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Abstract: The effects of biophysical and meteorological factors on land surface temperature (LST)
have been well studied in previous research. However, less attention has been paid to examine
how building materials influence the magnitude of LST within an urban environment. This study
investigates the interaction of biophysical and building wall materials to influence LST in Harris
County, Texas, USA using multiple stepwise linear regression analyses and neighborhood analysis.
Working at 1 km grid resolution, LST data is related to impervious surface fraction, albedo, distance
to water bodies, and seven major wall types. Ten years of aggregated MODIS (Moderate Resolution
Imaging Spectroradiometer) daily LST products were used to calculate the mean LST in January and
August for daytime and nighttime conditions. Harris County 2010 parcel level building property data
were used to create composition characteristics of the building wall types. Our results demonstrate
that both biophysical and building wall characteristics significantly influence the spatiotemporal
variations of LST. However, biophysical factors are the dominant explaining factors compared to
building wall materials. Impervious surface fraction is the most significant variable to explain the
variation of LST, and has positive effects on LST. In contrast, high albedo materials and the presence of
open water bodies significantly affect LST and are good candidate variables to mitigate the heat island
effect. Furthermore, the building wall variables all increase LST for both daytime and nighttime,
but different wall materials have various effects on LST. Brick/veneer and frame/concrete block
are the two dominant wall types in Harris County and tend to generate higher LST. These results
demonstrate how building materials, in combination with biophysical factors, can be used to mitigate
neighborhood-scale LST. This methodology works reasonably well for Houston, but is likely to be
more effective in higher density urban settings.

Keywords: urban heat island; land surface temperature; impervious surface fraction; albedo;
building wall characteristics

1. Introduction

Urbanization represents the most dramatic human alteration of the land surface, typically resulting
in the formation of urban heat islands (UHI) [1]. UHI refers to the higher atmospheric and surface
temperature in urban areas compared to surrounding areas with more vegetation. The primary cause
is the loss of latent heat and a resulting increase in sensible heat exchange in sparsely vegetated
urban settings with a greater number of impervious surfaces and the nature of the urban fabric
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in part determined by road, wall, and roof materials [2]. As a consequence, water consumption
and energy use typically increase in warmer urban areas because of increased temperature and
moisture stress. Generally, there are two categories of UHI: atmospheric UHI and surface UHI
(SUHI) [3]. They are based on how temperature is measured, e.g., air temperature versus land surface
temperature (LST). Traditionally, researchers studied the UHI phenomena using air temperature
data measured by thermometers at weather stations or on automobiles [4–6]. Rao [7] first raised the
possibility of identifying the thermal signature of urban regions through satellite images, which can
easily provide both the magnitude and spatial distribution of LST [8,9]. With the advancement of
remote sensing technology, a wide range of moderate and high spatial resolution thermal infrared
images have been employed to study UHI and LST, such as Landsat ETM+ (Enhanced Thematic
Mapper+) with 30 m resolution, ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) with 90 m resolution, and MODIS (Moderate Resolution Imaging Spectroradiometer)
with 1 km resolution [10–20].

The general spatial distribution and variation of LST over urban areas have been well documented
in literature, and significant factors explaining the spatial variations have been identified. For example,
Xiao et al. [14] found that LST values increased from the outskirts towards the inner urban areas
in Beijing, China, with temperatures ranging from 16.4 ◦C to 40.5 ◦C on 31 August 2001. Remotely
sensed LST records the radiative energy emitted from the surface, including building roofs and walls,
parking lots, water bodies, vegetation, and bare ground [3]. As a result, there is a close relationship
between physical characteristics of various urban surfaces and the LST in urban environments; typically
resulting in a mosaic of temperature patches across the urban space [21]. Previous research has shown
that there is a significant statistical relationship between LST and biophysical factors [11,13,14,22].
For example, Weng et al. [22] demonstrated that the unmixed vegetation fraction in a grid cell,
representing an indicator of vegetation abundance, has a strong negative correlation with LST.
Yuan et al. [11] found there is a strong linear relationship between LST and the percentage of impervious
surface areas. Morabito et al. [23] used 5-m resolution imagery and converted the imperviousness
degree into a binary product using a threshold (0–29% is non-built-up surface and 30–100% is built-up
surface) for four cities in Italy. They used MODIS products (2001–2013) to extract the LST. Then they
analyzed the relationships between LST values and built-up surfaces through a linear regression
analysis, and the results demonstrated that the built-up surfaces explained around 60% of LST
variation and concluded that impervious surface fraction is the major driver of surface urban heat.
Other non-biophysical factors are also considered in some research, such as land use/land cover
(LULC) configuration and pattern [20,24–27], LULC change [28,29], socioeconomic factors [14,30],
and topographic factors [8]. Among all these factors studies, biophysical factors are most important to
explain LST variation [13]. While many studies have looked at the impact of urban morphology on
UHIs, observations of urban fabric properties on UHIs has not been well documented. The aim of this
study is to determine to what extent building materials affect the UHI.

Earlier satellite based studies of UHIs focused on the phenomena during daytime in summer
because more images are available with high and moderate resolution during the daytime than
nighttime [15,31]. However, UHIs develop mainly at night throughout the year and heavily depend
on weather conditions [3]. Moreover, the nocturnal SUHI has different characteristics and causes
compared to daytime SUHI development. Kardinal Jusuf et al. [32] observed that surface temperatures
associated with different land use types were dissimilar during daytime and nighttime based on the
qualitative and quantitative analysis. Buyantuyev et al. [33] found that while vegetation was the
most significant determinant of daytime LSTs, pavements explained spatiotemporal variation of LST
during nighttime the most. Seasonal changes also affect the energy balance of ecosystems on the
earth [33], and the intensity of UHI in arid and semi-arid environments has large seasonal variability
because of the vegetation phenology [34]. As a result, the comprehensive diurnal and seasonal LST
variations and the corresponding explanatory factors should be fully studied. Previous research
has concentrated primarily on biophysical and meteorological factors determining LST in the urban
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environments. Building envelopes are known to be a dominant factor in the energy consumption
of buildings [35], thus it is likely that wall and roof types with different thermal behaviors will also
impact outdoor thermal environments. While the effects of building morphology have been studied
with respect to ventilation and UHI development, there has been almost no research on how building
wall characteristics influence LST intensity within a big city. The aim of this study is to specifically
evaluate how the urban fabric impacts daytime and nighttime UHI characteristics in both summer
and winter.

This study focuses on the Harris County, Texas. Harris County has experienced a mean UHI
growth of 0.8 K from 1985–1987 to 1999–2001 [36]. This increase is attributed to a lack of appropriate
planning strategies and accelerated urban development. Previous studies of UHI and LST in Harris
County have concentrated on assessing its magnitude and causes [36,37], but these studies do not
consider building wall properties as a potential source of UHI variability in Houston. This study
investigates the seasonal and diurnal distribution and causes of variability of LST within Harris County
using RS, GIS and statistical analyses. The specific objectives of this study are: (1) to investigate
the urban–rural and intra-urban variability of LST seasonally and diurnally in Harris County;
(2) to examine the quantitative relationships between LST variations related to known biophysical
variables that affect UHI intensity including impervious surface fraction (ISF), albedo, distance to
water bodies (used as control variables) and, to investigate the effect of building materials on UHI;
and (3) to compare neighborhood scale thermal responses to different building wall types through
a neighborhood analysis. The results from this research will enhance our understanding of the seasonal
and diurnal variations of LST. In addition, this analysis aims to explain how building wall types can
explain local variations of LST. Finally, the results would provide useful information and important
insights to urban planners and natural resource managers attempting to effectively mitigate the UHI
effects through urban design and selection of a particular wall type in order to improve the thermal
environment in big cities, such as Houston.

2. Data and Methodology

2.1. Study Area

Harris County, the largest county in Texas and the third largest in the USA, is selected as
a case study for this research (Figure 1). Containing Houston, the largest city in Texas and the
fourth largest populous city in the U.S. (2010 U.S. Census), Harris County has a population of
over 4.1 million within a land area of 4478 km2. A humid, subtropical climate characterizes the
county, which experiences hot, humid summers and generally mild to cool winters, and an average
yearly precipitation of 1200 mm. Land cover features are typical of those in urban and suburban
environments, including urban and built-up areas, cropland/natural vegetation mosaics, woody
savannas, croplands, grasslands, mixed forests, sea and land water bodies [38]. The lack of striking
topography in Harris County is advantageous to study the variation of LST. Two nearby large water
bodies in Harris County are Galveston Bay to the east of the county, and the Gulf of Mexico is
approximately 80 km to the south-east [37]. These features influence the local climate and thermal
environment of Harris County [39,40].
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2.2. Datasets and Image Processing

Five primary data sources are employed in this research: (a) the 2010 building property data
were obtained from the parcel dataset to capture the composition characteristics of building wall
types; (b) MODIS version 5 land cover type products (MCD12Q1, 500 m, yearly) for 2010; (c) MODIS
version 5 daily LST/emissivity products from 5 March 2000 (MOD11A1), 8 July 2002 (MYD11A1)
to 31 December 2010 with 1 km spatial resolution; (d) ISF data is from the National Center for
Atmospheric Research (NCAR) Weather Research and Forecasting (WRF) dataset [41] at the same 1 km
grid resolution; (e) MODIS version 5 16-day composited albedo products (MCD43A3) with 500 m
spatial resolution for the year of 2010. MODIS albedo products provide white sky albedos (WSA) and
black sky albedos (BSA). In this research, we only use WSA over shortwave broadband (0.3–5.0 µm),
because BSA is linear with WSA and shows similar results to WSA [42].

MODIS is a 36-band instrument aboard the Terra and Aqua satellites, which covers the
earth surface four times each day: during the daytime at about 10:30 a.m. and 13:30 p.m.
local solar time and during the nighttime at about 22:30 p.m. and 1:30 a.m. local solar time.
The MOD11A1/MYD11A1 products are produced daily through the generalized split-window LST
algorithm [43]. After reprojection and resampling the data were projected into WGS84 spatial reference
system. We also masked the cloud-contaminated pixels (with extremely low LST values) in the
processing considering both the location and climate in Harris County, see [38] for more details.
To overcome missing data due to the presence of clouds, the LST was temporally aggregated [38].
To create an average daytime and nighttime LST dataset, the Aqua daytime (13:30 p.m. local time) and
Terra nighttime (22:30 p.m. local time) were averaged from 2000 to 2010 for each month. The monthly
mean of LST was used as the independent variable in later statistical analyses. The land cover data
and albedo data were projected to the same coordinate system as the LST data, and were resampled to
1 km spatial resolution using the majority and cubic convolution resampling methods, respectively.

2.3. Extraction of Building Wall Types

The building parcel data of Harris County in 2010 are in vector format, and building wall types
were aggregated from the parcel level to a 1 km × 1 km grid (Figure 2) consistent with LST and
biophysical factors. Parcel data consist of 1,047,768 records of residential buildings and 187,910 records
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of commercial buildings in Harris County. The building parcel dataset contains a number of variables
regarding conditions and materials of buildings and a number of variables are aggregated, and we used
the building wall types to characterize the housing makeup of each grid cell. There are 15 building
wall types in total for residential buildings and commercial buildings in this dataset, which are
aluminum/vinyl, asbestos, brick/masonry, brick/veneer, fireproofed steel, frame/concrete block,
masonry bearing, mobile home, open steel skeleton, reinforced concrete, residential, shake shingle,
stone, stucco, and wood frame. However, some wall types do not appear very often in Harris County
based on a simple descriptive statistical analysis, so we chose the seven most prevalent building
wall types as the explanatory variables in the following statistical analysis, which are brick/masonry,
brick/veneer, frame/concrete block, masonry bearing, open steel skeleton, stucco, and wood frame.
The 1 km × 1 km grid and building parcel dataset (Figure 2) were overlain. In the spatial overlay
process, some large buildings occupy two or more grids. In order to simplify the analyses, such building
types were assigned to the grid cell associated with the parcel’s centroid location. Then percentages
for seven major building wall types were calculated based on the following procedures in each grid.
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The building parcel dataset provides the number of buildings in each parcel and their
corresponding wall types. Assuming the buildings located in a grid (1 km × 1 km) are clustered
and they have similar height, width, and other morphological characteristics, then we estimated the
percentage of each building wall type within each grid as follows:

PStucco =
∑m

j=1 Cj

∑n
i=1 Ni

× 100% (1)

where PStucco is the percentage of stucco wall type in a grid, m is the number of parcels in a grid
containing the stucco wall type, Cj is the number of buildings with stucco wall type in the jth parcel,
n is the total number of parcels within a grid, and Ni is the total number of buildings in the ith parcel.
The percentage of the other six wall types is calculated in the same way.
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2.4. Computation of Distance to Water Bodies (Dist2Water)

Harris County is adjacent to Galveston Bay and other water bodies, which greatly affect local
climate and thermal environments. Thus, the proximity to a water body is expected to influence
LST values within a grid cell. The Dist2Water variable is based on the Euclidean distance between
a land grid cell and the nearest grid covered by water. The 2010 MODIS land cover type product
(MCD12Q1, Figure 3) is used to identify water and non-water grids. We choose the International
Geosphere Biosphere Program (IGBP) classification schemes to classify land cover types. This scheme
includes 17 classes with natural vegetation, urban and built-up, and non-vegetated land classes.
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2.5. Statistical Analyses

In order to examine the relationship among spatial variations of LST, biophysical factors and
building wall characteristics, the following explanatory variables were selected: ISF, white sky albedo,
Dist2Water, and percentage values of the seven major building wall types in each 1 km × 1 km grid
cell containing buildings. A multiple stepwise regression was performed to identify independent
variables with statistical significance (p < 0.001) for predicting variations in LST. It is implicit in
this analysis that the biophysical factors have been demonstrated to be important to determine the
UHI intensity [13,14,42], and thus we used these variables to control the effects of building density,
vegetation fraction, and the influence of nearby water bodies on the UHI. The wall type variables
were used to estimate the impact of building wall types on the local UHI variability. The variables
removed from the multiple stepwise regressions are not considered as significant explanatory factors.
Four regression models were built to predict variation in mean daytime and nighttime LST for January
(representative of winter) and for August (representative of summer) for the period 2000–2010. In these
four models, only white sky albedo changes significantly in the two months, other independent
variables were constant.
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2.6. Neighborhood Analysis

A second approach to determine the potential effects of wall types on LST using a 3 × 3
neighborhood analysis was performed to compare LST differences between neighboring grids with
different dominant wall types. The dominant wall type was extracted for each grid and grids were
only included in the analysis if the dominant wall type represents more than 40% of all building types.
In addition, the grids entered into the analyses were required to have ISF values above 0.5 to isolate
high density urban grid cells with relatively homogenous housing and biophysical characteristics.
Figure 4 is an example to illustrate how the 3 × 3 neighborhood analysis is implemented. In this
example, a centered grid with brick/veneer as its dominant wall type (>40%) and more than 0.5 ISF
is compared to its eight neighboring grids. The surrounding grids are checked to see if they have
a different dominant wall type as well as meeting the minimal ISF and dominant wall type criteria.
If the cells meet the criteria, the LST difference between the centered grid and the surrounding grid was
calculated. If the surrounding grids have the same dominant wall type as the centered grid or otherwise
did not meet the minimum criteria, they were discarded from the analysis. The LST difference between
each possible combination of two different wall types resulted in a total of 21 comparisons among
those seven building walls.
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Figure 4. 3 × 3 neighborhood as an analyzing unit to compare the difference of land surface temperature
(LST) between two grids with different dominant wall types shown in different colors based on the
1 km × 1 km grid level. The surrounding grids with brick/veneer as the dominant wall type would not
be included in the LST comparison, because they have the same dominant wall type as the centered grid.

3. Results

3.1. Seasonal and Diurnal Characteristics of LST Variations

In order to analyze seasonal and diurnal characteristics of LST variations, we calculated the mean
LST for daytime and nighttime in January and August from 2000 to 2010, respectively. To better
compare the magnitude, spatial pattern and variation in LST maps (Figure 5), the spatially averaged
LST was subtracted from the original LST values. Although the two seasons have different LST means
and ranges, our analysis focuses on the spatial pattern and variations of LST. Generally, both daytime
and nighttime LST values increased from the countryside towards the central business districts of
the City of Houston. Both daytime and nighttime LST spatial variations for January and August
were quite similar. The spatial distribution of LST is closely linked with the land cover distribution
(Figure 3, [44]).

For the daytime LST maps, a number of hot spots can be identified in urban areas. These maps
have high temperature zones clustered towards the central, northeast and southwest districts of
city of Houston, which is consistent with the distribution of urban and built-up areas with higher
impervious surface fractions (Figure 6) including industrial buildings, residential buildings, parking
lots, gardens, asphalt on roofs, and other types of impervious surfaces. Without water sources for
evapotranspiration, higher surface temperatures resulted in larger temperature gradients to drive
sensible heat fluxes. Low temperature zones are clustered in the regions covered by water bodies,
and in the northwest district covered by wooded wetlands with lower impervious surface fractions
and near water sources which increase latent heat fluxes (Figure 6). In addition, the land surface
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energy balance includes the anthropogenic fluxes, such as the emissions from use of automobiles,
air-conditioners, combustion engines, and other electrical equipment which can be turned into sensible
or latent heat fluxes, and surface heat storage [42]. Although most rural areas experience lower LST
compared to urban areas, there are still some hot spots where land cover includes dry land vegetation,
and croplands.
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Nighttime LST maps show that the highest temperatures are in areas covered by water bodies
and wetlands. Water bodies have higher thermal inertia to slow down heat transfer at night. Built-up
areas are clustered as high temperature areas. The low temperature areas are clustered towards the
south and southeast districts with low-density built-up areas. Most of the rural areas are cold spots
because of large amounts of vegetation and less anthropogenic heat.

Comparing daytime and nighttime LST shows that the diurnal temperature range is reduced in
the central urban and high-intensity building areas, while croplands/natural vegetation areas with
less human activity experience a greater diurnal temperature range which also has been documented
in other studies [13,45]. Water bodies and wetlands have the lowest daily temperature range because
water allows light to penetrate into deep layers without sensible heat transfer during the day resulting
in cooler surface temperatures, while at night water bodies lose heat less slowly compared to land
to form a hotter surface. Roth et al. [44] studied three coastal cities including Vancouver, Seattle,
and Los Angeles, and also reported a similar discovery.

3.2. LST Relationship with ISF, Albedo, and Dist2Water

Four stepwise regression models were built, one for each daytime and nighttime scene in January
and August (Table 1). Each model explained about the half of LST variations (R2 is approximately 0.5).
In all cases the parameter entering the model first, and explaining most of the variance is ISF, a control
variable for the purpose of this study. Dist2Water, also a control variable, an indicator for water
availability in the local environment, is the second variable in the August daytime and January
nighttime models, while albedo (also control) is the second entry variable in the August nighttime and
January daytime variables. The August nighttime and January daytime models also both share albedo
as the third entry variable. However, the third entry variable for the other two models (January daytime
and August nighttime) is brick/veneer wall followed by Dist2Water in both these models. Brick/veneer
wall is also the fourth entry variable in the August daytime and January nighttime models. After these
variables, different wall types are the remaining significant variables entering the equations, generally
going from heavier weight wall types to lighter weight walls in succession. In all models, ISF, albedo,
and Dist2Water are all significant at the 0.001 confidence level. Furthermore, these three independent
variables accounted for approximately 90% of the total variation of LST explained in each model.
Model coefficients for ISF are all positive indicating that higher ISF values increase LSTs regardless
of season or time of day [8,11,20,46]. During daytime, the heat fluxes primarily come from regions
with higher ISF that more easily absorb solar radiation. This is due to the fact that there is little
water available on these surfaces for latent heat loss, and because higher ISF generally means a lower
vegetation fraction within the grid cell. At nighttime, the heat mainly comes from the energy stored
during the daytime and anthropogenic activities, such as transportation and manufacturing, which are
highly correlated with ISF (Figure 6).
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Table 1. Summary of four forward–backward stepwise regression models. For each of the four models, the dependent variables (January daytime/nighttime
LST, and August daytime/nighttime LST) were explained by ten explanatory variables. The sequence of explanatory variables in each shaded row is the order
these parameters entered into the regression models. S-coefficients means standardized coefficients, which could be used to determine the relative significance of
independent variables. Two asterisks (**) denote the significance at the 0.05 level (two-tailed), and the others are significant at 0.001 level (two-tailed).

Model 1
(January Daytime) ISF Albedo Brick Veneer Dist2Water Brick Masonry Frame

Concrete Block Wood Frame Open Steel
Skeleton ** Stucco **

R2 0.271 0.355 0.373 0.383 0.392 0.406 0.410 0.411 0.412
S-coefficients 0.530 0.275 0.126 0.101 0.136 0.118 0.070 −0.037 0.026

Model 2
(January Nighttime) ISF Dist2Water Albedo Brick Veneer Stucco Frame

Concrete Block Wood Frame Open Steel
Skeleton Brick Masonry

R2 0.204 0.408 0.497 0.516 0.528 0.537 0.542 0.546 0.552
S-coefficients 0.442 −0.383 −0.291 0.178 0.131 0.107 0.090 0.092 0.093

Model 3
(August Daytime) ISF Dist2Water Albedo Brick Veneer Frame

Concrete Block
Open Steel

Skeleton Wood Frame

R2 0.255 0.351 0.405 0.428 0.438 0.447 0.453
S-coefficients 0.509 0.233 0.252 0.172 0.122 0.123 0.080

Model 4
(August Nighttime) ISF Albedo Brick Veneer Dist2Water Frame

Concrete Block Wood Frame Open Steel
Skeleton Stucco Brick Masonry Masonry Bearing

R2 0.340 0.377 0.405 0.428 0.447 0.454 0.460 0.466 0.469 0.472
S-coefficients 0.575 −0.142 0.232 −0.156 0.186 0.141 0.166 0.101 0.104 0.079
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Surface heat storage, both in natural bodies and buildings, has a very close relationship with
solar energy absorption (albedo) and thermal properties (heat capacity and thermal conductivity) of
surface materials [42,47]. This relationship is reflected in the coefficients for albedo and Dist2Water
that are negative at night and positive during the day. This suggests that increases in these values
increase temperatures during the day both as distance from a water body increases, and as grid cell
albedo values increase, and vice versa at night in both seasons. While this relationship is very intuitive
for water bodies that have high heat capacity reducing diurnal temperature ranges relative to the
surrounding landscapes, the relationship with albedo is counter-intuitive. High albedo should reduce
energy absorption during the day and lead to cooler values for buildings, and lower heat absorption
during the day due to albedo should reduce energy availability at night and be demonstrated at the
building level [48]. However, a comparison of the LULC (Figure 3) and albedo (Figure 6) shows
that areas with low albedo are most closely linked to water bodies, grasslands, wetlands, and also
developed regions with significant asphalt areas, and high albedo materials are mainly found in
rural areas with dry soil and developed regions such as concrete surfaces. This implies that the
albedo–LST relationship is complicated in part because both low and high albedo areas can have either
reduced or enhanced LST values. But the large extent of the low albedo vegetated areas relative to
the built up areas dominate the signal resulting in a similar relationship to the Dist2Water variable.
Giridharan et al. [48] also reported the heat island intensity had a positive relationship with surface
albedo in the daytime, but had a negative relationship at nighttime in the late summer, when using
Hong Kong as the study area.

3.3. The Relationship between LST and Building Wall Types

Seven major building wall variables are also selected as explanatory variables in the stepwise
regression models. In the August (summer) nighttime model (Table 1; Model 4), the seven building
wall variables all enter into the stepwise regression model, but building wall variables do not enter
into the other three models completely. Generally, brick/veneer, frame/concrete Block, open steel
skeleton, and wood frame are much more significant explanatory variables than the other building
wall variables across all models; not only with respect to their presence, but also with their order of
entry (Table 1). These four wall types are also the most popular wall types in Harris County (Figure 7)
making their relationships more significant compared to the remaining low occurrence wall types.
Brick/veneer is the most important building wall variable, which is always the first building wall
variable entering the four models, and is more important than Dist2Water in Model 1 (January daytime)
and Model 4 (August nighttime). In all four models the building wall variables significantly add
to the explanation of LST variations. Furthermore, except for the open steel skeleton and stucco
wall types in Model 1 (January day), all wall variables are significant at the 0.001 confidence level
in all cases. Overall building wall variables explained 4.7% out of 41.2% total explained variance
for Model 1 (January day), 5.5% out of 55.2% total explained variance for Model 2 (January night),
4.8% out of 45.3% explained variance in Model 3 (August day) and 7.2% out of 47.2% total explained
variance for Model 4 (August night). These results show that wall types have a stronger predictive
power in the nighttime models of the total variation of LST, and demonstrate that these variables
are much weaker at explaining the variation of LST compared to ISF, Dist2Water, and albedo in
general. The building wall variables all have a positive correlation with LST variation in the four
models, suggesting that LST increases with the percentage increase of the building wall variables
including both daytime and nighttime in different seasons. A higher percentage of building walls
means that there are more residential or commercial buildings producing anthropogenic heat from
air conditioning, refrigerators, and so on during the day and night. A large number of buildings also
implies less vegetation, and possibly higher levels of human activities. These factors all contribute
significantly to the increase of LST, no matter whether it is daytime or nighttime in different seasons.
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3.4. Neighborhood Analysis

The daytime and nighttime LST differences between proximate grid cells with different building
types is calculated using the neighborhood analysis, and we combined the January and August LST
fields to increase the number of comparisons among different wall types. After the initial neighborhood
analysis, the LST difference between two types of building walls is kept only when there are at least
50 pairs of comparisons in order to ensure enough samples for the following statistical analysis.
Although there should be 21 combinations among seven building walls, 12 different combinations
(Figure 8) of building walls met the requirements of percentage of dominant wall type, ISF, and sample
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size. First, to evaluate the statistically significant difference for LST among these wall types, a t-test
is performed, and the differences are statistically significant with a p < 0.05 except E combination
during daytime and J combination during nighttime. The boxplots in Figure 8 demonstrate that the
mean LST difference for different neighboring walls is not large, with a maximum value of 0.4 K
(F combination during daytime). The daytime LST difference is always greater than the nighttime
LST difference. C, E, H, K, L combinations have different signs between daytime and nighttime
averaged LST difference, but the other seven combinations have the same sign for daytime and
nighttime average LST differences. Among the 12 combinations, only brick/veneer is compared
with the other six wall types directly, because there are 1733 grids where brick/veneer is dominant.
The three other most popular wall types are frame/concrete block (830 grids), wood frame (325 grids),
and open steel skeleton (310 grids). There are about 50 grids with brick/masonry, masonry bearing,
or stucco as dominant wall respectively. As a consequence, we focused on LST differences for
brick/veneer, wood frame, frame/concrete block, and open steel skeleton. Based on the results
of neighborhood analysis for both daytime and nighttime observations, the wall rankings associated
with the highest LST magnitudes are brick/veneer, wood frame, frame/concrete block, and open steel
skeleton. These results further support the conclusions from the regression analysis.
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for daytime and nighttime in January and August. The meaning of different letters is,
A: Brick/Veneer–Wood Frame; B: Brick/Veneer–Open Steel Skeleton; C: Brick/Veneer–Brick/Masonry;
D: Brick/Veneer–Frame/Concrete Block; E: Brick/Veneer–Stucco; F: Brick/Veneer–Masonry
Bearing; G: Wood Frame–Open Steel Skeleton; H: Wood Frame–Masonry Bearing;
I: Wood Frame–Frame/Concrete Block; J: Frame/Concrete Block–Open Steel Skeleton;
K: Frame/Concrete Block–Masonry Bearing; L: Frame/Concrete Block–Brick/Masonry. The blank
horizontal lines represent the median value and the red X symbols (×) represent the mean value.

4. Discussion

Our results in this study reveal that both biophysical factors and building material properties
(focused on building wall characteristics) influence the magnitude of urban LSTs. The quantitative
relationships found in this study demonstrate that building wall type (representing different energy
absorption, heat capacities, and conductivities) influences urban LSTs much like natural land cover
types. By improving this understanding, these results can provide a series of useful strategies to
mitigate the urban heat island and its adverse effects.
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4.1. The Influence of Biophysical and Morphological Building Factors on LST

In this research, three biophysical factors and seven building wall variables are considered to
explain the variation of LST at daytime and nighttime in the summer and winter. The stepwise
regression analyses indicate that ISF, albedo, and Dist2Water play the dominant role in explaining
the spatiotemporal variation of LST in Harris County. The combination of biophysical factors and
building wall variables only explains approximately half of the variance of LST in the four models,
which is lower than many previous studies reported [11,14]. These previous studies demonstrated
that a strong linear correlation existed between ISF and LST at the regional scale. For example,
Li et al. [46] demonstrated that the correlation coefficient between ISF and LST was around 0.9 in
spring and summer at the regional level. In our research, although the ISF is the most significant
explaining variable among the ten variables, it does not have very strong relationship with LST
(R2: 0.204–0.340). These results are mainly because of a scale issue. Generally, a coarser scale could
generate a much stronger correlation, i.e., the relationship between biophysical factors and LST is
complicated based on the grid-by-grid analysis. At a finer scale, more detailed variables should be
taken into consideration [20], such as the distribution of urban buildings, surface roughness, elevation,
and so on.

During the daytime, the main heat source is solar radiation. However, nighttime heat sources
mainly come from the heat accumulated during daytime, and anthropogenic heat emission from
the city. This observation could be verified by the diurnal and seasonal analyses of LST variations,
and the quantitative relationships between LST and its major drivers. For example, LST is always
positively related to ISF and building wall variables, but negatively related to albedo and Dist2Water
at night. Urban areas generally have higher LST and lower albedo compared to rural areas. As a result,
these urban surfaces absorb more solar radiation during the daytime and emit heat as long wave
radiation at nighttime. Furthermore, anthropogenic activities mainly happen in the urban areas with
high electricity use and energy consumption. In this study area, the presence of open water bodies
is an important cooling factor during the daytime, and a heating factor during nighttime because of
thermal inertia.

As for building wall variables, their thermal storage ability is related to thermal conductivity and
the specific heat capacity of wall materials. For example, brick, masonry, and concrete have much
higher thermal conductivity and heat capacity compared to wood. Building walls that have higher
thermal conductivity and heat capacity are able to absorb more energy during daytime and they take
longer to release energy at nighttime. In the regression models, brick/veneer and frame/concrete
block both have more important positive effects on LST responses compared to other wall types
because of these property differences. In the neighborhood analysis, the grids with brick/veneer as
the dominant wall type also have the highest observed LSTs. Although we ranked the LST magnitude,
the LST differences among the 3 × 3 neighborhood are not very large (0.01–0.4 K). Other building
morphologies possibly play a key role in determining an overall LST outcome, such as the sky view
factor, and neighborhood height/width ratios.

4.2. Implications for Urban Planning and Management

The results that the biophysical and building wall variables influence variation of LST can provide
insight for useful strategies and implications on how to counteract and mitigate urban heat islands.
Impervious surfaces have little vegetation, and ISF is the major driver of urban heat. Although
we cannot remove all of the pavement and other impervious surfaces and keep cities functional,
more vegetation, especially a tree canopy, can be planted in appropriate locations. Surface albedo is
another important factor. In order to decrease the heat stored in different surfaces at daytime, we could
increase the amount of high albedo surfaces, such as white roofs and walls [49]. Rosenfeld et al. [49]
demonstrated that a single building could generate 20–40% energy savings with a higher albedo.
Water bodies are also a useful mechanism to mitigate urban heat, so buildings could be built closer to
water bodies in order to decrease the use of energy for cooling in the summer. As for building wall
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materials, although brick, concrete, and masonry have higher thermal masses and probably cause
higher LST, the appropriate use of these materials could provide a much more comfortable indoor
environment so that the energy consumed for heating and cooling could be optimized and reduced.
As a consequence, this research provides building designers some useful knowledge on how to design
more environmentally friendly and efficient building walls with different layers and materials.

4.3. Limitations

This research also has some limitations. First, a single impervious surface fraction data was used
in different seasons in this research. Previous research has shown that impervious surfaces are often
considered as pseudo-invariant parameters [50] because of the insensitivity of spectral features to
seasonal changes [46]. However, Li et al. [46] reported that there are variations of ISF between the early
spring and the summer TM (Thematic Mapper) images. Therefore, further studies should explore the
variation in ISF across different seasons. Second, ten years of aggregated MODIS daily LST products
with 1 km spatial resolution were used in this study. However, other higher resolution thermal infrared
images could be explored to improve the fine scale analyses, such as Landsat 8 TIR band data (30 m) [51]
and ASTER images (90 m) used for retrieval of LST [52]. Third, building wall materials should directly
affect the air temperature, so these building wall variables in this research should be much more
important and obvious when we study the air temperature heat island. However, the observations
of air temperature do not have the same spatial resolution as surface temperature. In a future study,
modeling of air temperature could be used to further explore the relationship between LST and the
building wall types. Finally, roof surfaces should have a more direct relationship with LST than the
wall surface. However, we could not get accurate roof surface data for this current study. This kind of
data should be used in the future in order to better predict the variations of LST.

5. Conclusions

The most dramatic anthropogenic LULC modification of natural environment is arguably urban
development, generating urban heat islands. This research investigated the relationship of LST
with both biophysical and building wall materials for daytime and nighttime conditions in the
summer and winter. The results demonstrate that both biophysical and building wall factors
influence the spatiotemporal variations of LST. However, the biophysical factors are the dominant
explanatory factors compared to the building wall variables. Impervious surface fraction is the
most important parameter determining the LST at daytime and nighttime. The relationship between
LST and albedo reveals that high albedo materials, such as light-colored materials on walls, roofs,
and other surfaces, could mitigate the LST. Furthermore, open water bodies can also mitigate the
heat island at daytime. The seven building wall variables all have the positive relationship with
LST. However, the brick/veneer and frame/concrete block wall types, with their high heat capacity,
often have higher LST compared to other wall types at daytime and nighttime. Therefore, our results
should help urban planners and architects select building wall materials. Harris County is chosen as
the case study in this research, but similar methods could be applied to other metropolitan regions.
For example, large water bodies beside metropolitan regions could be an important factor to affect
local LST. In addition, further comparison studies among different cities could be conducted in order
to obtain more reliable results, and different climatic conditions should also be considered in different
cities in future research.
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