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Abstract: The future of climate and sustainable energy are interrelated. Speaking of one without
mentioning the other is quite difficult. The increasing number of natural disasters pose a great
threat to the electric power supply security in any part of the world. Sweden has been one of the
countries that have suffered from unacceptably long blackouts. The tremendous outcomes of the
power interruptions have made the field of the economic worth of electric power reliability a popular
area of interest among researchers. Nature has been the number one enemy against the supply
security of the electricity. This paper introduces a recent and thorough electric power reliability
analysis of Sweden and focuses on the country’s struggle against climate change-related natural
disasters via updating the country’s electric power policy to improve its service quality. The paper
highlights the Gudrun storm of 2005 as a case study to demonstrate the severe impacts of extreme
weather events on the energy systems. The economic damage of the storm on the electric power
service calculated to be around 3 billion euros.
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1. Introduction

Energy is a vital part of life. By being easy to produce and easy to convert to other forms of
energy, the significance of electric energy has been increasing from the date of its first usage. As years
pass by electric power is penetrating into almost every aspect of daily life. This makes societies
and the economies more dependent on electric power. The total electric power consumption in the
world has been increasing considerably for the last 60 years [1]. The tremendous outcomes of the
power interruptions have made the field of economic worth of electric power reliability a popular
area of interest among the researchers. Nature events have been the biggest threat against the supply
security of the electricity [2–4]. Experiences show that both the number and the duration of extreme
weather events have increased substantially over the last decades. Environmental scientists indicate
that the climate change is a major factor that increases the frequency and the intensity of these
events [5]. The consequences of natural disasters are severe for the environment, the economy,
and people’s wellbeing. Different parts of the world are prone to different types of extreme weather
events. The central European flood of 2013 lasted almost a month and caused extensive damage to
the ecosystem and to the communities. It also led to serious damages on the electric power system
resulting in long lasting blackouts. Germany experienced the highest losses due to flooding, with a cost
of 12 billion euros, where total losses in the region reached 17 billion euros [6]. The flooding in Toronto,
Canada, in 2013 disrupted the power reliability and about 70,000 customers experienced long power
interruptions [7]. On the other hand, in 2005, the hurricane Katrina hit the United States and about
2.7 million customers lost electric power [8]. In 2012, the hurricane Sandy caused severe damages
in the United States and Canada and up to 9.3 million electric power customers experienced power
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outages [9]. After the disaster, the electric power infrastructure repairing costs reached 3.5 billion
dollars [9]. In December 2013, heavy storms hit the United Kingdom. The Environment Agency,
Met Office, reported that England had been suffering from the wettest winter seen in 250 years [10].
Due to the storms, in the United Kingdom and Ireland, about 750,000 customers experienced power
outages [11]. In 2008, extreme ice storms caused substantial damages in China. The long and heavy ice
formations on the Chinese power grid led to the collapse of thousands of transmission towers and
hence triggered cascading interruptions [12]. Almost 200 million people were not able to reach electric
power service and the direct costs of these interruptions exceeded 2.2 billion dollars [12].

This paper introduces a recent and thorough electric power reliability analysis of Sweden and
focuses on the country’s struggle against climate change-related natural disasters. It also presents
a cost estimation of the consequences of the Gudrun storm of 2005 on electric power customers.

2. The Gudrun Storm of 2005 and Its Aftermath

The Swedish annual electric power consumption per person is one of the highest in the
world [13]. Figure 1 illustrates and comparison of the electric power consumption per capita among
several countries.

In accordance with the energy and climate goals of the European Union, Sweden has been
taking measures in boosting the energy efficiency. Figure 1 presents the success of these policies by
demonstrating the decrease in electric energy consumption per person for the last decade. However,
it is clear that the global financial crises of 2008 played a major role in deteriorating the European
economies, hence causing sharp decreases in the consumption of electric energy.
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Figure 1. Yearly change of electric power consumption per capita in several countries [13]. * Finland,
Sweden, Norway, and Denmark (Iceland excluded).

Thanks to its highly developed and robust electric power infrastructure, Sweden had been
enjoying a high level of electric power security until the year 2005. In January 2005, the Gudrun
storm hit Northern Europe, causing a substantial amount of destruction in Sweden, Denmark, Latvia,
Lithuania, and Estonia. Sweden experienced the most severe losses. Around 730,000 customers
experienced long-lasting power interruptions [14]. The electricity service restored within 24 h for
almost half of the customers who lost power. Throughout the country, the interruption durations
changed due to the changing usage of underground cables. The city areas were least affected thanks
to the high degree of cabling. The outages in these places lasted up to several hours. On the other
hand, since the power distribution heavily relies on aerial lines, the outages in rural areas persisted
for up to 20 days [14]. The lines passing through forests were the main places where the damages
occurred. The falling trees over power lines caused a considerable number of interruptions for Swedish
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customers. Falling trees on the lines and collapsing poles harmed almost 30,000 km of distribution
lines [15]. Fortunately, the storm did not create excessive damages to the transmission lines. The storm
did not largely affect the power generation capacity of Sweden [15]. Only 20% of the power capacity
was lost due to the shutdown of four nuclear reactors and to the downscaling of one reactor [15].
In the case of storm-related power outages, the percentage of underground cables plays a crucial
role in diminishing the economic and social outcomes of the events. Table 1 shows the types of the
distribution lines and their average lengths belonging to 16 distribution system operators (DSOs) that
were most affected by Gudrun [16].

Table 1. The distribution line types of 16 network operators [16].

Distribution Lines in
Affected Areas (Total) Cable Insulated

Overhead Lines
Uninsulated

Overhead Lines

Length (km) 142,631 68,593 23,193 50,845
Percentage (%) 100 48 16 36

Insulated overhead lines and especially uninsulated overhead lines were the main source of
problems. The total cost of the hurricane with all direct and indirect impacts is not certain. However,
the estimations tell that the interruption losses incurred at the society extend from 1.6 to 2.1 billion
Swedish Krona (SEK). In addition to this, the DSOs reported enormous monetary losses as well.
When summed up, the total cost of the Gudrun storm related to blackouts only reached a figure
from 4 to 5 billion SEK [8]. On average, during January 2005, 1.0 SEK was equal to 0.11 euros [17].
This means, storm-related outages had a cost of 400–500 million euros to the Swedish society. Table 2
presents the estimations of the DSO outage costs during Gudrun [16].

Table 2. Cost estimations by network operators [16].

Loss of Supply Clearance, Repair
and Restoration

Compensations
for Loss of Supply Other Costs Total

SEK million 53.62 1537.32 613.70 132.05 2344.78
EUR 1 million 5.90 169.11 67.51 14.53 257.93

Share (%) 2 66 26 6 100
1 1 SEK was taken to be equal to 0.11 EUR according to the European Central Bank, January 2005 exchange rate [17].

The clearance, repair, and restoration efforts held the lion’s share of the losses. The sum of utility
compensations comprises 26% of the total losses. The Swedish government proposed the first customer
compensation scheme during 2001. However, this proposal was not made into law. According to this
proposal, if a single power outage event extends a predefined duration, then the DSO is to pay back to
the customer a certain percentage of the customer’s annual electricity delivery fee as a penalty. Table 3
summarizes the proposal of 2001.

Table 3. The proposed outage compensation scheme, 2001 [18].

Outage Time Compensation

(h) (SEK)

12 < t < 24 500
24 < t < 48 1000
48 < t < 72 3000

72 < t 6000

After the Gudrun storm, in October 2005, the Swedish government updated the electricity law
and made the compensation scheme of 2001 compulsory for the DSOs [18]. Another update came



Sustainability 2017, 9, 230 4 of 11

during 2014 [19]. Table 4 depicts the new plan, which introduces longer interruption intervals with
corresponding higher penalties for the network operators.

Table 4. The compensation scheme by Swedish electricity law [19].

Outage Time Percentage of Annual
Costs Compensated

Minimum Amount
of Compensation

(h) (%) (SEK)

12 < t < 24 12.5 500
24 < t < 48 37.5 1000
48 < t < 72 62.5 3000
72 < t < 96 87.5 6000
96 < t < 120 112.5 4500

120 < t < 144 137.5 5400
144 < t < 168 162.5 6300
168 < t < 192 187.5 7200
192 < t < 216 212.5 8100
216 < t < 240 237.5 9000
240 < t < 264 262.2 9900
264 < t < 288 287.5 10,800

288 < t 300 11,700

The electricity law states that, under certain limited conditions, the electricity consumer is not
entitled to earn compensation for power interruption, despite a service break. This applies under the
following states [19]:

• Interruption is due to the negligence of the electricity user.
• The electricity is interrupted because of electrical safety reasons or to preserve supply security

and reliability.
• Interruption is due to a barrier outside the network owner’s control.
• Interruption is attributable to the fault in the grid.

3. The Electric Power Reliability in Sweden

System Average Interruption Duration Index (SAIDI) and the System Average Interruption
Frequency Index (SAIFI) are commonly used to interpret the reliability, where SAIDI (in hours) and
SAIFI are defined as

SAIDI =
total duration of sustained interruptions in a year

total number of customers
(h) (1)

SAIFI =
total number of sustained interruptions in a year

total number of customers
(2)

Figure 2 shows the changes in SAIDI outage hours in Sweden between 2005 and 2014.
The interruptions here are the total planned and unplanned interruptions lasting more than three
minutes [20].
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Figure 2. SAIDI outage hours in Sweden, 2005–2014 [20].

The characteristics of the outages show that the majority of the events were unexpected (or
unplanned) events. Figure 3 illustrates the characteristics of the power interruptions in Sweden from
2007 to 2014.
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Figure 3. Distribution of the unexpected and planned outages in Sweden, 2005–2014 [20].

The causes for the interruptions at Figure 4 indicate that, during 2005, almost 50% of all outages
in Sweden resulted from nature events.
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Figure 4. Causes for the power interruptions in Sweden during 2005 [20].

The sources of the interruptions show that the Swedish DSOs have overcome the shock of Gudrun
and strengthened their supply security after the year 2005 [20]. Figure 5 presents the summary of the
distribution of the outage causes during 2007–2014. The reasons for interruptions have been regrouped
as nature, human, operation, and unknown.

• nature: thunders and other weather conditions
• human: personnel and vandalism
• operation: material, overload, reconnection, and fuse malfunctioning
• unknown

Sustainability 2017, 9, 230  6 of 11 

 

Figure 4. Causes for the power interruptions in Sweden during 2005 [20]. 

The sources of the interruptions show that the Swedish DSOs have overcome the shock of 

Gudrun and strengthened their supply security after the year 2005 [20]. Figure 5 presents the 

summary of the distribution of the outage causes during 2007–2014. The reasons for interruptions 

have been regrouped as nature, human, operation, and unknown. 

 nature: thunders and other weather conditions 

 human: personnel and vandalism 

 operation: material, overload, reconnection, and fuse malfunctioning 

 unknown 

 

Figure 5. Share of the causes for the power interruptions in Sweden, 2007–2014 [20]. 

0

5

10

15

20

25

30

35

40

45
P

er
ce

n
ta

g
e 

sh
ar

e 
o

f 
th

e 
o

u
ta

g
e 

ca
u
se

 (
%

)

0

5

10

15

20

25

30

35

40

45

50

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

S
h

ar
e 

o
f 

th
e 

o
u

ta
g

e 
ca

u
se

 (
%

)

nature human operation unknown

Figure 5. Share of the causes for the power interruptions in Sweden, 2007–2014 [20].



Sustainability 2017, 9, 230 7 of 11

One alarming observation is that, while the share of nature-related events is decreasing almost
gradually, there is a considerable increase in the outages with unknown causes. In order to make a
comparison, Figure 6 summarizes the reliability performance of Finland. The Finnish power system has
mainly been suffering from nature events, where the unknown interruption reasons are negligible [21].
The high interruption hours in 2010, 2011, and 2013 are due to the harsh storms that hit Finland and
caused substantial damage to the Finnish electricity customers [21].
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Figure 6. Outage hours and the causes for the power interruptions in Finland, 2007–2014 [21].

Calculating the Costs of Power Interruptions

Estimation of the customer interruption costs (CIC) is a challenging task for the researcher.
There have been numerous studies to introduce a credible and objective methodology to solve the
problem. The extensive review paper [22] compiles the significant studies that focus on the phenomena
of the electric power reliability worth and customer interruption costs published since the year 1990.
The paper clearly demonstrates that calculating the real monetary value of the continuous electricity
supply is a highly tedious task. Different customer segments require distinct evaluation techniques to
find out the worth of the electric power reliability. On the other hand, the Energy Market Authority
of Finland prefers to evaluate the disadvantages caused by long outages by calculating the customer
interruption costs according to Equation (3) [23].

CICt,k =

(
ODunexp,t × hE,unexp + OFunexp,t × hW,unexp,t +

ODplan,t × hE,plan + OFplan,t × hW,plan

)
× Wt

Tt
× CPIk−1

CPI2004
(3)

where

CICt,k: monetary worth of the power interruptions to the DSO’s customers in year t in the value of
money in year k, euros;
ODunexp,t: customer’s average annual unexpected outage time weighted by annual energies in the
year t, hours;
hE,unexp: value of the unexpected outages to the customer in the 2005 value of money, euros/kWh;
OFunexp,t: customer’s average annual unexpected outage number weighted by annual energies in the
year t, numbers;
hW,unexp: value of the unexpected outages to the customer in the 2005 value of money, euros/kW;
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ODplan,t: customer’s average annual planned outage time weighted by annual energies in the
year t, hours;
hE,plan: value of the planned outages to the customer in the 2005 value of money, euros/kWh;

OFplan,t: customer’s average annual planned outage number weighted by annual energies in the
year t, numbers;
hW,plan: value of the planned outages to the customer in the 2005 value of money, euros/kW;

Wt: the customer’s amount of energy consumption in the year t, kWh;
Tt: the total number of hours in a year;
CPI: Consumer Price Index.

Table 5 summarizes the necessary statistical data for the outage cost calculation.

Table 5. Power interruption, electricity consumption, and consumer price index statistics of Sweden
between 2005 and 2015 [20,24,25].

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

SAIDI unexpected (h) 17.48 1.73 5.43 2.09 1.17 1.45 3.35 1.55 3.34 1.50 2.17
SAIDI planned (h) 0.62 0.42 0.37 0.42 0.34 0.29 0.30 0.29 0.39 0.47 0.33
SAIFI unexpected 1.49 1.22 1.46 1.33 1.12 1.42 1.81 1.48 1.48 1.42 1.28

SAIFI planned 0.22 0.22 0.24 0.30 0.16 0.16 0.16 0.14 0.16 0.18 0.15
Consumer Price

Index 100 101.36 103.61 107.21 106.87 108.22 111.07 112.05 112 111.8 111.75

Electricity
consumption (TWh) 135 135 136 133 128 137 129 132 129 125 125

Sweden and Finland are in the Nord Pool power market and hence the retail electricity prices
are quite close to each other. Since the value of end user electricity and the consumer characteristics
in Sweden and Finland are quite similar, at the calculation stage, the h values defined by the Energy
Market Authority of Finland have been used. Table 6 demonstrates the h values.

Table 6. Prices in 2005 values for calculation of the customer interruption costs [23].

hE,unexp (€/kWh) hW,unexp (€/kW) hE,plan (€/kWh) hW,plan (€/kW)

Value 11 1.1 6.8 0.5

The Swedish network operators reported their direct losses due to power interruptions to be
around 257 million euros in 2005 during the Gudrun storm. According to the calculations with
Equation (3), the total costs of all power interruptions in the entire year of 2005 were about 3 billion
euros. This is reasonable when all direct and indirect impacts of power outages are taken into account.
Furthermore, the comprehensive report written after the infamous New York City blackout of 1977
show that the monetary worth of the indirect impacts of outages are much higher than the direct
ones [26]. Table 7 shows the calculated CIC’s in Sweden from 2005 to 2015.

Table 7. Customer Interruption Costs in Sweden between 2005 and 2015.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CIC (M€) 2996 324 992 404 223 298 638 317 636 293 406

4. Discussion

The significance of energy and climate change topics have increased in many folds after the United
Nations Climate Change Conference Paris 2015 and the European Union’s 2020, 2030, and 2050 energy
and climate goals. The frequency of the climate change-related extreme weather events has increased
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considerably for the last couple of decades. Therefore, investigating the consequences of these events
on the energy systems is imperative. Sweden is a developed country sharing accurate and transparent
data for research purposes. The protection of the customers’ right is of vital concern. These facts
make Sweden a proper place to study the impacts of natural disasters on electric power reliability.
Figure 3 demonstrates the tremendous impacts of the Gudrun storm on Swedish electric power system.
An annual outage hour of 18 h was a record high and after the storm, the government decided to
go through vast transformation plans for the Swedish electric power infrastructure. In 2005 alone,
the power outages costed almost 3 billion euros to the Swedish society. To strengthen the security of
the Swedish power delivery system, nearly 5 billion euros were spent [27]. Tables 3 and 4 present the
policy changes of the Swedish government after the storm in 2005. The customer compensation scheme
was updated to protect the consumers more by increasing the penalties in case of power outages.
On the other hand, serious infrastructure boosting attempts started as a solution to increase the supply
security in the country.

5. Conclusions

The cost of the storm on electricity service reached 3 billion euros in Sweden in 2005. To avoid
such a shocking incident, the majority of the sources were spent in laying cables and replacing aerial
lines with underground cables. Figures 2 and 5 show the success of the program in reducing the total
outage hours and weakening the impacts of harsh weather conditions on the electric power system.
Nevertheless, Sweden is still performing poorer than many European states in power reliability.
The country’s annual average outage hour is higher than many of the European Union member
states [28]. The country has been struggling against the same odds similar to her neighbor Finland [29].
There has not been such a major natural disaster in the region since 2005. The policy makers aim to
improve the supply security in Sweden. Under the light of these, it is clear that there is more to do in
protecting the Swedish electricity customers. The increasing share of the unknown causes of the power
outages is an urgent matter for the authorities and for the DSOs. Widening the aerial transmission and
distribution line corridors by de-vegetation is another viable precaution to decrease the adverse effects
of the nature events on the electric power system.
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