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Abstract: Vegetation dynamics are an important topic in the field of global environment change,
which is of great significance to monitor temporal–spatial variability of desertification at regional
or global scales. Following the reported desertification reversion in the late 1990s in the Horqin
Sandy Land, an issue was concerned for desertification control by decreased water availability.
To detect the desertification process, MODIS Normalized Difference Vegetation Index (NDVI)
sequences were investigated to analyze the effect on vegetation over the 2000–2015 growing season.
Results showed that: (1) NDVI sequences exhibited a positive trend in most of the significant pixels
(19.1%–44.7% of the total), particularly in the southeastern part of Horqin, while showing a negative
trend of 2.2%–4.3%; (2) NDVI was weakly related to precipitation since 2000, because intensified
anthropogenic activities have obscured the impacts of climate variables, with a rapid decrease in
grassland, and increase in cropland and woodland; and (3) the improved NDVI was interpreted by
expanding cropland and excessive groundwater irrigation, according to the positive effect of grain
yield on NDVI all over the Horqin area. For persistent desertification reversion, a land use strategy
should be more adaptive to the carrying capacity in this agro-pastoral transitional zone, particularly
with respect to water capacity.

Keywords: MODIS Normalized Difference Vegetation Index (NDVI); desertification control; farming;
sustainable restoration; path analysis; sustainable development goals (SDGs)

1. Introduction

Desertification is one of the major environmental issues, and seriously threatens water-constrained
habitat covering 40% of the global land surface [1–3]. Building on earlier efforts, the United Nations
Rio+20 have developed concrete sustainable development goals (SDGs) for worldwide prevention of
desertification, as the Target 3 of Goal 15 mentions: “By 2020, combat desertification, restore degraded
land and soil, including land affected by desertification, drought and floods, and strive to achieve
a land-degradation-neutral world” [4]. Vegetation dynamics are an important aspect of the desertification
process. However, it is controlled latitudinally and elevationally by global environmental change [5,6], or
nutrient availability and rainfall seasonality at regional scales [7]. Changes in vegetation composition and
structure influence ecosystem stabilization, and further the native access of ecosystem services [8], for
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instance, forage for herbivores, considerable biomass carbon stocks [9], soil nutrient enrichment [10], and
protecting soils and crop seedlings from risks of wind erosion [11]. Therefore, productive land has been
closely related to welfare of local populations, particularly household income and health. In desertified
areas, vegetation establishment is always a core and effective element for ecosystem restoration [12].
It is of great significance to detect the complex process in perspectives of sustainable development.

The Horqin area (HQA) is located on the vast plain of the West Liaohe River in the southeast of
Inner Mongolia between semi-arid and semi-humid regions. Due to disorderly firewood collection,
reclamation, and heavy grazing within the last 50–100 years, the primitive landscape was widely
desertified from a tree-scattered grassland to a deteriorated sandy ecosystem [13,14]. Recent research
shows that artificial vegetation systems have played a remarkable role in land desertification
control in Northern China [12,15]. The degree of land desertification was initially mitigated in
Horqin Sandy Land according to the reduction of the area of mobile and semi-mobile sand land.
However, people’s aspiration for better living standards have not decoupled from simple and economic
incentives, and transferred more well-vegetated land into irrigated cropland and overloaded grassland.
Simultaneously, this presents a challenge to sustainability of vegetation and soil restoration, coupled
with the society and economy in this area. Long-term and effective desertification monitoring is
definitely in need. As an important biophysical index, the Normalized Difference Vegetation Index
(NDVI) can be widely used to monitor vegetation processes or land use/cover change [16–19],
particularly in the agro-pastoral transitional zone.

Globally, vegetation dynamics have demonstrated a widespread enhancement, which are mainly
explained by the CO2 fertilization effect for 70% since the 1980s [20]. In addition, either vegetation
degradation or restoration is driven by combined elements of climate change and anthropogenic
activity, specifically linked with land use. In the HQA, increasing land use intensity and precipitation
variability consistently enhances the fragility of the local ecosystem and become obstacles to sustainable
land restoration. Thus, the purpose of this study is: (1) to monitor the vegetation change over 2000–2015
by a spatio-temporal analysis based on MODIS NDVI in the HQA; (2) to explore the effect of climatic
variables and anthropogenic activity on vegetation cover; and (3) to detect the sustainability of
desertification reversion.

2. Materials and Methods

2.1. Study Area

This study was investigated in the HQA, part of the agro-pastoral transitional zone in Inner
Mongolia, China (Figure 1). The area has a temperate continental semi-arid monsoonal climate,
receiving annual mean precipitation of 350–450 mm, with 75% of the total in the growing season from
June to September. The annual mean potential evaporation is 1800–2000 mm and the annual mean
temperature is 5.4–6.8 ◦C. The average annual wind speed is in the range of 3.2–4.5 m·s−1 and the
prevailing wind direction is northwest in winter and spring and southwest to south in summer and
autumn [21]. Soils include marsh soil in wetlands and flood plain grasslands, meadow soil in meadow
habitats and sandy soil in sand lands [22].

The HQA is located in a triangle zone of about 120,000 km2 between the Greater Khingan
Mountains and northern mountain area of Hebei Province. The terrain is lower in the central and
eastern regions, and higher in the south, north, and west, with the West Liaohe River running through
the sandy plain. Traditionally, the HQA can be divided into four sections by different proportions
of farming and grazing, or coal-mining industry. It is a comprehensive judgment and different
from absolute land use types, and based on agricultural history, climate adaptability, governmental
orientation, and population proportion of the Han and Mongol nationality in individual counties.
To match the statistical data in this study, we divided 14 administrative counties into the above sections
(Figure 1c), including agricultural zones (AZ), semi-agricultural and semi-pasturing zones (APZ),
pasturing zones (PZ), and coal mining zones (CM).
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Figure 1. Location and introduction of the Horqin area (HQA). (a) Two national ecological function 
protected area of (I) Horqin Sandy Land, (II) the Source Region of the West Liaohe River, and (III) 
stretching branches of the Greater Khingan Mountains; (b) The area is located in the southeast of 
Inner Mongolia, and is part of the Agro-pastoral Transitional Zone in Northern China; and (c) it was 
divided into agricultural zones (AZ), semi-agricultural and semi-pasturing zones (APZ), pasturing 
zones (PZ), and coal mining zones (CM) in this study. 

2.2. Materials 

2.2.1. MODIS 16-Day Composite NDVI Product 

The selected NDVI dataset is one subset of the MODIS/Terra Vegetation Indices (MOD13Q1), 
and has a 16-day repeat cycle at 250 m spatial resolution in the Sinusoidal projection. It is designed 
to provide global and consistent comparisons of vegetation conditions. A detailed explanation of 
MOD13Q1 data can be found at Land Processes Distributed Active Archive Center [23]. Annual 
NDVI sequences were derived from monthly values of the growing season (the warmest five 
months: May to September) for the period of 2000–2015. 

2.2.2. Land Use/Cover and Desertification Data 

The monitoring data of land use/cover was provided by Data Center for Resources and 
Environmental Sciences, Chinese Academy of Sciences [24], including water body, grassland, 
cropland, and woodland, and based on Landsat image in the late 1980s, 2000, 2005, 2010, and 2015. 
Mobile, semi-mobile, semi-fixed, and fixed are four grades of sand land corresponding to extremely 
severe, severe, moderate, and slight degrees of desertification [25]. The types and areas of sand land 
were provided by previous investigation [15,26]. 
  

Figure 1. Location and introduction of the Horqin area (HQA). (a) Two national ecological function
protected area of (I) Horqin Sandy Land, (II) the Source Region of the West Liaohe River, and (III)
stretching branches of the Greater Khingan Mountains; (b) The area is located in the southeast of Inner
Mongolia, and is part of the Agro-pastoral Transitional Zone in Northern China; and (c) it was divided
into agricultural zones (AZ), semi-agricultural and semi-pasturing zones (APZ), pasturing zones (PZ),
and coal mining zones (CM) in this study.

2.2. Materials

2.2.1. MODIS 16-Day Composite NDVI Product

The selected NDVI dataset is one subset of the MODIS/Terra Vegetation Indices (MOD13Q1),
and has a 16-day repeat cycle at 250 m spatial resolution in the Sinusoidal projection. It is designed
to provide global and consistent comparisons of vegetation conditions. A detailed explanation of
MOD13Q1 data can be found at Land Processes Distributed Active Archive Center [23]. Annual NDVI
sequences were derived from monthly values of the growing season (the warmest five months: May to
September) for the period of 2000–2015.

2.2.2. Land Use/Cover and Desertification Data

The monitoring data of land use/cover was provided by Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences [24], including water body, grassland,
cropland, and woodland, and based on Landsat image in the late 1980s, 2000, 2005, 2010, and 2015.
Mobile, semi-mobile, semi-fixed, and fixed are four grades of sand land corresponding to extremely
severe, severe, moderate, and slight degrees of desertification [25]. The types and areas of sand land
were provided by previous investigation [15,26].
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2.2.3. Meteorological Data and Groundwater Record

Monthly precipitation and temperature were observed by NDRS (Naiman Desertification Research
Station) and the China meteorological data sharing service system of the China Meteorological
Administration (Figure 1a) over the years 1960–2015. Climatological parameters of warmth and
wetness are derived from the Warmth Index (WI) in Kira’s 1948 study and the Humidity Index (HI) in
Xu’s 1985 study on vegetation [27,28], as shown in the following formula:

WI = ∑
i
(ti − 5) (1)

HI = ∑ P/WI (2)

where ti is the monthly mean air temperature exceeding 5 ◦C and P is the annual precipitation. To focus
on the growing season, WI was analyzed instead of air temperature. The annual P and WI were
interpolated by site observation data from 49 meteorological stations by the Kriging method [29],
and the mean value in individual counties was calculated for a multivariate analysis. Data of
the groundwater depth was observed through phreatic wells by NDRS and the Institute of water
conservancy survey and designing, Tongliao City, Inner Mongolia.

2.2.4. Socioeconomic Data

Data of primary industries (PI), consumption of chemical fertilizers (CCF), electricity consumed
in rural areas (ECRA), and yield of grain (YG) were excerpted from Inner Mongolia Statistical Yearbooks
(statistical data from 2000 to 2015) [30–45]. As the northward movement of farming boundary in the
HQA, the four indicators had a close relationship with farming. The indicator of sheep and goats (SG),
as well as large animals (LA) such as cattle and horses, was used in a multivariate analysis.

2.3. Method

2.3.1. Trend Analysis

A linear regression method is always used to detect variation within a sequence of data. In this
study, the change rates of NDVI were analyzed for individual counties or pixels, as shown in the
following formula:

Θslope =
n×∑n

i=1 i× NDVIi − (∑n
i=1 i)(∑n

i=1 NDVIi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (3)

where Θslope is the slope of unary linear regression equation; NDVIi is the annual mean value of
the growing season in the ith year; n is the number of years between 2000–2015. In addition, the
annual maximum NDVI is also used in the above equation by maximum value compositing (MVC)
method [16,18]. When Θslope < 0, it indicates a decrease in NDVI for the period, and vice versa. The
significance of slope is calculated by the Student’s t-test.

The nonparametric Mann–Kendall (MK) test was performed for testing the significance of
change [46,47]. The trends of P, WI, and HI were detected as site observation data by the MK method.

2.3.2. Path Analysis

Path analysis was developed by Sewall Wright in the 1920s [48]. The approach is a standard
multiple linear regression model. It is widely used to describe direct and indirect factors to dependent
variable. More detailed explanation can be found in the investigation [49]. The coefficient of

determination (CD) (0 ≤ R2 ≤ 1) can be subdivided into the direct CD (
p
∑

i=1
R2

i ) and indirect CD



Sustainability 2017, 9, 211 5 of 15

(
p−1
∑
i<j

R2
ij). For a specified pathway (xi→xj→y, j = 1, 2, . . . , p), the direct path coefficient (4), the total of

indirect path coefficient (5), and the decision coefficient (DC) (6) are shown in the following formula:

Ri = bi (4)

∑
j 6=i

Rij = ∑
j 6=i

rijbj (5)

R2
(i) = R2

i + ∑
j 6=i

R2
ij = (bi)

2 + 2∑
j 6=i

birijbj = 2biriy − b2
i (6)

where y is dependent variable NDVI; rij is the correlation coefficient between xi and xj; riy is the
correlation coefficient between xi and y. When DC (R2

(i)) > 0, it demonstrates that xi will strengthen the
decision capacity on y; on the contrary (DC < 0), it shows that xi will weaken the decision capacity on y.

3. Results and Discussion

3.1. Spatial-Temporal Process of Annual NDVI

As an effect of the phenological phase, variation of monthly NDVI usually presents a unimodal
curve within a year [50,51]. In the HQA, the top five months are mostly in May–September, with
an annual maximum value in July or August. For the inter-annual change in individual counties
(Table 1), it had positive and significant trends in more than half of the counties by the mean method.
The trends were consistently greater and characterized by higher R2 than that of the MVC method,
for instance, in Horqin District (66.7% to 41.0%), Naiman (76.2% to 44.0%), as well as Kailu County
(86.2% to 66.0%).

Table 1. Normalized Difference Vegetation Index (NDVI) trend and significance for individual counties
during 2000–2015.

County
(a) Mean Method (b) MVC Method

Slope R2 F Value Slope R2 F Value

Horqin District 0.005 0.667 ** 28.034 0.004 0.410 ** 9.732
Kailu 0.007 0.862 ** 87.107 0.006 0.660 ** 27.226

Naiman 0.006 0.762 ** 44.832 0.005 0.440 ** 11.002
Kulun 0.005 0.605 ** 21.479 0.003 0.183 3.130
Aohan 0.006 0.572 ** 18.731 0.004 0.187 3.224

Horqin Zuoyihou 0.004 0.529 ** 15.697 0.003 0.153 2.528
Horqin Zuoyizhong 0.006 0.550 ** 17.087 0.004 0.221 3.976
Horqin Youyizhong 0.004 0.236 4.328 0.002 0.089 1.374

Zhalute 0.004 0.251 * 4.682 0.002 0.027 0.394
Ar Horqin 0.003 0.149 2.449 0.000 0.000 0.005
Balinzuo 0.001 0.039 0.569 −0.003 0.049 0.729
Balinyou 0.001 0.016 0.229 −0.003 0.047 0.693

Wengniute 0.003 0.293 * 5.807 0.001 0.028 0.403
Huolinguole 0.002 0.065 0.975 0.000 0.005 0.071

Student’s t-test: * indicates a significant trend at the 0.05 level and ** indicate a significant trend at the 0.01 level.
MVC: maximum value compositing.

For aggregated pixels (Figure 2), positive trends appeared in most parts of the HQA. In Figure 2a,
greatly improved pixels were mainly in the south and center, accounting for 15.9% of the total,
while 41.7% were slightly improved according to the statistics in Table 2. Negative trends were mainly
in the north and west, accounting for 4.7% of the total, and only 0.6% of pixels were greatly degraded.
By contrast, results of Figure 2b show that greatly improved pixels were lessened to 13.6%, while
slightly improved pixels were 27.4%. The significant pixels took up an area of 46.9% and 23.4% in
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Figure 2a,b, respectively, including 44.7% and 19.1% characterized by improvement. It showed that the
mean method was more comprehensive to grazing or agricultural activities than that of MVC, because
it involved all monthly information of the growing season. However, the method had a disadvantage
in that the possibility was increased for disturbances of phenological phase or clouds.
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Figure 2. NDVI trend and significance (Student’s t-test, α = 0.05) for individual pixels during 2000–2015:
(a) mean method and (b) MVC method. Pixels were expressed completely in the left figures; the pixel
was replaced by gray in the right figures when the trend was statistically non-significant (NS).

Table 2. Statistics for the MODIS NDVI linear trend analysis for 2000–2015.

Improved Degraded

Greatly Slightly Significantly Greatly Slightly Significantly

Per-pixel slope >0.008 (0.003, 0.008] ≤−0.008 (−0.008, −0.003]
(a) Mean method 15.9% 41.7% 44.7% 0.6% 4.2% 2.2%
(b) MVC method 13.6% 27.4% 19.1% 4.6% 14.4% 4.3%

The proportions (%) of pixel numbers were derived from Figure 2. The positive and negative slope (more than
0.003 a−1) was corresponding to NDVI improvement and degradation, respectively.
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Generally, it is better to monitor NDVI variation based on the same sensor, because differences
exist among various datasets [18,52]. At global and continental scales, the MODIS NDVI trend
showed a total of significant pixels of 11.8% and 10.1% by the MVC method, respectively, including
5.4% and 7.9% characterized by positive trends in 2000–2010 [52]. Globally, leaf area index also
showed a persistent and widespread increase in 25%–50% of vegetated area, while no more than 4%
decreased [20]. In China, a significant trend was also demonstrated in 31.7% of the pixels, including
25.4% characterized by positive trend. Therefore, vegetation enhancement has been observed in
many regions. This suggests that the vegetation restoration has effectively controlled desertified areas
compared with the past.

3.2. Effect of Climate Variables on NDVI

In Figure 3, the climate variables were tested in two periods since 1960. Significantly, it demonstrated
a warming process over the period (a) of 1960–2000. Since 2000, the trend of WI turned into the
negative, while P and HI showed positive and significant trends at most stations. The two-stage
comparison showed an effect of interdecadal climatic fluctuation, which mitigated water limitation by
increasing rainfall in the period (b) of 2000–2015, though it began at an extremely low level around
2000 [53]. As shown in previous research, over the last half-century, the annual mean temperature,
precipitation, and relative humidity suggested a warming and drying trend in the Horqin Sandy
Land [54]; over 1979–2010, the soil moisture of land surface was significantly decrease in the Liaohe
Basin [55]; after 1997, a national “warming hiatus” and increase in “flash droughts” were observed
in Northeastern China [56]. Thus, the trend of climate still involved uncertainties and gaps among
increased rainfall, droughts, and vegetation enhancement in the HQA.
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From the microscale to macroscale, the feedback was not consistent between vegetation and
climate variables. As revealed from global NDVI or LAI change, water dominated middle and low
latitudes, while warmth dominated high latitudes and the Tibetan Plateau [20,27]; apart from global
regimes, the relationship was also diversified and determined by vegetation type and pattern [57,58].
However, NDVI was weakly related to P (R2 = 12.9%) and had a non-significant relationship with
WI by county (Figure 4). The first reasonable explanation may be an increase in total rainfall, extreme
rainfall events [59], and no rain days, which brought about aggravated drought or secondary effects
on vegetated and cropped areas, such as frequent hails, and widespread locust plagues in recent
years; secondly, due to desertification, restoration, and cultivation for decades, the HQA had a highly
fragmented landscape, which obscured the effects of climate on vegetation. In addition, warmth
limitation was obviously weaker than water constraints on vegetation in desertified area.
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Figure 4. Relationships between P, WI, and NDVI. Each point represented a mean value in individual
county of a certain year (N = 224, 14 counties during 2000–2015).

3.3. Effect of Human Activities on NDVI

According to Figures 5 and 6, NDVI was a credible and quantitative index coupling with land
cover information. It suggests a clear spatial pattern of NDVI values that are strongly linked with
land cover types. For instance, the lowest area was mainly of severely desertified land (0–0.30); in the
northwest, the highest area was comprised of arboreal forests and shrub patches on stretching branches
of the Greater Khingan Mountains (0.60–0.79); areas of medium values were mainly irrigated cropland
along rivers (0.50–0.60).

In Table 3, it showed that the water bodies accounted for an area of 956 km2 in the late 1980s and
decreased by 44.8% to 527 km2 in 2015. Expectedly, the areas of mobile, semi-mobile, and semi-fixed
sand land showed a downward change after 2000. Many studies have reported the two stages of
desertification development and reversion due to vegetation establishment and protective policy in
the HQA [26,54,60]. Grassland, cropland, and woodland were the three main land cover types in the
agro-pastoral transitional zone. In spite of the desertification reversion and the national “Grain to
Green” program that began in 1999, total grassland area rapidly declined from 46.8% to 37.8%; and
cropland and woodland substantially increased by 2.2% and 5.9%, respectively. Overall, the land cover
change has shown a process that the desertification degree was mitigated and has gradually reversed
since 2000.
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Table 3. Land cover area and percentage in the HQA from the late 1980s to 2015 (km2).

Period Water Body Mobile
Sand Land

Semi-Mobile
Sand Land

Semi-Fixed
Sand Land Grassland Cropland Woodland

the late 1980s
956 2673 8884 6204 60,433 26,964 11,239

0.8% 2.2% 7.4% 5.2% 50.2% 22.4% 9.6%

2000
891 3490 8902 7093 56,357 31,423 11,927

0.7% 2.9% 7.4% 5.9% 46.8% 26.1% 9.9%

2005
815 3003 9296 6423 56,065 31,931 11,964

0.7% 2.5% 7.7% 5.3% 46.6% 26.5% 9.9%

2010
814 2593 8064 6225 55,756 32,118 12,014

0.7% 2.2% 6.7% 5.2% 46.3% 26.7% 10.0%

2015
527 / / / 45,478 34,072 18,995

0.4% / / / 37.8% 28.3% 15.8%

In AZ and some counties in APZ, the correlation was much stronger between NDVI and the four
indicators, while no relationship in PZ (Table 4). Because maize cultivation played a dominant role in
the agricultural industry in the HQA. Due to high FVC in maize fields through its jointing to mature
stages, NDVI was substantially increased when the land was reclaimed, for instance, in dried lake or
well-vegetated grassland. Particularly, an indicator of ECRA can indirectly reflect consumed water
amounts by ground water withdrawals as well as reduced firewood collection by electric appliances in
rural areas.

Table 4. Pearson’s correlation between MVC NDVI and statistical data [30–45].

County Economic Pattern PI CCF ECRA YG

Horqin District AZ 0.605 * 0.548 * 0.516 * 0.622 *
Kailu AZ 0.793 ** 0.804 ** 0.731 ** 0.830 **

Naiman APZ 0.617 * 0.633 ** 0.561 * 0.640 **
Kulun APZ 0.388 0.529 * 0.430 0.495
Aohan APZ 0.581 * 0.348 0.279 0.620 *

Wengniute APZ 0.182 0.147 0.277 0.476
Horqin Zuoyihou APZ 0.411 0.279 0.344 0.440

Horqin Zuoyizhong APZ 0.499 * 0.396 0.487 0.337
Horqin Youyizhong PZ 0.320 0.253 0.282 0.381

Zhalute PZ 0.221 0.050 −0.204 0.489
Ar Horqin PZ 0.075 −0.052 −0.009 0.239
Balinzuo PZ −0.188 −0.096 −0.387 0.171
Balinyou PZ −0.139 −0.426 −0.196 0.387

Huolinguole City CM −0.140 −0.361 −0.145 −0.414

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level (two-tailed).

3.4. The Sustainability of Desertification Reversion in the HQA

The groundwater level was deepest and decreased sharply in Horqin District and Kailu
County, respectively, as well as in Naiman County (Figure 7), in the order of Kailu County
(0.36 m/a) > Horqin District (0.33 m/a) > Naiman County (0.18 m/a). During the same period, the
depth was just slightly fluctuated in some APZ and PZ. In the early stage, crops were mainly irrigated by
river water or rainfall; since the late 1990s, the deficit of water demand became more serious. In recent
years, irrigation facilities have been widely used in flat areas, and irrigation water can be easily applied
by submerged pumps only at the expense of the charge for electricity. Due to local droughts and
irrigation in the upper reaches, the surface runoff decreased, and the lake shrank. In the research of the
Mongolian Plateau [61], and inland basin of Heihe River [62] and Minqin Oasis [63], water constraint
was also primarily attributed to increased irrigation demand or decreased rainfall. It was the most
common conflict related to water usage in semi-arid or arid river basins [64]. However, utilization
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of water-saving equipment is quite limited, just a few center pivot irrigation systems [65] in artificial
pastures or movable sprinklers in peanut fields. On the other hand, afforestation caused increased
water consumption in the deep soil layer, while native herbaceous plants used less rainfall in the
surface soil layer [12]. Although important achievements in artificial revegetation have been made,
high density and inappropriate species of afforestation may cause serious concerns over groundwater
shortage [66]. In summary, intensified anthropogenic activities are seriously challenging the carrying
capacity of irrigation agriculture and afforestation, particularly water capacity.
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To reveal the relationship of NDVI with multiple climate and anthropogenic variables (P, WI,
CCF, ECRA, YG, LA, and SG), the path analysis was used to decouple direct and indirect effect
(Table 5), based on a step-wise linear regression model in the same dimension for AZ (7), APZ (8), and
PZ (9), respectively:

NDVI = −3.586 × 10−16 + 1.036 × YG − 0.559 × SG R2 = 0.827 (7)

NDVI = −1.012 × 10−15 + 0.443 × P + 0.293 × YG + 0.305 ×WI + 0.197 × ECRA R2 = 0.432 (8)

NDVI = 9.653 × 10−16 + 0.307 × P + 0.596 × YG − 0.349 × CCF R2 = 0.354 (9)

In the AZ, YG had the strongest and direct effect of 1.036 on NDVI and an indirect and negative
effect of 0.270 (YG→SG→NDVI). In the APZ, NDVI was successively and directly affected by P, WI,
YG, and ECRA (from 0.443 to 0.197), and the total indirect effects were particularly weak (from 0.003 to
0.163). This result can be interpreted by rain-fed crop–grass–tree mosaics in the southern mountain
areas, and expanding irrigated cropland in the central sandy plain. In the PZ of Northwestern HQA,
NDVI was affected by P, YG, and CCF. The total indirect effect of CCF (0.649) was stronger than that of
P (0.212) and YG (−0.094). In the summary of DC, it showed that YG had an enhancement effect on
NDVI all over the HQA, as well as P in APZ and PZ, while SG, WI, and CCF had effects of limitation
in AZ, APZ, and PZ, respectively. This provided important evidence that the farming boundary had
moved northward into the PZ section in recent decades. The rural people of Han nationality depend on
farming, while the Mongols are no longer nomadic and have gradually transferred to annual farming
on the more fertile grassland. However, the crop growth condition has still been limited by rainfall
because planting technologies have not been well implemented by the people whose livelihood is
accustomed to grazing.
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Table 5. Path analysis between MVC NDVI and indicators over 2000–2015.

Path xi to y Correlation
Coefficient

Direct Path
Coefficient Indirect Path Coefficient Total DC

AP
YG SG

YG 0.766 1.036 −0.270 −0.270 0.514
SG −0.059 −0.559 0.500 0.500 −0.247

APZ

P YG WI ECRA
P 0.502 0.443 0.096 −0.051 0.013 0.058 0.249

YG 0.433 0.293 0.145 −0.040 0.034 0.140 0.168
WI 0.142 0.305 −0.074 −0.039 −0.050 −0.163 −0.006

ECRA 0.200 0.197 0.030 0.051 −0.078 0.003 0.040

PZ

P YG CCF
P 0.519 0.307 0.383 −0.172 0.212 0.224

YG 0.502 0.596 0.197 −0.292 −0.094 0.243
CCF 0.300 −0.349 0.151 0.498 0.649 −0.331

All variables were standardized to the same dimension.

4. Conclusions

Based on the above analysis, it is clear that desertification control has achieved successful reversion
in the HQA. Due to precipitation instability and excessive groundwater irrigation, water consumption
has been far beyond the regional water capacity for decade. For the local populations, the northward
farming boundary and water-stressed grassland will potentially change the mode of production
in an unsustainable way. Without effective land and water management, persistent desertification
reversion cannot be realized under the framework of SDGs. More scientific effort and reasonable
eco-compensation should be performed to strengthen the prevention and control of desertification in
this agro-pastoral transitional zone.
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