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Abstract: Failure prediction of wind turbine gearboxes (WTGs) is especially important since the
maintenance of these components is not only costly but also causes the longest downtime. One of
the most common causes of the premature fault of WTGs is attributed to the fatigue fracture of gear
teeth due to fluctuating and cyclic torque, resulting from stochastic wind loading, transmitted to the
gearbox. Moreover, the fluctuation of the torque, as well as the inherent uncertainties of the material
properties, results in uncertain life prediction for WTGs. It is therefore essential to quantify these
uncertainties in the life estimation of gears. In this paper, a framework, constituted by a dynamic
model of a one-stage gearbox, a finite element method, and a degradation model for the estimation
of fatigue crack propagation in gear, is presented. Torque time history data of a wind turbine rotor
was scaled and used to simulate the stochastic characteristic of the loading and uncertainties in
the material constants of the degradation model were also quantified. It was demonstrated that
uncertainty quantification of load and material constants provides a reasonable estimation of the
distribution of the crack length in the gear tooth at any time step.

Keywords: fatigue; gear; crack propagation; finite element modeling; uncertainty quantification;
dynamic analysis; wind turbine gearbox

1. Introduction

Wind energy has been considered one of the most promising renewable energy sources due to its
low environmental impact and high potential for cost reduction [1,2]. Optimistic estimations point out
that by 2020 wind energy will be responsible for up to 12% of the global energy matrix, rising to 22%
by 2030 [3]. In order to allow for this substantial growth, a reduction in operation and maintenance
costs of wind turbines is needed to increase the reliability of turbines during their designed lifetime.
For this reason, the adoption of advanced prognostics and health management strategies is crucial to
ensure the turbine reliability and the profitable operation of wind farms [4]. Among all components,
wind turbine gearboxes (WTGs) represent a critical problem in terms of durability and reliability [5].
Since the scale of wind turbines dimensions has increased considerably in the past years, gearboxes
have been reported as one of the components that is most prone to premature failure [6,7]. Moreover,
the combination of long downtimes and the high cost of the maintenance procedures contributes
to the high cost of wind energy [8,9] compared to other non-renewable energy sources. Therefore,
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in order to bring the cost of wind energy down to competitive levels, substantial improvements in
the durability and reliability of gearboxes need to be achieved [5]. One of the most common causes of
the premature fault of WTGs is attributed to the fracture of gear teeth due to fatigue [10]. Due to the
cyclic and irregular loadings experienced by gears resulting from the power transmission, as well as
improper gear design and assembly misalignments, cracks can nucleate and propagate through the
gear teeth [11,12]. This leads to progressive damage of the teeth and ultimately to the complete
failure of the gear [13,14]. However, crack nucleation and propagation in gear teeth of WTGs running
under real-life conditions are complex phenomena, which involve the interaction of several stochastic
parameters. Despite the advances brought by recent crack propagation models on gear teeth [15,16],
further enhancements are needed to accurately assess fatigue life of gears in WTGs considering the
variability of system parameters. The loads transmitted through the tooth contact forces in WTGs are
functions of the rotor speed, which in turn depends on the incoming wind speed. However, these
loads are subjected to significant stochastic fluctuations due to turbulence effects on the wind flow,
which directly impacts on the reliability of WTGs [6,7,17]. Therefore, the suitable modeling of the wind
speed uncertainties and their accurate propagation through the rotor shaft to the tooth contact forces
should bring considerable advances in the reliability analysis of WTGs [18]. Indeed, the majority of
design practices on WTGs have been considering deterministic approaches on the reliability analysis
of such systems. However, it is imperative to take into consideration the uncertainties involved in
the design, manufacturing, assembly, and operation parameters to determine the reliability or the
probability of failure of gearbox systems. Reliability analysis of typical wind turbine gear systems
was proposed by Alemayehu and Ekwaro-Osire [6,7,9] in a probabilistic multibody dynamic model
taking into account the uncertainties of design and loading parameters. These authors pointed out
that probabilistic analysis can bring improvements in the reliability of gearboxes in wind turbines and
help designers to identify the most critical parameters.

Based on the background outlined above the motivations for the present paper are:

1. It has been reported that WTGs represent a critical problem in terms of reliability due to the
high incidence of premature failure [5–7], which contributes considerably to the increase of
wind energy cost [8,9]. For this reason, enhanced reliability analysis on WTGs can contribute to
reducing the costs of wind energy;

2. Gear teeth fracture resulting from fatigue crack propagation is amongst the main causes of
WTG failure due to the irregular and cyclic nature of loads on the gears [10–12]. Fatigue crack
nucleation and propagation in gear teeth is a complex phenomenon and needs to be considered
in reliability analysis to accurately determine the life of WTGs;

3. Due to the turbulence effects in the wind flow, the loads experienced by WTGs are subjected to
significant random fluctuations, which have been shown to considerably impact the reliability
of the gearboxes [6,7,17]. Furthermore, most of the design practices for WTGs do not consider
the uncertainties of design and loading parameters in reliability analysis [6,7,9]. For this reason,
probabilistic analysis can improve the reliability of WTGs and help designers to identify the most
critical parameters.

This present paper aims to contribute to the improvement of the reliability analysis of wind
turbine gearboxes by quantifying uncertainties of design and loading parameters. In order to do it,
the objectives are:

1. To perform the dynamic modeling of a gear tooth subjected to fatigue loading;
2. To build a finite element (FE) model for the crack propagation in the gear tooth to determine the

stress intensity factor (SIF) at the crack tip;
3. To quantify the uncertainties of the loads on the gear tooth and material properties; and
4. To evaluate the fatigue crack propagation of gears considering uncertainties in loading and

material properties.
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The remaining sections of the paper are organized as follows: Section 2 presents the dynamic
modeling of the gear, FE model for the crack propagation in the gear tooth, uncertainty quantification
of the loadings, and the probabilistic prediction of the fatigue crack propagation of the gear; Section 3
presents results and their discussion; and Section 4 outlines the main conclusions of the paper.

2. Methodology

The prediction of the fatigue crack propagation of a one-stage gearbox with an existing crack in
the root of one of the teeth was investigated by combining dynamic modeling, SIF calculation, and the
gear degradation estimation.

2.1. Dynamic Modeling

The dynamic modeling of the six degrees-of-freedom (DOF) one-stage gearbox was performed
in MATLAB. The free-body diagram of the one-stage gearbox modeled is shown in Figure A1 in
Appendix A, in which the description of each model parameter is presented in the Nomenclature
section. The parameters of the gear used were similar to those used in [15]. The model provided
a dynamic response for perfect gears and for gears with different crack lengths on their teeth.
The mesh stiffness calculation was performed by using the potential energy method described in [15,19].
The input and output torques used in the dynamic analysis were obtained from WTG torque time
history data [6] and were scaled down. However, the fatigue loading on the gear teeth is different
from the fatigue torque loading on the input shaft. Since the purpose of this paper is to analyze fatigue
crack propagation of the gear teeth, the fatigue loads on the gear teeth are estimated. These fatigue
loads on the gear teeth range from zero to a maximum torque. Hence, the maximum torque values are
used in the dynamic modeling to calculate the forces on the gear teeth. The equations of motion for
a six-DOF one-stage gearbox system are given by [15]:

m1
..
y1 = Fk + Fc − k1y1 − c1

.
y1, (1)

m2
..
y2 = Fk + Fc − k2y2 − c2

.
y2, (2)

I1
..
θ1 = kp(θm − θ1) + cp(

.
θm −

.
θ1)− Rb1(Fk + Fc), (3)

I2
..
θ2 = Rb2(Fk + Fc)− kg(θ2 − θb)− cg(

.
θ2 −

.
θb), (4)

Im
..
θm = M1 − kp(θm − θ1)− cp(

.
θm −

.
θ1), (5)

Ib
..
θb = −M2 + kg(θ2 − θb) + cg(

.
θ2 −

.
θb), (6)

Fk = kt(Rb1θ1 − Rb2θ2 − y1 + y2), (7)

Fc = ct(Rb1
.
θ1 − Rb2

.
θ2 −

.
y1 +

.
y2). (8)

All variables in Equations (1)–(8) are defined in the Nomenclature section. The rotational frequency
of the input shaft is assumed to be 30 Hz.

2.2. Calculation of Stress Intensity Factor

The model of the cracked gear was constructed in SOLIDWORKS and imported into ANSYS.
The mesh generation and implementation of boundary conditions were performed in ANSYS and
the model was solved for nodal displacements. The type of element used to mesh the model was
PLANE183. PLANE183 is a 2-D element with eight or six nodes and has two DOF (x and y translations)
at each of its nodes. PLANE183 can be used to represent deformations of several material types such as
fully incompressible hyperelastic and nearly incompressible elastoplastic materials. It also can represent
irregular meshes with plane stress, plane strain, or axisymmetric models with large deflections [20].

Initially, a default free mesh was used over the entire model. The mesh near the crack edges was
then further refined to account for the high stress concentrations, which will occur around the crack tip.
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The stress and strain singularity at the crack tip is represented by singular elements surrounding the
crack tip. The singular elements are quarter-point isoparametric elements, with their mid-side nodes
moved a quarter unit closer to the tip of the element [21] (Figure 1b). This improves the accuracy of
results near the crack tip. Since the focus of this paper is to estimate crack propagation, more emphasis
was given to meshing around the crack tip to obtain accurate nodal displacements near the crack
tip. It was assumed that the non-homogeneous mesh does not reduce the accuracy of the nodal
displacements around the crack tip.

The calculation of SIF was performed using the displacement correlation method. Once nodal
displacements of the singular elements were obtained from ANSYS, displacement correlation method
was implemented to obtain the SIF. The ANSYS FE model of the cracked gear tooth is shown in Figure 1.
Nodal displacements of nodes A, B, C, and D shown in Figure 1b are used to calculate mode-I SIF, KI,
using displacement correlation formula which is given by [16]:

KI =
E

2(1 + ν)(κ + 1)

√
2π

L
(4vA − 4vC + vD − vB), (9)

where κ = 3− 4ν, since a plane strain condition was considered in this analysis.
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Figure 1. Finite element model for: (a) cracked gear tooth; and (b) singular element at the crack tip
(adapted from [16]).

2.3. Loading Uncertainty Quantification

The torque time history signal applied in the gear pair studied in this research was scaled from
a rotor torque of AWT-27 (275 kW rated power, 27.4 m rotor diameter, and 42 m hub height) wind
turbine. A full field wind model for a 42 m hub height, simulated by NREL’s TurbSim [22], was used
as an input to NREL’s FAST [23] software to generate stochastic low speed (rotor) and high-speed
shaft torque of the AWT-27 wind turbine. The stochastic torque time history data is scaled down to the
level of the nominal loading of the gear pair model used by Zhao et al. [16] and stochastic loading was
obtained by generating samples from generalized extreme value (GEV) probability density function
(PDF) using MATLAB [6]. In addition, the parameters of the PDF of the scaled 40-s time history
data were used to sample a fluctuating loading condition. The loading and Paris’ material parameter
uncertainties were quantified as GEV and normal PDF, respectively (see Table 1).

Table 1. Load and material random variables.

Parameter PDF Unit Mean, µ (Location) Std. Dev, σ (Scale) Shape COV

m 1 Normal - 1.4354 0.0287 - 0.02

C 1 Normal
m/cycle

(MPa
√

m)
m 1 9.12 × 10−11 4.56 × 10−12 - 0.05

T GEV Nm (320) (35) −0.36 -
1 Paris material constant [16]. PDF: probability density function; GEV: generalized extreme value; COV: coefficient
of variation.
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2.4. Probabilistic Prediction of the Gear Crack Size

A discretized Paris’ law was used to estimate the rate of crack propagation. Due to the inherent
uncertainty of material constants in Paris’ equation, randomness was incorporated to the parameters
m and C in Paris’ equation,

ak = ak−1 + C(∆KI)
m
k−1(∆N)k−1 (10)

where ak and ak−1 are the estimated and prior crack lengths, respectively, ∆N is the added number of
cycles to the component, (∆KI)k−1 is the (k − 1)th SIF range for mode-I crack propagation, and with C
and m being empirical material constants. The uncertainty in the random variables C and m will also
be propagated to the state variable a. Hence, a also becomes a random variable. The randomness due
to the input torque was accounted for by considering random input torque time history data which
was generated from the input PDF. Figure 2 shows the characteristics of fatigue loading in the case of
random loading. Note that rainflow counting (RFC) helps to categorize loading conditions with their
respective cycles. Results of the RFC method should then be post-processed to obtain force applied to
the gear tooth. Note that the force applied to the gear tooth ranges from zero to a maximum force value.
This force is calculated using maximum torque resulting from the RFC analysis. This study involves
RFC, dynamic analysis, FE analysis, and damage modeling to estimate the fatigue crack propagation.
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Figure 3 shows the framework for the estimation of the gear fatigue crack propagation. The inputs
for the framework are the distributions of the initial crack length and the applied fluctuating torque,
T(t). The fluctuating torque was obtained by generating samples from GEV PDF, as explained in
Section 2.3. The RFC was employed on the fluctuating torque to perform proper cycle counting.
The output of the RFC is a torque matrix consisting of the midrange, amplitude, and the corresponding
cycles, ∆N, of the torques. Using the midrange and the amplitude components, the maximum torque
values were then calculated and presented as a plot relating maximum torque, T, with the cycles,
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∆N. This plot was used in the subsequent analyses: the torque was used as an input to the dynamic
analysis, whereas the cycles were used in the Paris’ crack growth model. Simulation of crack growth
follows a series of recursive analyses, namely gearbox dynamic analysis, updating ANSYS Parametric
Design Language (APDL) code, re-meshing and analyzing the FE model, and estimating crack growth.
With each recursion, k − 1, the framework randomly picks a torque sample, Tk−1, from the torque
plot. The torque sample was then used in the one-stage gearbox dynamic model to find the contact
force between the meshed gear teeth, resulting in a force time-series, Fk−1(t). The maximum force at
timestep k − 1 (i.e., Fmax,k−1) was then selected from Fk−1(t). The APDL code was used to re-mesh and
simulate FE analysis of the gearbox. Hence, it contains variables such as the crack length, ak−1, which
was updated with every crack growth estimation, and the force, Fmax,k−1, which is passed from the
dynamic analysis. For the FE analysis, only the mean of the (k− 1)th crack length PDF (i.e., mean(ak−1))
was used to update the geometry of the model. This was done to avoid the significant computational
cost due to Monte Carlo sampling of the dynamic simulation and the FE analysis.
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Results of the FE analysis are nodal displacements which were used to compute ∆KI,k+1 using
the displacement correlation method described in Section 2.2. Paris’s equation, Equation (10),
was employed to determine the crack growth (i.e., ak). Here, Fmax,k−1, ∆KI,k+1, ∆Nk−1 (the load
cycles at the (k − 1)th timestep), ak−1 (crack length distribution at (k − 1)th timestep), and the material
parameter distributions C and m were used. Note that Fmax,k−1, ∆KI,k+1, and ∆Nk−1 are deterministic
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parameters, whereas ak−1, C, and m are random variables. Hence, the resulting ak is also a random
variable. At the end of every recursion, the maximum value of ak will be compared with the critical
crack length; failure criterion is given by max(ak) > ac. The above recursive analysis continues until the
failure criterion is true, providing PDFs of the crack length at every recursion.

3. Results and Discussion

3.1. Rainflow Counting

Results of the RFC, dynamic analysis, calculation of SIF, and calculation of fatigue crack
propagation are presented. The results of each section were verified first individually and then
as a group. Results of the RFC were verified using the RFC Algorithm described in [24]. Mesh stiffness
and dynamic force results were compared with Tian et al. [15] and were found to be in good agreement.
On the other hand, results of the SIF and the fatigue crack propagation were in good agreement with
those presented in Zhao et al. [16]. Once the results were verified using the aforementioned literature,
the new input torque data were used to simulate load variability.

A MATLAB code for RFC was developed based on the ASTM standard for cycle counting in
fatigue analysis [25]. RFC was employed to determine the characteristics of the input torque condition
and the associated loading cycles. Results of the RFC analysis include torque time history signal of the
input shaft and eventually torque transmitted to the gear tooth. The input torque time history data
were randomly sampled from a GEV. The first 20 s of the data are shown in Figure 4.
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Figure 4. Torque time history signal of the input shaft.

Figure 5a,b shows the results of RFC analysis for the mid-range and for the amplitude of the input
shaft torque, respectively. The midrange bar chart was obtained by using 34 bins between 800 Nm and
1800 Nm. It can be observed that the mid-range values of the torque have the highest number of cycles
at approximately 1200 Nm. On the other hand, the torque amplitude was plotted using 40 bins which
are between 10 Nm and 1200 Nm. Figure 5b shows that the maximum number of amplitudes were
observed at small amplitudes. These torque bar graphs are used to determine the torque bar graph on
the gear tooth under consideration.

Figure 6, which is a direct output of the RFC analysis, shows a 3D representation of mid-range,
amplitude, and number of cycles. The 3D plot depicts the relationship between mid-range and
amplitudes. Corresponding midrange and amplitude torques, shown in Figure 6, were used to obtain
the maximum torque values used in the dynamic analysis.
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Note that the torque bar graphs shown in Figures 5 and 6 are those of the input shaft. Since the
approach in this paper is focused on the loading over the cracked pinion tooth, the torque acting on
the pinion tooth needs to be obtained. Unlike the loading on the input shaft, as shown in Figure 4,
the fatigue loading of the gear tooth will be a loading and unloading scenario that varies between zero
and the maximum torque.

In order to perform dynamic analysis of the gearbox, the maximum input torque values were
determined by adding the mid-range values and their corresponding amplitudes (see Figure 6).
The resulting maximum torque was plotted against the number of cycles, as shown in Figure 7. It can
be seen that the mean value of the maximum torque lies at approximately 1500 Nm, which is greater
than the mean of the mid-range torque bar graphs shown in Figure 5a. The data was then fitted with
a cubic spline, which was used to sample maximum torque data that are used in the one-stage gearbox
dynamic model.

The maximum torque values used in the dynamic modeling were obtained by randomly
generating samples of torque using a MATLAB random generator. The corresponding number of
cycles were then obtained from a cubic curve fitted to the plot presented in Figure 7. The frequency
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of torque loading was obtained by taking the ratio of the number of cycles and the total time span
of 10,000 s (≈2.8 h). The total number of cycles taken for RFC analysis was 33,312, with a frequency
fT ≈ 3.33 Hz. On the other hand, the rotational frequency of the shaft (and consequently the pinion)
is fp = 30 Hz. Therefore, for each ∆N∗k cycles of input torque, each pinion tooth will experience an
alternating loading ranging from 0 to Fmax, which is

(
fp/ fT

)
∆Nk (see Figure 2). Input torque values

were randomly selected from the fitted curve in Figure 7. Note that all loading cycles were not applied
since the crack length in the gear tooth reached its critical length before all loading cycles could be
applied. RFC plays a key role in fatigue loading of a gearbox since it helps to estimate the number of
loading cycles accurately by considering some cycles that might otherwise have to be hidden.
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3.2. Dynamic Analysis

The dynamic modeling of a six-DOF one-stage gearbox system was modeled in MATLAB.
The torque values on the gear tooth obtained from the RFC analysis (see Table 1) were used as
input parameters of the dynamic model, whereas the output torque values were taken as twice as that
of the input torques. The remaining parameters for the dynamic model were obtained from [15,16].
The dynamic response of the undamaged gear was compared with the gear with a cracked tooth and
the results are presented in Figures 8 and 9.
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Figure 8. Comparison between the mesh stiffness for (a) undamaged pinion and (b) pinion with
a 2.5 mm crack in the 10th tooth.
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Figure 8 shows the mesh stiffness obtained for one full revolution for the undamaged pinion and
for a damaged pinion. A 2.5 mm crack was placed on the 10th tooth of the pinion with N = 19 teeth.
It can be observed that there is a local reduction of the mesh stiffness for the cracked gear (Figure 8b).
Consequently, this leads to an increase of the dynamic loading on the gear tooth, as shown in Figure 9b.
Therefore, it is essential to compute the dynamic force after each crack increment in the prediction of
the fatigue life of dynamic systems.

3.3. Calculation of the Stress Intensity Factor

The dynamic forces obtained from the dynamic analysis were used in the FE model of the gear
tooth to calculate mode-I SIF, KI. Only KI was considered since it was dominant over mode-II. The SIF
is affected by crack growth as well as the magnitude of the maximum torque. Although the crack
increases steadily, a sudden change in the torque may increase or decrease the SIF. Figure 10 shows
the relationship between crack length and torque as well as the crack length and SIF. First, a torque of
1392 Nm was applied for about 3 × 104 cycles; then the torque was increased to 1678 Nm. It can be
seen that an increase in torque results in a sudden increase in the KI.

Sustainability 2017, 9, x FOR PEER REVIEW  10 of 15 

Figure 8. Comparison between the mesh stiffness for (a) undamaged pinion and (b) pinion with a 2.5 mm 

crack in the 10th tooth. 

 
(a) 

 
(b) 

Figure 9. Comparison between the dynamic force for (a) undamaged pinion and (b) pinion with a 2.5 

mm crack in the 10th tooth. 

Figure 8 shows the mesh stiffness obtained for one full revolution for the undamaged pinion 

and for a damaged pinion. A 2.5 mm crack was placed on the 10th tooth of the pinion with N = 19 

teeth. It can be observed that there is a local reduction of the mesh stiffness for the cracked gear 

(Figure 8b). Consequently, this leads to an increase of the dynamic loading on the gear tooth, as 

shown in Figure 9b. Therefore, it is essential to compute the dynamic force after each crack increment 

in the prediction of the fatigue life of dynamic systems. 

3.3. Calculation of the Stress Intensity Factor 

The dynamic forces obtained from the dynamic analysis were used in the FE model of the gear 

tooth to calculate mode-I SIF, KI. Only KI was considered since it was dominant over mode-II. The SIF 

is affected by crack growth as well as the magnitude of the maximum torque. Although the crack 

increases steadily, a sudden change in the torque may increase or decrease the SIF. Figure 10 shows 

the relationship between crack length and torque as well as the crack length and SIF. First, a torque 

of 1392 Nm was applied for about 3 × 104 cycles; then the torque was increased to 1678 Nm. It can be 

seen that an increase in torque results in a sudden increase in the KI. 

 

Figure 10. The relationship between crack propagation, torque, and stress intensity factor for the gear 

pair. 
Figure 10. The relationship between crack propagation, torque, and stress intensity factor for the
gear pair.

Finally, the randomly selected maximum torque and cycles data obtained from the maximum
torque fit shown in Figure 7 were employed to simulate the practical scenarios. Results of this analysis
are presented in Section 3.4.
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3.4. Probabilistic Estimation of the Gear Fatigue Crack Propagation

The computational framework developed for the analysis was used to calculate the crack growth
autonomously for 65 iterations using the torque samples. Note that the crack length, a, becomes
a random variable with its own PDF because the uncertainties in Paris’ material constants will
be propagated. The randomly generated maximum torque values and their corresponding cycles
were applied until failure. The total number of cycles was then obtained by taking the sum of the
loading cycles ∆Nk. The number of cycles of the gear as a function of the crack length is plotted
in Figure 11 with 98% confidence interval. As the crack grows, the variability also increases due to
uncertainty propagation.
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∆KI = 3401 MPa√m , ∆N = 1000 cycles). N: Normal distribution; LN: Lognormal distribution.
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The figure depicts the probability of occurrence of a crack size, ak, after N = 1000 cycles.
For example, the probability of the resulting crack length ak being 0.12 mm or less after N = 1000 cycles
is about 80%. The reader should also note that the CDF plot could shift to the right or left depending
on the mean values of the input random variables listed in Table 1. For example, if the mean value of
the torque load, T increases, the CDF will shift to the right. This means that the probability of getting
a crack size of 0.12 mm or less will reduce or the chance of getting a crack size greater than 0.12 mm
will increase.

4. Conclusions

This paper presented a method to estimate the fatigue crack propagation in a gear tooth
considering loading and material parameter uncertainties. The model considered was a six-DOF
one-stage gearbox with a cracked pinion tooth. An uncertainty quantification of stochastic torque
loading and Paris’ material constants were employed. In order to simulate the loading characteristics
of a wind turbine gearbox, a scaled rotor torque of AWT-27 (275 kW rated power, 27.4 m rotor diameter,
and 42 m hub height) was employed. Calculation of the fatigue crack propagation involved uncertainty
quantification, rainflow counting (RFC), dynamic analysis, and FE analysis. Co-simulation using
ANSYS and MATLAB was performed for the analysis. The RFC analysis demonstrated that cycle
counting plays a key role in estimating the fatigue crack propagation of a gearbox under stochastic
loading. The dynamic analysis shows that increased dynamic loading corresponds to an increase in
crack length. It was demonstrated that uncertainties in load cycle counting and Paris’ material constants
play a key role in fatigue crack propagation estimations. The results of the dynamic analysis pointed
out an increase in the crack length caused a reduction in the mesh stiffness and, as a result, an increase
in the dynamic force on the gear tooth. The increase in the crack length also caused an increase in
the stress intensity factor calculated by the FE model. Finally, the fatigue crack propagation with
98% confidence interval and a CDF plot of a crack size after certain number of cycles were presented.
If this information is used in prognostics, it is useful in scheduling maintenance and replacement.
The authors are pursuing this research agenda as future investigation.
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Nomenclature

All variables used in this paper are defined below:
ac critical crack length
ak calculated crack length, at a time step of k (random variable)
ak−1 crack length at time step k − 1
C Paris’ material constant or factor (random variable)
c1 vertical radial viscous damping coefficient of input bearings
c2 vertical radial viscous damping coefficient of output bearings
cg damping coefficient of output flexible coupling
cp damping coefficient of input flexible coupling
ct mesh damping coefficient
E Young’s modulus
fp rotational frequency of the shaft (and consequently the pinion)
fT frequency of torque loading
Fc damping inter-tooth force
Fk stiffness inter-tooth force
I1/I2 mass moment of inertia of pinion/gear
Ib mass moment of inertia of the load
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Im mass moment of inertia of the motor
k1 vertical radial stiffness of input bearings
k2 vertical radial stiffness of output bearings
kg torsional stiffness of output flexible coupling
kp torsional stiffness of input flexible coupling
kt total mesh stiffness
LN(µ, σ) Lognormal probability density function with mean µ and standard deviation σ

m Paris’ material constant or exponent (random variable)
M1 input motor torque
M2 output torque from the load
m1/m2 mass of pinion/gear
N(µ, σ) Normal probability density function with mean µ and standard deviation σ

NT total life cycle until failure
Rb1/Rb2 outside circle radius of pinion/gear
T applied fluctuating torque
y1/y2 linear displacement of pinion/gear in the y-direction
∆N number of cycles added to the component
υ Poisson’s ratio
σ standard deviation
θb angular displacement of the load
θm angular displacement of the motor
θ1/θ2 angular displacement of pinion/gear

Appendix A
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