation and various available algorithms were
reviewed in [16]. The vehicle routing problem with simultaneous pickups and delivery (VRPSPD)
has become increasingly popular. The VRPSPD has wide applications in the electric appliances
industry, beverage industry, returnable/reusable transport items (RTI), and returnable/reusable
logistical packaging. New solution methods of exact algorithms, e.g., the branch-and-cut method [17],
and branch-price-and-cut method [18,19] have just appeared. Inventory routing problems with
simultaneous pickups and deliveries (IRPSPD) have also been explored only recently [6,20,21].
A natural step forward is to extend these problems and methods to the PRP.

Among various carbon policies, the “cap-and-trade” policy works for energy-intensive industries.
The carbon cap specifies the upper limit, i.e., tons of carbon dioxide equivalents (CO2e), that a company
may emit per year. Under “cap-and-trade” policy, if the cap is exceeded by a company, the company
must buy additional allowances. If a company has not met with the carbon cap, the company can sell
carbon credits on the carbon trading market.

Our aim is thus to design a model and algorithm for a closed-loop production routing
problem with simultaneous pickups and deliveries (PRPSPD) under carbon cap-and-trade. The
PRP involves combinatorial optimization of both delivery and routing decisions. Exact algorithms,
such as branch-and-price [1,22,23] and branch-and-cut [9,10], can solve small and medium-sized
problems. Other studies have often used heuristics, e.g., approximation algorithms [24], the decoupled
heuristic [25], the greedy randomized adaptive search procedure [26], memetic algorithms [27], tabu
searches [28,29], adaptive large neighborhood searches [30], iterative mixed-integer programming [31],
particle-swarm optimization [15], the mathematical programming heuristic [32], and the multiphase
heuristic [33]. Thus, we intend to develop a hybrid algorithm for the PRPSPD under carbon
cap-and-trade.

The contributions of this paper can be summarized as follows. First, we introduce a real-world
variant of the PRP with reverse logistics. Reverse logistics are modeled with simultaneous
pickups and deliveries. Second, we formulate the PRPSPD under carbon cap-and-trade as a
mixed-integer linear programming (MILP) problem. Third, we adapt known valid inequalities to
tighten the MILP formulation and design a branch-and-cut guided search algorithm as the solution
method. Finally, we conduct extensive computational experiments to assess the performance of the
proposed algorithm and develop managerial implications through sensitivity analysis. The model,
algorithm, and computational results can serve as a stepping stone for further research of the PRP with
return flow [2].

The rest of the paper is organized as follows. Section 2 describes the PRPSPD under carbon
cap-and-trade and introduces a mathematical formulation. Section 3 elaborates a solution method of a
branch-and-cut guided search algorithm. Extensive computational results are provided in Section 4.
We conclude in Section 5 with discussions on future research directions.

2. Problem Description and Mathematical Formulation

2.1. Problem Description

We first describe the PRP with simultaneous pickups and deliveries (PRPSPD) without
considering carbon emissions. The PRP with simultaneous pickups and deliveries (PRPSPD) is
defined on a complete directed graph G = (N0, A), where the node set N0 = N ∪ {0} consists
of a set N = {1, 2, . . . , n} of customers and a depot represented by node 0, and the arc set is
A = {(i, j) : i, j ∈ N0, i 6= j}. Triangular inequality holds for transportation cost over each arc,
i.e., cij + cjk ≥ cik. Over a finite set T = {1, 2, . . . , |T|} of planning periods, a finite set K = {1, 2, . . . , |K|}
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of homogeneous vehicles with capacity Q is available to serve the customers. In every period,
each customer has known pickup and delivery demands.

In each period, products can be shipped to customers, while pickups can be collected
simultaneously. Given initial inventory levels of new products and pickups at the depot and customers,
the problem is to determine the product amount to manufacture at the depot, the pickup and delivery
amount for each customer, and the set of routes in each period while minimizing total costs of
production, inventory, and routing.

When we consider carbon emissions, the problem is to minimize total costs of production,
inventory, routing, and emission-related costs by making the same decisions under cap-and-trade
regulations on carbon emissions. The carbon cap in this paper is interpreted as carbon quota,
(see e.g., [1]). Companies can thus exchange more emission permits if their expected emissions
surpass their carbon caps. Similarly, companies with less expected emissions than carbon caps could
exchange their surplus for benefits. This also implies that carbon cap appears only in objective functions
in the following formulations.

To formulate the problem, we use following notations for parameters and decision variables.

Parameters:

• lij: length of arc (i, j) with lij = lji;
• τij: arc-specific traveling time constant;
• αij: = a + g sin θij + gCr cos θij, arc-specific constant, where a is the vehicle acceleration (m/s2),

g is the gravitational constant (9.81 m/s2), θij is the angle of the arc (i, j), and Cr are the coefficients
of rolling resistance;

• β: = 0.5Cd Aρ, vehicle-specific constant, where Cd are the coefficients of drag, A is the frontal
surface area of the vehicle, and ρ is the air density;

• ω: empty vehicle weight;
• pc: market price per unit of carbon;
• ce: unit carbon emission of fuel;
• c f : unit cost of fuel energy;
• s̃: fixed emissions of production setup;
• c̃0: emissions per unit of production;
• h̃i: emissions per unit of inventory held at node i ∈ N0;
• wt: driver wage per unit time in period t;
• C: manufacturing capacity;
• Q: vehicle capacity;
• cf: fixed manufacturing setup costs;
• cij: transportation cost over arc (i, j);
• δit: delivery demand of customer i ∈ N in period t;
• πit: pickup demand of customer i ∈ N in period t;
• hd

i : unit inventory holding cost of products at node i ∈ N0;
• hp

i : unit inventory holding cost of pickups at node i ∈ N0;
• Ld

i : storage capacity for delivered products at node i ∈ N0;
• Lp

i : storage capacity for pickup requests at node i ∈ N0;
• Id

i0: initial product inventory at node i ∈ N0;
• Ip

i0: initial pickup inventory at node i ∈ N0;
• Bt: = min{C, Ld

0 , ∑
|T|
τ=t ∑i∈N δiτ}, maximum amount of product that can be produced in period t;

• M1it: = min{Q, Ld
i , ∑

|T|
τ=t δiτ}, maximum amount of product that can be delivered to customer i

in period t;
• M2it: = min{Q, Lp

i , Ip
i0 + ∑t

τ=1 πiτ}, maximum amount of product that can be picked up at
customer i in period t;

• E: maximum carbon emissions allowed in the planning horizon.
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Decision Variables:

• mt: manufacturing quantity in period t;
• Id

it : product inventory at node i at the end of period t;
• Ip

it : pickup inventory at node i at the end of period t;
• dit: delivery amount to customer i in period t;
• pit: pickup amount at customer i in period t
• uijt: pickup amount over arc (i, j) in period t if arc (i, j) is traversed in period t, 0 otherwise;
• vijt: delivery amount over arc (i, j) in period t if arc (i, j) is traversed in period t, 0 otherwise;
• xijt: binary variable, equal to 1 if arc (i, j) is traversed in period t, 0 otherwise;
• yt: binary variable, equal to 1 if the product is set up for production in period t, 0 otherwise;

2.2. An MILP Formulation for the PRPSPD

Given the notations in Section 2.1, the arc-flow-based formulation of the PRPSPD is as follows:

minimize ∑
t∈T

(
cumt + cfyt

)
(1a)

+ ∑
t∈T

∑
i∈N0

(
hd

i Id
it + hp

i Ip
it

)
(1b)

+ ∑
t∈T

∑
(i,j)∈A

cijxijt (1c)

Subject to

Id
0,t−1 + mt − ∑

i∈N
dit = Id

0t, ∀t ∈ T, (2)

Ip
0,t−1 + ∑

i∈N
pit = Ip

0t, ∀t ∈ T, (3)

Id
i,t−1 + dit − δit = Id

it , ∀i ∈ N, t ∈ T, (4)

Ip
i,t−1 − pit + πit = Ip

it , ∀i ∈ N, t ∈ T, (5)

mt ≤ Btyt, ∀t ∈ T, (6)

Id
it ≤ Ld

i , ∀i ∈ N0, t ∈ T, (7)

Ip
it ≤ Lp

i , ∀i ∈ N0, t ∈ T, (8)

∑
j∈N0

xijt ≤ 1, ∀i ∈ N, t ∈ T, (9)

∑
j∈N0

xijt − ∑
j∈N0

xjit = 0, ∀i ∈ N0, t ∈ T, (10)

∑
j∈N0

x0jt ≤ |K|, ∀t ∈ T, (11)

∑
j∈N0

vjit − ∑
j∈N0

vijt = dit, ∀i ∈ N, t ∈ T, (12)

∑
j∈N0

uijt − ∑
j∈N0

ujit = pit, ∀i ∈ N, t ∈ T, (13)

vijt + uijt ≤ Qxijt, ∀(i, j) ∈ A, t ∈ T, (14)

dit ≤ M1it ∑
j∈N0

xijt, ∀i ∈ N, t ∈ T, (15)

pit ≤ M2it ∑
j∈N0

xijt, ∀i ∈ N, t ∈ T, (16)
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mt ≥ 0, yt ∈ {0, 1}, ∀t ∈ T, (17)

Id
it , Ip

it ≥ 0, ∀i ∈ N0, t ∈ T, (18)

dit, pit ≥ 0, ∀i ∈ N, t ∈ T, (19)

uijt, vijt ≥ 0, ∀(i, j) ∈ A, t ∈ T, (20)

xijt ∈ {0, 1}, ∀(i, j) ∈ A, t ∈ T. (21)

The objective function (1a)–(1c) minimizes total operational costs, where (1a), (1b), and (1c)
measure production, inventory, and routing costs, respectively. Constraints (2) and (3) guarantee
product and pickup inventory flow balance at the depot, respectively. Constraints (4) and (5) ensure
product and pickup inventory flow balance for the customers, respectively. Constraints (6) enforce that
the setup binary variable is one, if the manufacturing amount is positive in each period. Constraints (6)
also set the limit of the manufacturing amount to the lower value between total delivery demand in the
remaining periods and manufacturing capacity. Constraints (7) and (8) stipulate that the product and
pickup inventory should not exceed their corresponding capacity, respectively. Constraints (9) serve as
degree constraints. These constraints ensure that each customer is visited at most once in every period,
and are referred as degree constraints because of their origins in the traveling salesman and vehicle
routing problems. Constraints (10) represent vehicle flow balance. Constraints (11) impose the number
of vehicles available in each period. Constraints (12) and (13) are the flow conservation constraints
for pickups and deliveries, respectively. Constraints (14) bind the product flow transportation over
each arc with a maximum value for vehicle capacity. Constraints (15) specify that each customer is
visited if the delivery quantity at the customer is nonzero. Constraints (16) enforce a restriction that
each customer is visited if the pickup quantity at the customer is nonzero. Finally, constraints (17)–(21)
introduce the model’s decision variables.

2.3. Emission Models in PRPSPD and Formulation of PRPSPD under Carbon Cap-and-Trade

In this section, we firstly describe production and inventory-related emissions, and vehicle
routing-related emissions. We then model PRPSPD under the carbon cap-and-trade regulatory
mechanism by integrating the pollution routing model and the pollution lot-sizing model.

2.3.1. Production and Inventory-Related Emissions

Carbon emissions mainly originate from production, inventory, and routing decisions in a typical
two-echelon supply chain. As for production and inventory-related emissions, we assume

e1t = c̃0mt + s̃yt + ∑
i∈N0

h̃i

(
Ip
it + Id

it

)
, ∀t ∈ T, (22)

as in [1]. Given carbon price pc and production and inventory-related carbon cap E1, we can formulate
a lot-sizing model under carbon cap-and-trade as follows:

minimize ∑
t∈T

(
cumt + cfyt

)
+ ∑

t∈T
∑

i∈N0

(
hd

i Id
it + hp

i Ip
it

)
+ ∑

t∈T
∑

(i,j)∈A
cijxijt (23a)

+ pc

(
∑
t∈T

e1t − E1

)
(23b)

subject to (2)–(8), (17) and (18), where the term (23b) measures carbon trade costs/benefits from carbon
cap-and-trade regulation on emissions.
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2.3.2. Vehicle Routing-Related Emissions

To account for vehicle routing-related emissions, we adopt the linear approximation as in [1,3].
An arc-specific traveling time τij is assumed by linking with each arc a speed of lij/τij. The energy
amount exhausted on arc (i, j) in period t is then as follows:

Pijt = αij(ω + uijt + vijt)lij + β
(
lij/τij

)2 lij. (24)

where αij = a + g sin θij + gCr cos θij is an arc-specific constant, and β = 0.5Cd Aρ is a vehicle-specific
constant. In the definitions, a is the vehicle acceleration (m/s2), g is the gravitational constant
(9.81 m/s2), θij is the angle of the arc (i, j), A is the frontal surface area of the vehicle (m2), ρ is the air
density (kg/m3), and Cr and Cd are the coefficients of rolling resistance and drag, respectively [3]. The
derivation of αij = a + g sin θij + gCr cos θij and β = 0.5Cd Aρ can be found in [3], where the energy
amount Pijt exhausted on arc (i, j) was approximated as Ptlij/vijt, where Pt is the total tractive power
demand requirement. The calculation of the total tractive power demand requirement involves the
mechanics of vehicles. Interested readers are referred to [3] and the references therein. Consequently,
vehicle routing-related emissions in period t can be formulated as follows

e2t = ce ∑
i∈N0

∑
j∈N0

Pijt, ∀t ∈ T, (25)

which become

e2t = ce ∑
i∈N0

∑
j∈N0

(
ωαijlijxijt + αijlij(uijt + vijt)

)
+ ce ∑

i∈N0

∑
j∈N0

β
(
lij/τij

)2 lijxijt, ∀t ∈ T. (26)

by substituting (24) into (25).
Given vehicle routing-related carbon cap E2, and production and inventory decisions from

previous stages, we develop a pollution routing model under carbon cap-and-trade as follows.

min c f ∑
t∈T

∑
i∈N0

∑
j∈N0

(
ωαijlijxijt + αijlij(uijt + vijt)

)
(27a)

+ c f ∑
t∈T

∑
i∈N0

∑
j∈N0

β
(
lij/τij

)2 lijxijt (27b)

+ ∑
t∈T

wt ∑
i∈N0

∑
j∈N0

τijxijt (27c)

+ pc

(
∑
t∈T

e2t − E2

)
(27d)

subject to (9)–(16), and (19)–(21). The terms (27c), (27a) and (27b) measure total driver wages and fuel
costs, respectively. These terms also measure vehicle routing costs. The term (27d) represents carbon
trade costs/benefits from carbon cap-and-trade regulation on emissions.

2.3.3. Formulation of PRPSPD under Carbon Cap-and-Trade

Given carbon price pc and total carbon cap E = E1 + E2, we can formulate the PRPSPD under
carbon cap-and-trade as follows:
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minimize ∑
t∈T

(
cumt + cfyt

)
+ ∑

t∈T
∑

i∈N0

(
hd

i Id
it + hp

i Ip
it

)
+ ∑

t∈T
∑

(i,j)∈A
cijxijt

+ c f ∑
t∈T

∑
i∈N0

∑
j∈N0

(
ωαijlijxijt + αijlij(uijt + vijt)

)
+ c f ∑

t∈T
∑

i∈N0

∑
j∈N0

β
(
lij/τij

)2 lijxijt

+ ∑
t∈T

wt ∑
i∈N0

∑
j∈N0

τijxijt

+ pc

(
∑
t∈T

e1t + ∑
t∈T

e2t − E

)
(28)

subject to (2)–(21).

Theorem 1. The PRPSPD under carbon cap-and-trade is NP-hard.

Proof. By combining terms in (28), we obtain

min ∑
t∈T

ĉ0mt + ŝyt + ∑
i∈N0

(ĥd
i Id

it + ĥp
i Ip

it) + ∑
(i,j)∈A

ĉijxijt


+ ∑

t∈T
∑

i∈N0

∑
j∈N0

c̃ij(uijt + vijt)

− pcE

(29)

subject to (2)–(21), where ĉ0 = cu + pc c̃0, ŝ = c f + pc s̃, ĥd
i = hd

i + pch̃i, ĥp
i = hp

i + pch̃i, ĉij = (c f +

pcce)(ωαijlij + βl3
ij/τ2

ij) + wtτij , c̃ij = (c f + pcce)αijlij.
With this compact formulation, we can see that the PRPSPD under carbon cap-and-trade is similar

with PPRP [1] with additional inventory and flow terms as well as similar flow constraints. Because
PPRP is NP-hard [1], it follows that the PRPSPD under carbon cap-and-trade is also NP-hard.

3. Solution Method

In this section, after strengthening the linear relaxations of the formulations (2)–(21) with valid
inequalities, we propose a branch-and-cut guided search algorithm.

3.1. Valid Inequalities

Denote by Id
i0,s: = max{0, Id

i0 − ∑s
τ=1 δiτ} the product quantity left from the initial product

inventory of customer i ∈ N at the end of period s, and let Id
i0,0 := Id

i0. The residual delivery demands
at customer i in period s can also be defined as δ̂is: = max{0, δis− Id

i0,s−1}. With these notations, we can
strengthen the linear relaxations of formulations (2)–(21) with the following valid inequalities:

t

∑
τ=1

∑
j∈N0

∑
k∈K

xijkτ ≥ d
∑t

τ=1 δ̂iτ

min{Q, Ld
i }
e, ∀i ∈ N, t ∈ T, (30)

t

∑
τ=1

∑
j∈N0

∑
k∈K

x0jkτ ≥ d
∑i∈N ∑t

τ=1 δ̂iτ
Q

e, ∀t ∈ T, (31)

t

∑
τ=1

∑
j∈N0

∑
k∈K

xijkτ ≥ d
Ip
i0 + ∑t

τ=1 πiτ − Lp
i

min{Q, Lp
i }

e, ∀i ∈ N, t ∈ T, (32)

where constraints (30) and (32) present lower bounds on the number of visits to each customer in each
period, respectively. The lower bound in constraints (30) is calculated from residual delivery requests.
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The lower bound in constraints (32) guarantee that accumulated pickup requests do not exceed the
pickup inventory capacity. Constraints (31) specify a lower bound on the number of vehicles to use in
each period. This lower bound is calculated from total residual delivery requests.

We can also strengthen the routing constraints (9)–(16) with the following valid inequalities

∑
i∈N

dit ≤ Q ∑
j∈N0

x0jt, ∀t ∈ T, (33)

∑
i∈N

πit ≤ Q ∑
j∈N0

x0jt, ∀t ∈ T, (34)

∑
j∈N0

xijt ≤ ∑
j∈N0

x0jt, ∀i ∈ N, t ∈ T, (35)

where constraints (33) and (34) enforce that the total delivery and pickup quantity do not exceed the
total vehicle capacity, respectively, and constraints (35) ensure that each customer is visited only if the
depot is also traversed.

Finally, we can add the following valid inequalities(
s

∑
j=0

δi,t−j

)(
1−

s

∑
k=0

∑
j∈N0

xij,t−k

)
≤ Id

i,t−s−1,

∀i ∈ N, t ∈ T, 0 ≤ s ≤ t− 1, (36)

Lp
i −

(
s

∑
j=0

πi,t−j

)(
1−

s

∑
k=0

∑
j∈N0

xij,t−k

)
≥ Ip

i,t−s−1,

∀i ∈ N, t ∈ T, 0 ≤ s ≤ t− 1, (37)

where constraints (36) ensure that in each time instant, product inventory is enough to meet
accumulated delivery demand, and constraints (37) guarantee that in each time instant, accumulated
pickup requests do not exceed the corresponding inventory capacity.

3.2. Branch-and-Cut Guided Search Algorithm

To solve the model, we propose a branch-and-cut guided search algorithm. This algorithm is
outlined in Algorithm 1.

Initial Solution

An upper bound U∗ and an incumbent solution at the root node of the branching tree is obtained
through the following heuristic.

First, we set the delivery amount of each customer to its residual delivery requests in each period.
We also set the pickup quantity of each customer to its pickup demand in each period, except that the
pickup quantity in the first period also includes the initial pickup inventory. These pickup and delivery
quantity are inputs to VRPSPD subproblems in each period. We obtain an initial feasible solution
by the well-known Clark-and-Wright heuristic. The VRPSPD solution is then improved by a guided
variable neighborhood descent (GVND). The procedure of the GVND is provided in Algorithm 2.
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Algorithm 1: Branch-and-cut guided search algorithm

1 Obtain initial solutions and update the upper bound U∗ and the incumbent solution.
2 Construct the node pool N , which is initialized with the root node.
3 Generate and insert the proposed valid inequalities into the program at the root node of the

search tree.
4 repeat
5 Selection: Choose the next node in N , evaluate, and remove it from N .
6 Lower bound: Obtain lower bound of the current node Ul by solving the LP relaxation at the

current node.
7 if the current solution is feasible then
8 if Ul > U∗ then
9 go to the termination check.

else
10 U∗ ← Ul .
11 Update the incumbent solution.
12 Prune nodes with lower bound U > U∗.

end
end

13 Cut generation:
14 if any cut is violated by the current solution of the LP relaxation then
15 determine the violated subtour elimination cuts by connected component heuristics

adapted from [34].
16 Add violated cuts.

end
17 Branching: If Ul > U∗, go to the termination check.

until N = ∅ or time limit is met (termination check)
18 Stop with the optimal solution and the corresponding cost U∗.

Algorithm 2: Guided variable neighborhood descent (GVND)
Function GVND(s)

1 foreach t ∈ T do
2 Store routes in period t from the feasible solution s to Rt

3 repeat
4 repeat
5 Select next route pair {R1, R2}, R1 ∈ Rt, R2 ∈ Rt.
6 Set threshold τ = λ×max{cij|(i, j) ∈ A({R1, R2})}, where A({R1, R2}) is the arc

set for the route pair. Set Pij = 0, ∀(i, j) ∈ A({R1, R2}).
7 Utilize exchange, relocate, 2-opt*, and cross-exchange to route pair {R1, R2} until no

more improvements can be found. If an improvement has been found, utilize the
LKH implementation of the Lin-Kernighan heuristic to both R1 and R2 separately.

8 Choose an arc according to Equation (38) and increase its Pij by 1. If ∑ Pij × λ > τ,
go to line 7; otherwise, go to line 6 evaluating moves according to Equation (39).

until all route pairs have been selected
until no more improvements for any pair of routes can be detected

end
return s



Sustainability 2017, 9, 2198 10 of 15

In the GVND, we apply a set of improvement heuristics [35]. The “inter-route” operators which
we use and which modify several routes simultaneously are exchange, relocate, 2-opt*, and cross-exchange.
In the exchange heuristic, the position of two customers in two routes are swapped at a time, while in
the relocate heuristic a single customer is reinserted into an alternate route after being deleted from its
original route. The 2-opt* heuristic removes two arcs (i, i + 1) and (j, j + 1) from two distinct routes,
and reconnects the routes by inserting the arcs (i, j + 1) and (j, i + 1). The cross-exchange operator
removes arcs (i − 1, i) and (k, k + 1) in one route, and arcs (j− 1, j) and (l, l + 1) in another route,
then swaps the segments i-k and j-l by forming new arcs (i − 1, j),(l, k + 1),(j− 1, i) and (k, l + 1).
These heuristics are implemented with the VRPH library [36].

First, we apply the inter-route operators for each route pair, and if an improvement is found,
the LKH implementation [37] of the Lin-Kernighan heuristic [38] is applied to each single route.
Then we adopt the guided local search strategy [35]. A modified objective function is used when the
inter-route VND procedure is repeated, such that long arcs in the current route pairs are penalized.
These long arcs will then be forced out of the candidate routes. We penalize the arc with the highest
“utility function” value. The function is as follows:

U =
λ× Pij + cij

1 + Pij
(38)

where Pij is the number of penalized times of arc (i, j) and λ is a user-defined value. We set λ = 8
based on the sensitivity analysis in [35]. If current total penalty factors do not exceed a threshold,
we repeat the inter-route procedures and LKH implementation of the Lin-Kernighan heuristic for
single route with the modified objective function:

g′(s) = g(s) + λ ∑ Pij (39)

where s is the current VRPSPD feasible solution, g(s) is the original objective function for the
VRPSPD subproblem.

4. Computational Results

This section summarizes computational experiments conducted to assess the performance of our
algorithm and investigate how variations in key parameters affect carbon emissions.

The algorithm was coded in C++ with IBM ILOG CPLEX version 12 release 7 as the LP solver. The
experiments were run on a 64-bit Windows 7 PC with Intel Core i7-6700 3.40GHz CPU and 16GB RAM.

4.1. Data and Experiment Settings

We generate instances by adapting the data set of [10] and adding parameters for customers’
pickup requests. The data set of [10] was created from a subset of the dataset of [9] for the PRP,
which consists four classes of instances. Five instances with different node coordinates were generated
for each instance type. The first class is the base class. Unit production costs are higher in the second
class. Transportation costs are higher in the third class. Instances in the fourth class have no customer
inventory cost.

Instances for multi-vehicle PRP are generated by reducing initial inventory level for instances
with three periods [10]. Production capacity and depot inventory capacity were set accordingly in [10]
while uncapacitated production and unlimited depot inventory capacity were assumed in [9]. We keep
the settings of initial inventory level, production capacity, and depot inventory capacity as those of [10],
while taking the vehicle capacity as given in [9]. Moreover, pickup inventory holding costs are set
equal to delivery inventory holding costs. Pickup requests of customers are set to half of delivery
requests in the previous period except for pickup requests in the first period, which are set according to
the initial delivery inventory level. There are no initial pickup inventories. Pickup inventory capacity
is set to cover the pickup requests throughout planning periods.
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We calculate carbon emission-related parameters according to [3,39]. Values for carbon
emission-related parameters are shown in Table 1. As for τij, we choose lij/τij = 11 m/s (40 km/h) as
in [1]. Empty vehicle weight w is set equal to vehicle capacity Q.

The average CPU times in seconds and the average number of nodes are reported in the “CPU”
and “Nodes” columns, respectively, in Tables 2 and 3. The column “Gap” represents the difference
between the final lower bound and the best upper bound as a percentage of the best upper bound. We
also report the number of cuts added by CPLEX and the number of subtour elimination constraints
separated in the columns “CPLEX Cuts” and “SEC Cuts”, respectively, in Table 3 to assess the
performance of our algorithm on different classes of instances.

Instance size varies and results in 370 instances. Specifically, 90 instances are generated for the
results in Table 2, 120 for Table 3, 60 for Table 4, and 100 for Table 5.

Table 1. Values for carbon-emission-related parameters.

αij β ce c f wt s̃ c̃0 h̃i E E1 E2

0.981 2.1 0.00094 0.0006 2.2 22.6 22.6 0.8 15,000 10,000 5000

4.2. Results and Discussions

4.2.1. Performance of the Algorithm

First, we report the performance of the algorithm on the first class of instances in Table 2. For these
base settings, the CPU time limit was set to 10 min. Given the notation ac/bp/cv, where a, b, and c are
the number of customers, periods, and vehicles, respectively, these tests showed that the proposed
algorithm can obtain the optimal solutions for instances up to 20c/3p/2v and 10c/6p/4v. For instances
up to 50c/3p/4v, the algorithm can obtain near-optimal solutions with a gap of at most 4.7% in
10 min. For instances up to 50c/6p/6v, the near-optimal solutions obtained by the algorithm are also
within gaps less than 8% in 10 min. Current exact algorithms for multi-vehicle PRP can only solve
instances of up to 35c/3p/3v in 2 h [10]. Since vehicle routing subproblems in the PRPRSPD involve
pickups, the routing subproblems are notably more difficult than that in the original PRP. The overall
performance of our algorithm for the PRPRSPD is thus quite acceptable.

Table 2. Performance of the algorithm on the first class of instances: base settings.

n |T| |K| CPU (s) Gap (%) Nodes (#)

10 3 2 5.6 0.0 628.8
15 3 2 65.6 0.0 3205.6
20 3 2 438.4 0.0 4491.2
25 3 3 600.0 1.5 4966.4
30 3 3 600.0 1.8 2996.8
35 3 3 600.0 2.8 1951.2
40 3 4 600.0 3.4 1909.6
45 3 4 600.0 3.4 791.4
50 3 4 600.0 4.7 665.2
10 6 4 498.0 0.0 3652.2
15 6 4 600.0 0.9 5877.2
20 6 4 600.0 2.7 2874.8
25 6 5 600.0 3.7 1852.8
30 6 5 600.0 4.5 890.2
35 6 5 600.0 5.3 595.8
40 6 6 600.0 5.4 190.6
45 6 6 600.0 6.2 91.4
50 6 6 600.0 7.6 65.2

Note: pc = 0.5.
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In Table 3, we report performance of the algorithm on four classes of instances with up to
20 customers. The CPU time limit was extended to 2 h to better compare the performance of the
algorithm for different classes.

It can be shown from Table 3 that instances in class I are easiest to solve, and instances in class
IV are the most difficult to solve. When there are only 10 and 15 customers, instances in class III are
more difficult to solve than those in class II. However, when there are 20 customers, instances in class
II become more difficult to solve than those in class III.

Table 3. Performance of the algorithm on instances with 10, 15, and 20 customers: four classes of instances.

Class n |T| |K| CPU (s) Gap (%) CPLEX Cuts SEC Cuts Nodes

I 10 3 2 5.6 0 260.8 35.0 628.8
II 10 3 2 17.5 0 144.3 47.1 2256.7
III 10 3 2 37.8 0 216.5 66.0 3225.1
IV 10 3 2 40.7 0 197.0 62.2 3880.7
I 10 3 3 7.8 0 211.3 31.9 936.7
II 10 3 3 19.4 0 124.8 68.5 2267.7
III 10 3 3 49.6 0 242.4 39.5 5885.6
IV 10 3 3 42.6 0 145.6 64.8 3370.6
I 15 3 2 65.6 0 323.1 56.6 3205.6
II 15 3 2 207.7 0 188.6 89.3 9875.4
III 15 3 2 578.2 0 434.2 143.7 27,364.8
IV 15 3 2 818.0 0 207.3 114.9 29,695.0
I 15 3 3 123.1 0 367.4 93.2 4486.5
II 15 3 3 327.4 0 306.6 108.8 18,028.9
III 15 3 3 1575.4 0.2 263.7 101.8 30,023.1
IV 15 3 3 372.6 0 174.0 140.2 24,796.2
I 20 3 2 438.4 0 378.1 223.8 4491.2
II 20 3 2 4103.5 0.3 271.4 185.9 46,195.4
III 20 3 2 4444.2 1.8 363.1 108.5 37,556.1
IV 20 3 2 5635.5 0.8 477.7 238.6 67,714.4
I 20 3 3 3799.3 0.6 460.8 206.5 29,192.2
II 20 3 3 3299.1 0.4 325.7 219.0 50,894.6
III 20 3 3 4697.3 1.6 317.8 86.2 28,345.1
IV 20 3 3 5906.0 0.8 453.6 315.2 103,188.3

Note: pc = 0.5; Class I: base settings; Class II: high production unit cost; Class III: large transportation costs;
Class IV: no retailer inventory costs.

4.2.2. Comparison of Costs and Sensitivity Analysis

In Table 4, we provide a comparison of solution costs on four classes of instances with up to
20 customers. Although unit production costs are 10 times higher, the manufacturing quantity and
carbon emissions of class II are the same as those of class I. The reason is that delivery demand must
be met, and backorder is not allowed in the model.

In contrast, when transportation costs increase for instances in class III, lower driver costs and
routing emissions are achieved at the cost of larger production costs and emissions, and larger
inventory costs and emissions. However, the total costs are reduced. This implies that the benefits of
carbon cap-and-trade increase as transportation costs increase. Likewise, when there are no retailer
inventory costs for instances in class IV, total costs increase. This also implies that the benefits of carbon
cap-and-trade decrease as inventory costs get lower. The managerial insights are consistent with [1].

In Table 5, we provide a sensitivity analysis on the effect of carbon cap-and-trade. It can be
seen that when the carbon price increases, total costs increase. However, total emission levels do
not decrease monotonically. Total emission levels in the base settings achieved a minimum when
carbon price was 0.3. The phenomenon reappears when transportation costs increase for instances
in class III. However, when production costs increase for instances in class II, and when there are no
retailer inventory costs for instances in class IV, total emissions first increase and then decrease. The
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reason may be that the change of production costs and inventory costs is too drastic, and the benefits of
carbon cap-and-trade are thus twisted as compared to the base settings. Nevertheless, the managerial
insights are still consistent with [1].

Table 4. Comparison of costs with instances with 10, 15, and 20 customers: four classes of instances.

Class n TC PC IC FC EL PE IE RE DC NVI NVE

I 10 4684 4047.9 1069.7 407.8 12,521 9322.9 1307.2 1891 398.1 9.6 2
II 10 41,111 40,479 996.3 434.4 12,555 9322.9 1217.5 2015 424.1 9.6 2
III 10 4513 4361.6 1375.8 279.8 11,444 8719.8 1426.9 1298 273.2 7.2 2
IV 10 5664 4558.3 1123.2 411.3 13,339 10,238.6 1192.7 1908 401.6 8.5 2
I 15 9410 5641.2 1535.1 583.8 17,160 12,612.0 1840.8 2708 570.0 13.8 3
II 15 60,250 56,412 1475.7 622 17,266 12,612.0 1769.6 2884 607.2 13.8 3
III 15 10,750 6852.4 1898 419.6 17,341 13,404.0 1991.3 1946 409.7 10.8 3
IV 15 10,172 6217.6 1610.3 592.8 17,345 12,816.0 1780.3 2749 578.8 12.2 3
I 20 15,743 7535.8 2149.3 798.6 23,960 17,609.7 2646.6 3704 779.7 18.9 4
II 20 83,850 75,358 1977 911.7 24,428 17,609.7 2590.5 4228 890.0 20.2 4
III 20 15,673 7616.7 2568 588.6 23,651 18,030.6 2891.2 2729 574.7 15.1 4
IV 20 16,070 7823 2321.1 828 23,579 17,210.9 2527.9 3840 808.4 17.0 4

Note: |T| = 6, |K| = 4, pc = 0.5; TC: total cost; PC: total production cost; IC: inventory cost; FC: fuel cost;
DC: driver cost; EL: emission levels; PE: production emissions; IE: inventory emissions; RE: routing emissions;
NVI: number of visits; NVE: number of vehicles used.

Table 5. Comparison of costs under different carbon prices: four classes of instances.

Class pc TC PC IC FC EL PE IE RE DC NVI NVE

I 0 8284 5641.2 1307.6 675.8 17,314 12,612 1568 3134 659.8 38.4 3
I 0.1 8529 5641.2 1410.2 634.3 17,245 12,612 1691.0 2941.5 619.3 36.2 3
I 0.3 8914 5641.2 1465.8 592.7 17,119 12,612 1757.8 2748.8 578.7 25.6 3
I 0.5 9410 5641.2 1535.1 583.8 17,160 12,612 1840.8 2707.5 570.0 13.8 3
I 0.7 9904 5641.2 1580.3 579.7 17,195 12,612 1895.0 2688.1 565.9 10.6 3
II 0 59,055 56,412 1307.6 675.8 17,314 12,612 1568.0 3134 659.8 38.4 3
II 0.1 59,345 56,412 1395.8 659.1 17,342 12,612 1673.8 3056.7 643.5 36.2 3
II 0.3 59,733 56,412 1407.1 630.8 17,225 12,612 1687.4 2925.3 615.9 25.6 3
II 0.5 60,250 56,412 1475.7 622 17,266 12,612 1769.6 2884.4 607.2 13.8 3
II 0.7 60,553 56,412 1519.7 577.7 17,114 12,612 1822.4 2679.2 564.1 10.6 3
III 0 9401 6852.4 1588.3 485.7 17,323 13,404 1666.5 2252.6 474.2 27.6 3
III 0.1 9748 6852.4 1725.1 470.8 17,397 13,404 1809.9 2183.1 459.6 26.2 3
III 0.3 10,155 6852.4 1734.8 445.5 17,290 13,404 1820.1 2066.1 435.0 15.4 3
III 0.5 10,750 6852.4 1898 419.6 17,341 13,404 1991.3 1945.9 409.7 10.8 3
III 0.7 11,252 6852.4 1995.9 393.4 17,323 13,404 2094.0 1824.6 384.1 10.8 3
IV 0 8883 6217.6 1441.2 619.5 17,282 12,816 1593.4 2872.8 604.8 35.2 3
IV 0.1 9134 6217.6 1461.7 619.3 17,304 12,816 1616.0 2872 604.6 33.4 3
IV 0.3 9680 6217.6 1564.7 604.1 17,347 12,816 1729.9 2801.6 589.8 24.8 3
IV 0.5 10,172 6217.6 1610.3 592.8 17,345 12,816 1780.3 2749.1 578.8 12.2 3
IV 0.7 10,574 6217.6 1739.9 535.9 17,225 12,816 1923.6 2485.2 523.2 10.6 3

Note: n = 15, |T| = 6, |K| = 4; TC: total cost; PC: total production cost; IC: inventory cost; FC: fuel cost;
DC: driver cost; EL: emission levels; PE: production emissions; IE: inventory emissions; RE: routing emissions;
NVI: number of visits; NVE: number of vehicles used.

5. Conclusions

We have introduced, modeled, and analyzed the PRPSPD, a generalization of the VRPSPD and
IRPSPD. The contributions of this paper are: (1) to describe a modeling approach enriching the
production-routing problems with simultaneous pickups and deliveries; (2) to offer a mixed-integer
linear programming formulation for the PRPSPD under carbon cap-and-trade; (3) to provide a
branch-and-cut guided search algorithm; and (4) to discuss reductions in carbon emissions under
different carbon price, from which managerial insight can be drawn.

There are certain limitations associated with our work. For example, we assume an arc-specific
traveling time τij by associating with each arc a traveling speed of lij/τij. However, in the computational
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experiments, the traveling speed on arc is assumed to be a discrete constant. Thus, estimation of
routing-related carbon-emission costs might be not so accurate, although this assumption is usually
adopted by researchers in related disciplines. Better treatment is expected to enhance the overall
performance of supply chains.

Several extensions are possible for the PRPSPD. One worth mentioning here is the possibility of
incorporating remanufacturing in the production part of the problem. Another extension would be
to consider the simultaneous pickups and deliveries in multi-level production and routing problems
with time windows. Finally, a branch-price-and-cut algorithm could be developed when dealing with
a limited number of customers per vehicle.
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