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Abstract: With the increase in urbanization and energy consumption, PM2.5 has become a major
pollutant. This paper investigates the impact of road patterns on PM2.5 pollution in Beijing, focusing
on two questions: Do road patterns significantly affect PM2.5 concentrations? How do road patterns
affect PM2.5 concentrations? A land-use regression model (LUR model) is used to quantify the
associations between PM2.5 concentrations, and road patterns, land-use patterns, and population
density. Then, in the condition of excluding other factors closely correlated to PM2.5 concentrations,
based on the results of the regression model, further research is conducted to explore the relationship
between PM2.5 concentrations and the types, densities, and layouts of road networks, through the
controlling variables method. The results are as follows: (1) the regression coefficient of road patterns
is significantly higher than the water area, population density, and transport facilities, indicating
that road patterns have an obvious influence on PM2.5 concentrations; (2) under the same traffic
carrying capacity, the layout of “a tight network of streets and small blocks” is superior to that of
“a sparse network of streets and big blocks”; (3) the grade proportion of urban roads impacts the
road patterns’ rationality, and a high percentage of branch roads and secondary roads could decrease
PM2.5 concentrations. These findings could provide a reference for the improvement of the traffic
structure and air quality of Beijing.
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1. Introduction

With rapid urbanization, high population density and heavy traffic exacerbate the air pollution
arising from a traditional extensive economy. The frequent occurrence of PM2.5 pollution offers a
warning against rapid urban development, which also underscores the importance of constructing
a scientific and reasonable city structure. Previous studies have shown that PM2.5 concentrations
in different urban spaces are variable [1,2], as they are affected by the urban spatial pattern [3],
land development intensity [4,5], public green spaces [6], road grades, and traffic [7]. For
example, Chan et al. (2001) [8] found that the concentration of PM2.5 in an urban industrial district, a
residential area, and a business district of Hong Kong, was 77.6, 107.0, and 88.5 µg/m3, respectively.
Li et al. (2012) [9] noted that the annual concentration of PM2.5 in a green space was lower than that in
bare land.

Among these factors, motor vehicles have become important sources of fine particulate pollution,
contributing between 25% and 35% of direct PM2.5 emissions [10,11], which are the dominant source
of air pollution in most urban cities [12,13]. Meanwhile, “Particulate matter (PM) pollutants are
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currently of high interest, because medical findings indicate that adverse health effects are caused by
aerosol particles in the ultrafine (<100 nm diameter) size range that are associated with traffic” [14].
The previous research on vehicle emissions of particulates has mainly focused on their black carbon
or particle number concentrations, especially for diesel vehicles, which require high equipment
and technology [15,16]. Compared to light-duty gasoline vehicles, primary PM2.5 emissions from
heavy-duty diesel vehicles can be between one and two orders of magnitude higher [14]. As a result,
diesel vehicles have been gradually controlled, and gasoline vehicles occupy 84.7% of the total number
of motor vehicles in China [17]. With the renewal of vehicle technology, gasoline direct injection
(GDI) technology has been widely used, which is different from traditional port fuel injection (PFI)
technology. GDI has a good fuel economy and an emission reduction effect of CO2, but has caused the
significant increase in particle emissions [18]. Meanwhile, due to the constraints of technology and
difficulties in data acquisition to capture the concentrations of black carbon or other particulates, our
research uses PM2.5 as the indicator for vehicle particle emissions.

Many studies have explored PM2.5 emissions from on-road vehicles [19–21], and the effect of
exposure to traffic-related PM2.5 on human health [22–24]. Panis et al. (2011) [25] observed that
the effects of specific speed reduction schemes on PM emissions from trucks are ambiguous. Xu
et al. (2016) [26] examined the commuters’ exposure to PM2.5 in the Shanghai metro system and
found that the metro in-carriage PM2.5 concentrations were significantly affected by the ventilation
systems, out-carriage PM2.5 concentrations, and the passenger numbers. However, few studies have
investigated the relationship between PM2.5 and the structure of road networks. As an important
component of sustainable cities, reasonable road layouts would not only ease traffic congestion [27] and
save energy, but also reduce the impacts on the environment [28]. Additionally, it has been reported
that PM2.5 concentrations near busy roads could be 30% higher than the background levels [29].
Therefore, further research is still necessary to understand the requirements for a more sustainable and
environmentally-friendly road network.

The objective of this paper is to assess the effect of road networks on PM2.5 pollution, which
mainly focuses on two questions: Do road patterns significantly affect PM2.5 concentrations? How do
road patterns affect PM2.5 concentrations? During the study, PM2.5 concentrations were the dependent
variable, and road patterns, land-use, and population density were the independent variables, through
which a land-use regression model (LUR model) was obtained. By comparing the regression coefficient
of road patterns with other factors, the extent of its influence can be determined. Then, by referring to
the variable-control approach and excluding the influence of other irrelevant variables, the grades,
densities, and layouts of road patterns, can be used to analyze their relationship with the surrounding
PM2.5 concentrations.

2. Materials and Methods

2.1. Study Area

Beijing (115.7◦E–117.4◦E, 39.4◦N–41.6◦N), the capital of China, is located in the North China Plain,
and is adjacent to a semi-desert area. At an average elevation of 43.5 m, Beijing is surrounded by
highlands on three sides. The elevation of the mountain area reaches up to 1500 m above sea level,
which is unfavorable for pollution dispersion. Low forest coverage (14.85%) further exacerbates the
problem of air pollution. Beijing’s climate is a typical continental monsoon climate, characterized by
hot and rainy summers, and cold and dry winters. The average annual precipitation has been less
than 450 mm over the last decade, with 80% of the rainfall being mainly concentrated in the summer.
With the development of the city, and under the influence of its surroundings, air pollution in Beijing
is becoming increasingly serious, with a higher concentration of PM2.5 in the southern part, than the
northern part of Beijing. Considering the major differences between urban areas and suburbs, as well
as the distribution characteristics of the air-quality monitoring sites, this paper takes the central zone
of Beijing as the study area, including the Dongcheng District, Xicheng District, Chaoyang District,
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Haidian District, Fengtai District, and Shijingshan District, which together cover 8% of Beijing’s land
area, 60% of the region’s population, and 70% of the region’s industries. The traffic index of the central
zone of Beijing is around 5.5, which is little higher than the Beijing average traffic index of 5.1, meaning
that parts of the ring and main roads are congested.

2.2. LUR Model

Approaches that have been developed to simulate the distribution of the concentration of air
pollutants usually include geostatistical interpolation [30], land-use regression [31], dispersion [32], and
hybrid [33] models. “Dispersion models use information on emissions, source characteristics, chemical
and physical properties of the pollutants, topography, and meteorology to model the transport and
transformation of gaseous or particulate pollutants through the atmosphere to predict, e.g., ground
level concentrations” [34]. Also, it is expensive and difficult to obtain the high-precision data of
pollutant sources and meteorology, which then has to be initialized and parameterized. Moreover, the
interpolation method is only based on the monitoring of data, which means that it is hard to indicate
the spatial variation of pollutant concentration on a small scale [35]. Compared with these methods,
land-use regression (LUR) has been widely used, and has rapidly become an important approach for
predicting long-term average pollutant concentration at an intra-urban scale [36]. Also, it is a promising
approach for predicting ambient air pollutant concentrations at high spatial resolution [37,38], as it
has a low requirement for the categories of the data, and the model is simple to construct. With less
accurate exposure-estimating methodologies, such as those based on ambient city-wide monitoring or
distance to road calculations, an increased exposure measurement error may bias the models toward
null [39]. Moreover, the concentration of ambient pollution is usually used as a dependent variable,
while the surrounding land-use, transportation, and population density are extracted using geographic
information systems (GIS) and are included in a regression equation as predictor variables [40,41]. The
LUR model has been applied in more than nine countries and 14 cities across Europe (e.g., [42,43])
and North America (e.g., [44,45]). European and North American LUR models yielded a predictive
capacity (as R2) ranging from 35% to 94% for PM2.5 [36].

The keys to the success of the LUR model are as follows: (1) The selection of variables: the specific
modeling usually requires three to five variable categories, and some of the most widely used include
land-use, traffic emission, meteorology, population density, distribution of emission source, altitude,
and so on; (2) Removing and selecting the variables: three principles should be considered, which are
that variables are not significantly correlated with Xi, they meet the t-statistics values, and the R2 value
is not less than 1%; (3) The choice of the buffer radius of the air-quality monitoring site: the buffer
radius is closely related to the spatial precision and the research scale. Under normal conditions, the
maximum buffer radius of land-use and population density could be up to 5000 m, and the maximum
buffer radius of the road is relatively small [46].

The LUR model-building steps usually include the following: (1) Calculating the correlation
between the variables and PM2.5 concentrations, and then ranking all of the variables by the absolute
value of their correlation with PM2.5 concentrations; (2) Identifying the highest-ranking variable in each
subcategory (Subcategory is a subdivision that has common differentiating characteristics within a
larger category); (3) Eliminating other variables in each subcategory that are significantly correlated to
the most highly ranked variable; (4) Entering the rest of the variables into a database for stepwise linear
regression; (5) Removing any variables that have insignificant t-statistics values from the available
pool; and (6) Repeating steps four and five to converge data, removing any variable that contributes to
less than 1% of the R2 value, for a parsimonious final model [37]. The general regression equation of
the LUR model is as follows:

c = a0 + ∑ ai · Xi + εi , i = 1, 2, 3, ... , n (1)
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In Equation (1), c is the concentration of PM2.5; ai (i = 0, 1, 2, . . . , n) are regression coefficients;
Xi (i = 0, 1, 2, . . . , n) are independent variables; εi is the random error.

2.3. Data Collection

2.3.1. Monitoring Sites

The data on PM2.5 concentrations were collected from 35 air-quality monitoring sites in Beijing,
which can be sorted into five categories: 12 urban background sites, 11 suburban background sites,
five curbside sites, six surrounding regional sites, and one reference site (Figure 1). The reference
site is included with the aim of reflecting the level of air quality in urban areas that not affected by
local pollution. Moreover, these real-time monitoring data are posted online by the Beijing Municipal
Environmental Monitoring Center in Beijing Air Quality Real-time Broadcasting (http://zx.bjmemc.com.cn/).
Among these monitoring sites, the five curbside sites are located along main roads and are directly
exposed to traffic emissions, while the 12 urban background sites are located far from the roads. These
two types of sites are completely located within the study area. The PM2.5 data used in this paper are
the annual average concentrations of both curbside sites and urban background sites in 2015.
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2.3.2. Road Traffic Data

The differences in traffic monitoring programs in urban areas result in variable types of traffic
indicators. If cars and trucks are systematically enumerated, then variables reflecting traffic intensity
can be generated. However, if traffic counts do not exist, then road classifications can be used as
a surrogate, because road classification can reflect traffic volumes at a certain level. The higher the
road level is, the larger the traffic flows are. Henderson et al. attempted to assess whether a similar
LUR model could be obtained from the two different sets of traffic variables—traffic volume and road
patterns. All of these results suggest that models built with road length and vehicle density metrics, are
equally able to explain the variability in pollutant concentrations. This finding confirms that valuable
LUR models can be developed in the absence of traffic count data, which are unreliable or nonexistent
in many areas [37]. Many other scholars have also used road patterns to build LUR models [47,48].
Since it is difficult to collect the traffic flow data in Beijing, road classifications were selected in this
study. During further research, roads were divided into five classes, including expressways, fast roads,
arterial roads, secondary roads, and branch roads (Figure 2). The corresponding data come from the
Master Planning of Beijing (2004–2020) [49] and Beijing Traffic Tourism Map (2015) [50].

http://zx.bjmemc.com.cn/
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Figure 2. The road network of the study area (2015). The branch roads were removed from display as
they were dense (Source: Basic data from Beijing Municipal Institute of City Planning & Design and
Google Earth, modified by authors).

2.3.3. Land-Use Data

The land-use map of Beijing in 2014 was compiled by the Beijing Municipal Institute of City
Planning & Design, which was then combined with the satellite imagery of Google Earth to obtain
the land-use map of the study area in 2015. According to the Code for classification of urban land-use
and planning standards of development land, and its positive and negative influences on PM2.5, land is
divided into five types, including water, vegetation, transportation land, other developed land, and other
non-developed land (Figure 3, Table 1). It is particularly worth mentioning here that, because the impact
of traffic on PM2.5 concentrations is measured by the lengths of different roads, the land represented
by road is not included in transportation land.
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Table 1. Land-use classification.

Land Type Details

Water Rivers, lakes, reservoirs, channels, ponds, wetlands, etc.

Vegetation
Urban green land, cultivated and woody land (dry lands, orchards,
shrub lands, artificial grasslands, paddy fields, forest lands, irrigated
lands, etc.).

Transportation land
Transportation hub lands (railway stations, highway bus stations,
port passenger terminals, public transport hubs, etc.), parking lots,
traffic squares, etc.

Other developed land Residential lands, commercial lands, industrial lands, villages, lands
for mining, scenic spots, etc.

Other non-developed land Swamps, bare lands, other grasses, etc.

2.3.4. Population Data

With a dense population, the study area supports approximately 60% of Beijing’s permanent
residents. Because this population could reflect the residential energy consumption, population data
are also considered as a factor affecting the air quality [51]. The population data were taken from the
Beijing Statistical Yearbook 2015 (Table 2) [52].

Table 2. Population data of the study area.

Area Land Area (km2)
Population
(Million)

Population Density
(No. of Persons/km2)

Dongcheng District 41.86 91.1 21,763
Xicheng District 50.53 130.2 25,767

Chaoyang District 455.08 392.2 8618
Fengtai District 305.80 230.0 7521

Shijingshan District 84.32 65.0 7709
Haidian District 430.73 367.8 8539

Total 16,410.54 2151.6 1311

Source: Beijing Statistical Yearbook 2015 [52].

3. Results

3.1. Air Quality in Beijing

Figure 4 shows the air quality of Beijing over the last three years. Spring runs from March to May,
summer from June to August, autumn from September to November, and winter from December to
February. The heating season in Beijing is always between November and March.

From the perspective of annual variation, the air quality of Beijing has improved in fluctuation in
recent years (annual mean concentrations of PM2.5 for 2013, 2014, and 2015 were 98, 89, and 86 µg/m3,
respectively). However, this air quality continues to be far below both the international standard
(10 µg/m3), and the national first level standard (35 µg/m3). From the perspective of seasonal variation,
PM2.5 pollution varies largely with the season, with the highest pollution occurring in winter, and the
least pollution occurring in summer and autumn. From the perspective of monthly variation, PM2.5

concentrations fluctuate greatly throughout the year. The peaks in 2013 and 2014 appeared in February,
and can be seen in December during 2015, while the troughs during 2013 to 2015 were in August.
Previous studies show that the major reason for the frequent PM2.5 pollution in winter is the coal-fired
heating during that time, in both Beijing and the surrounding areas [53]. Moreover, the lighting of
fireworks during the spring festival also results in poor air quality.
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According to the records (Figure 5), PM2.5 concentrations around curbside monitoring sites
(the annual average concentrations of PM2.5 for 2013, 2014, and 2015 were 103, 96, and 91 µg/m3,
respectively) were higher than those around the urban background sites (the annual average
concentrations of PM2.5 for 2013, 2014, and 2015 were 95, 86, and 83 µg/m3, respectively), due
to road dust and emissions from vehicles. The standard deviations of PM2.5 concentrations during
each month were high, indicating that PM2.5 pollution might suffer a significant volatility in a short
period of time, as a result of Beijing’s peculiar geographical locations, meteorological conditions, and
the emissions of pollutants.
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3.2. LUR Model

3.2.1. Processing of Predictor Variables

We generated 25 variables in three categories and seven subcategories, to characterize the street
network, land-use, and population density at different radii around each monitoring site (Table 3). The
spatial analysis function of ArcGIS 10.2 was used to process these variables. Many buffer areas, which
were different-sized circles centered on each monitoring site, were generated in ArcGIS 10.2 to analyze
the street network, land-use, and population density around each monitoring site. The choice of the
buffer sizes was based on the scales of the variables and some other studies (e.g., [41,54]).
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Table 3. Classification, description, and processing methods used to generate variables in each category.

Category
(N Variables) Description Subcategories Buffer Radii

(km) Processing

Road length
(4)

Total length (in km)
of 5 road types

RD * (expressways, fast roads,
arterial roads, secondary roads,
branch roads)

0.5, 1, 2, 3

1. The road networks in different
buffer sizes are processed by the
Clip tool in ArcGIS.
2. The property sheets exported
are used to analyze road lengths.

Land-use
(20)

Total area (in km2)
of 5 land-use types

WT (Water),
VT (vegetation),
TP (transportation land),
OD (other developed land),
OND (other non-developed land)

0.5, 1, 2, 3

1. The land in different buffer
sizes are processed by the Clip
tool in ArcGIS.
2. The property sheets exported
are used to analyze the area
of land.

Population
density

(1)

Density (in
persons/km2) PD (persons) -

Population density of the district
where each monitoring site was
located has been used

* When regressing the LUR model, we found that not dividing roads into several subcategories worked better.
Therefore, the road length variable here is not divided anymore.

3.2.2. Selection of Predictor Variables

SPSS 22.0 (International Business Machines Corporation, New York, NY, USA), a widely used
software for statistical analysis in social science, was applied to analyze the correlation between PM2.5

concentrations and each independent variable. As shown in Table 4, out of the three types of predictor
variables, the subcategories that are most relevant to the PM2.5 concentrations are as follows: RD1,
WT4, VT2, TP2, OD3, OND3, and PD. According to the filtering criteria (no significant linear correlation
among predictor variables, t-tests, and the contribution to R2 is not below 1%), six variables were
finally determined for regression: RD1, WT4, VT2, TP2, OND3, and PD (Table 5). Except for OD1, all of
the variables highly relevant to PM2.5 were used for the final regression in the LUR model.

Table 4. Bivariate correlation analysis.

Number Symbol Variable
Pearson Correlation
Coefficient (between
Variables and PM2.5)

Pearson Correlation Coefficient
(between the Most Relevant

Subcategory and Others)

1 RD1 Road length 3 km 0.506 -
2 RD2 Road length 2 km 0.373 0.823
3 RD3 Road length 1 km 0.354 0.727
4 RD4 Road length 0.5 km 0.208 0.442
5 WT1 Water 3 km −0.121 0.600
6 WT2 Water 2 km −0.132 0.707
7 WT3 Water 1 km −0.108 0.979
8 WT4 Water 0.5 km −0.161 -
9 VT1 Vegetation 3 km −0.679 0.948

10 VT2 Vegetation 2 km −0.716 -
11 VT3 Vegetation 1 km −0.701 0.967
12 VT4 Vegetation 0.5 km −0.614 0.829
13 TP1 Transportation land 3 km −0.250 0.521
14 TP2 Transportation land 2 km −0.353 -
15 TP3 Transportation land 1 km −0.199 0.882
16 TP4 Transportation land 0.5 km −0.055 0.411
17 OD1 Other developed land 3 km 0.524 -
18 OD2 Other developed land 2 km 0.518 0.920
19 OD3 Other developed land 1 km 0.452 0.644
20 OD4 Other developed land 0.5 km 0.383 0.306
21 OND1 Other non-developed land 3 km −0.569 -
22 OND2 Other non-developed land 2 km 0.318 −0.029
23 OND3 Other non-developed land 1 km 0.099 −0.047
24 OND4 Other non-developed land 0.5 km −0.130 −0.063
25 PD Population density 0.094 -

Note: Blue words are the subcategories that are most relevant to PM2.5 concentrations.
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Table 5. Variables selected for final regression.

Independent Variable Symbol

Road length 3 km RD1
Water 0.5 km WT4

Vegetation 2 km VT2
Transportation land 2 km TP2

Other non-developed land 3 km OND1
Population density PD

3.2.3. Regression Result

SPSS 22.0 was used to regress PM2.5 concentrations and the six variables selected, based on the
data collected around the seventeen air-quality monitoring sites within the study area. The regression
result is shown below:

YPM2.5 = 0.477 + 0.798RD1 + 0.201WT4 − 1.394VT2 − 0.416TP2 + 0.960OND1 − 0.263PD (2)

In Equation (2), YPM2.5 is the annual average concentration of PM2.5 in 2015, RD1 is the length
of roads within a buffer of 3 km, WT4 is the water within a buffer of 0.5 km, VT2 is the vegetation
within a buffer of 2 km, TP2 is the transportation land within a buffer of 2 km, OND1 is the other
non-developed land within a buffer of 3 km, and PD is the population density.

The determination coefficient (R2) in this study was 0.839. Jerrett et al. (2007) [55] applied the
LUR to Toronto, Ontario, Canada, and developed a model with an R2 of 0.69. Ross et al. (2006) [45]
tested the LUR model in Southern California and were able to predict 79% of the variation in NO2. In
their review, Wu et al. (2016) [56] noted that the average R2 of an LUR model is 0.671. Compared to
these previous studies, the predictor variables selected in this study were highly relevant to PM2.5 and
fit the LUR model well.

3.3. Influence of Road Patterns on PM2.5

3.3.1. Analysis of the Land-Use around Traffic Pollution Monitoring Sites

Five curbside monitoring sites were set along main roads to assess the influence of traffic on the
air pollution in Beijing, all of which were within the study area. Figures 6 and 7 show the land-use
within a buffer of 3 km around these five sites in 2015 (Table 4 shows that, only within a buffer of 3 km,
is the PM2.5 concentration most correlated with road patterns. Therefore, the 3 km buffer radii was
selected here, as well as in Figures 8 and 9.).

From the two figures above, it can be seen that there are some similarities in the land-use pattern
around the five curbside monitoring sites, such as similar grid layouts of the land-use divided by
roads and similar land-use structures, with other developed land being the first, followed by vegetation,
water, transportation land, and other non-developed land. When considering the percentage of vegetation,
monitoring site 5 has a significantly higher percentage than the others, while monitoring site 3 has a
significantly lower value than the others. As for the percentage of other non-developed land, monitoring
site 5 has the lowest percentage, while monitoring site 3 has the highest value. From Equation (2), it can
be seen that the three variables most relevant to PM2.5 concentrations are vegetation, other non-developed
land, and road length. Based on the controlling variables method, monitoring sites with a similar
land-use structure should be selected to analyze the influence of road patterns on PM2.5, because
under this circumstance, the impact of land-use on PM2.5 concentrations can be ignored. Therefore,
monitoring sites 3 and 5, whose proportions of vegetation and other non-developed land show large
differences, were excluded, while sites 1, 2, and 4 were selected for the study. By comparing the road
patterns and the PM2.5 distribution of the selected monitoring sites, the relationship between the two
was determined.
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3.3.2. Link between Road Patterns and PM2.5 Concentrations

(1) Comparison of road patterns around the curbside monitoring sites

Monitoring site 1 was located at the East Avenue of Qianmen, near Tian’anmen Square and East
2nd Ring Road. The surrounding street network shows a relatively uniform grid pattern, with arterial
roads forming the skeletal structure of the road, while the branch and secondary roads weaved through
them. The density of this road network reaches 23.3 km/km2. Monitoring site 2 lies along the Inner
Avenue of Yongding Gate, near the Temple of Heaven and the North 2nd Ring Road. Branch roads and
arterial roads are the major components of the street network near this site. Moreover, this network
shows some differences between the southern and the northern areas: the road density in the south is
lower than that in the north; fast roads and arterial roads constitute the skeleton of the network in the
south, while arterial roads and secondary roads constitute the skeleton of the network in the north.
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The density of the whole road network around monitoring site 2 reaches 22.2 km/km2. Monitoring
site 3 is located near the Southwest 3rd Ring Road and Jingkai Expressway. The surrounding street
network shows a relatively uniform and low-density grid pattern, and the proportion of fast roads is
higher than the other two monitoring sites. There are also some small differences between the south
and the north, such as the arterial roads and branch roads, which are mainly concentrated in the north,
and the expressway, which only appears in the south. The density of the entire road network around
monitoring site 3 is 22.2 km/km2.

There are significant differences in the road network of the three monitoring sites (Figures 8
and 9). When considering the road density, the following relationship can be seen: monitoring site 1 >
monitoring site 2 > monitoring site 3. With regard to the road grade structure, both monitoring sites 1
and 2 are mainly dominated by branch roads and secondary roads, while monitoring site 4 features a
relatively uniform network structure, with an expressway also running around it. As for the layout of
the road network, the network near monitoring site 1 shows a relatively high-density grid pattern,
with the main streets forming a fishbone shape, while the network near monitoring sites 2 and 4 shows
a relatively low-density grid pattern, with the road in the north being denser than that in the south.
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(2) Comparison of PM2.5 concentrations around traffic pollution monitoring stations

There are some differences in the distribution of PM2.5 around the three monitoring sites (Table 6).
These differences among the concentrations look small, but they are quite important and meaningful,
because even a small change in PM2.5 concentrations could indicate a big change in the total emission of
PM2.5. Furthermore, some research has highlighted that slight variations in PM2.5 concentrations have
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a great influence on a human’s health. For example, the government of London released a report by Dr.
Brian G Miller in 2010, which said that every 1 µg/m3 permanent increase in PM2.5 concentrations is
associated with a mean reduction in life expectancy of three weeks [57]. When focusing on the annual
mean and median of PM2.5 in 2015, the following pattern emerges: monitoring site 4 > monitoring
site 1 > monitoring site 2. With regard to the amplitude of annual variation, the following relationship
is recorded: monitoring site 1 ≈ monitoring site 4 > monitoring site 2. As for the upper and lower
limits of the 95% confidence interval: monitoring site 4 > monitoring site 1 > monitoring site 2. The
seasonal mean, except for the abnormally high level of monitoring site 2 in winter, the other seasons
were almost aligned as: monitoring site 4 > monitoring site 1 > monitoring site 2. In summary, when
considering the three monitoring sites, the PM2.5 concentration of site 4 was the highest, followed by
site 1, and site 2 presented the lowest values. The fluctuations demonstrated at sites 4 and 1 were
significantly higher than that of site 2.

Table 6. Comparison of PM2.5 concentrations.

Annual Variation in 2015 Seasonal Mean (µg/m3)
Monitoring

Site
Mean

(µg/m3)
Median
(µg/m3)

Bound of 95%
Confidence Interval

Standard
Deviation Winter Spring Summer Autumn

No. 1 92.9 66.5 83.2 101.1 85.1 101.0 89.4 60.5 89.5
No. 2 89.9 65.0 81.3 98.4 81.3 104.4 79.7 57.2 88.9
No. 4 96.1 71.5 87.3 105.0 84.5 108.8 86.7 62.6 93.2

(3) Link between road patterns and PM2.5

From Equation (2), it can be seen that the three variables which are apparently relevant to PM2.5

concentrations are vegetation, other non-developed land, and road length. According to the analysis in the
Section 3.3.1 ”Analysis of the land-use around traffic pollution monitoring sites”, it is clear that the
land-use structures of monitoring sites 1, 2, and 4 are similar. Therefore, we can conclude that the
differences in PM2.5 concentrations between these three sites are mainly caused by the differences in
road patterns, based on the controlling variables method. Under this circumstance, by comparing the
road patterns and the PM2.5 distribution of the selected monitoring sites, the relationship between the
two can be concluded.

First, both the grade of road and the road density influence PM2.5 concentrations. Under the same
traffic carrying capacity, the high-grade road network, which has a low density, will be more likely to
improve the concentration of PM2.5 than the low-grade road network, which has a high density. This
means that the layout of “a tight network of streets and small blocks” is superior to the layout of “a
sparse network of streets and big blocks”, from an environmental and sustainable point of view (by
comparing monitoring sites 1, 2, and 4). The layout of “a tight network of streets and small blocks”
originates from the city-plan idea of new urbanism, which is used to solve the problem of low-density
road networks, serious block segmentation, high transportation energy consumption, traffic jams, etc.,
caused by the traditional mode of urban planning. With regard to PM2.5, this paper provides a more
convincing evidence for the reasonability of the layout of “a tight network of streets and small blocks”.

Second, the grade system of urban roads impacts the rationality of the road patterns, and the
high percentage of branch roads and secondary roads decreases PM2.5 concentrations (by comparing
monitoring sites 1, 2, and 4). Without secondary roads, the connection between arterial roads and the
place where traffic originates, will be insufficient. Without branch roads, secondary roads will bear the
function of branch roads, which will make it more difficult for the secondary roads to maintain their
own function, eventually leading to the disorganization of the entire road system. All of the above
situations will result in the overlap of different speeds of traffic flows, and the overload of several
accessible and convenient roads, which can hinder urban traffic evacuation. The percentage of low
and middle grade roads in developed countries, such as America and Japan, could reach 80%, with the
distribution proportion of roads from low-grade to high-grade being like a pyramid.
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Third, keeping traffic nodes unimpeded will significantly reduce the concentration of PM2.5

(by comparing monitoring sites 1 and 2). Unimpeded traffic nodes not only improve the operating
efficiency of the whole road network, but also reduce the obstruction to the wind field, which accelerates
the diffusion of PM2.5. The planning of road directions should also take into consideration the local
prevailing wind direction. The street canyons, which are parallel to the wind, could be helpful for the
diffusion of air pollutants through the transport effect of wind. The air pollutants in the street canyons
that are vertical to the direction of wind will diffuse less rapidly.

4. Conclusions and Discussion

With the fast development of motorized transport, the air pollution caused by traffic has been
a major source of pollutants in modern cities. Much research has been performed on PM2.5, but the
study of the correlation between road patterns and PM2.5 is a relatively new field. One major limitation
of this study is the fact that there are only five curbside monitoring sites. The limited samples make
it difficult to quantitatively research how the density, grade, and form of road network, affect PM2.5

concentrations. Under this circumstance, we chose a control variate method to perform our research,
which inevitably results in some subjective errors. Another limitation is that this case study relates to
the road patterns and PM2.5 in Beijing alone. Hence, more research on various types of cities should
be undertaken, to enrich the findings and make them more universal. Despite these limitations, we
believe that this research still offers an important insight ointo the relationship between road patterns
and PM2.5. The main conclusions are as follows.

(1) Do road patterns significantly affect PM2.5 concentrations?

First, the LUR model developed in this paper can explain 83.9% of the variation in PM2.5 levels,
which shows that the selected predictor variables are highly relevant to PM2.5, and that this model is a
good fit for the Beijing. Second, from highly relevant to PM2.5, to weakly relevant to PM2.5, the variables
are, vegetation, other non-developed land, road length, transportation land, population density, and water.
Among these variables, the regression coefficient of road length is up to 0.798, which is significantly
higher than water, population density, and transportation land, which shows that road patterns have an
obvious effect on PM2.5 concentrations. Third, the regression coefficient of road patterns is positive,
indicating that traffic improves the concentration of PM2.5, consistent with daily experiences. Fourthly,
according to Table 4, we can conclude that the correlation between PM2.5 and road patterns increases
with the increasing of a buffer zone.

(2) How do road patterns affect PM2.5 concentrations?

First, both the grade of road and the road density influence PM2.5 concentrations. Under the same
traffic carrying capacity, the high-grade road network, that has a low density, will be more likely to
improve PM2.5 concentrations than the low-grade road network, that has a high density. This means
that the layout of “a tight network of streets and small blocks” is superior to the layout of “a sparse
network of streets and big blocks”. Second, the grade proportion of urban roads impacts the rationality
of the road patterns, and a high percentage of branch roads and secondary roads could decrease PM2.5

concentrations. Third, keeping traffic nodes unimpeded can significantly reduce PM2.5 concentrations.
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