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Abstract: This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from
groundwater to meet the requirements of drinking water regulations. Results obtained by batch
adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH), synthesized at pH 4
for maintaining a high positive charge density (2.5 mmol OH−/g) achieved a residual concentration
of Sb(III) below the EU drinking water regulation limit of 5 µg/L by providing an adsorption capacity
of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH,
Bayoxide) or to tetravalent manganese feroxyhyte (Fe-MnOOH) adsorbents. In contrast, all tested
adsorbents failed to achieve a residual concentration below 5 µg/L for Sb(V). The higher efficiency of
the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity
of 3 mg Sb(III)/g was determined at a breakthrough concentration of 5 µg/L. However, it completely
failed to achieve Sb(V) concentrations below 5 µg/L even at the beginning of the column experiments.
The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering
the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min), the
developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III)
removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close
to 30 ± 3.4 €/103 m3 for every 10 µg Sb(III)/L removed.
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1. Introduction

Antimony is classified as a toxic compound and as a high priority pollutant, especially for water
supplies used for drinking purposes [1]. Particularly, international organizations (US EPA, EU) have
established a very low maximum permissible contaminant level (6 and 5 µg/L, respectively) for Sb
species regarding the consumption of safe drinking water [2,3]. Nevertheless, particular attention has
not been dedicated to the understanding of Sb aqueous chemistry, as well as to the development of
respective methods for its efficient removal to levels below the regulation limits. This can be attributed
to the lower frequency of the presence of Sb in aquatic systems, which is a consequence of its limited
solubility, when compared to aquatic species of other elements of the same group in the Periodic Table,
such as arsenic and phosphorus [4]. Still, high concentrations of Sb were reported in water sources
near hot springs, in areas with specific industrial activities such as the production of flame retardants,

Sustainability 2017, 9, 238; doi:10.3390/su9020238 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability


Sustainability 2017, 9, 238 2 of 11

batteries, chemicals, ceramics, etc., as well as in certain mining fields. In the last case, the presence
of antimony is usually combined with high arsenic concentrations, mainly originating from sulfide
ores [5].

In natural waters, Sb can be found in two oxidation states, i.e., as Sb(III) and Sb(V), depending
on the respective redox potential of the aquatic reservoir. Under oxic conditions, Sb(V) oxyanions are
the dominant forms, while the percentage of trivalent species, considered to be more toxic, becomes
significant only in less oxygenated systems. The speciation of Sb(V) is determined by its coordination
with oxygen atoms which is rather different from the corresponding As(V) and P(V) oxyanions. More
specifically, due to its larger ionic radius and lower charge density, Sb(V) is coordinated in octahedral
geometry, unlike As(V) and P(V) which favor a tetrahedral formation. Accordingly, Sb(OH)6

− is the
dominant species of Sb(V) in the common pH range of natural waters. On the other side, neutral
Sb(OH)3 species appear as the hydrolyzed forms of Sb(III).

A variety of methods have been proposed for the removal of Sb from water, with most of them
being adapted by similar approaches as applied in the case of arsenic removal. In summary, coagulation,
adsorption, oxidation, ion-exchange, membrane separation and bioremediation techniques are
commonly discussed in the respective literature studies [6,7]. Coagulation and co-precipitation
methods usually incorporate the use of low-cost ferric or aluminum salts to successively capture both
Sb(III) and Sb(V) species [8–11]. Relevant studies indicate that the removal of Sb(III) is more favorable
than that of Sb(V), due to the increasing mobility of pentavalent species at pH values above 5 and
the strong competition for adsorbing sites of specific co-existing anions, such as phosphate, silicate,
and bicarbonate, commonly found in natural waters. Among the available treatment processes, the
application of adsorbents in the column bed filter configuration is considered as a more advantageous
setup due to its simplicity and almost unattended operation. Iron-based oxy-hydroxides (FeOOHs)
are the main class of adsorbents studied so far for Sb uptake, while other solid phases or inorganic
composites, including zero valent iron [12], graphene oxide [13,14], activated alumina [15], aerobic
bio-granules [16], hydroxyapatite [4] and zeolites [17], were also reported as alternative active
adsorption materials.

In general, the adsorption behavior of antimony onto FeOOHs is determined mainly by its
speciation (as Sb(III) and/or Sb(V)), its affinity with the different kinds of adsorbents, the pH
of adsorption, interferences by other co-existing competing ions, and by secondary desorption
processes [18–21]. Both Sb species form inner-sphere complexes when adsorbed on a FeOOH
surface [22]. However, the literature results suggest that the adsorption of Sb(III) is almost independent
of the applied pH value, whereas the adsorption capacity for Sb(V) significantly drops as the pH
increases within the pH range of natural waters (6–8) and decreases further in the presence of certain
competing anions such as phosphates.

Another important observation is that the surface of amorphous FeOOH may catalyze the
oxidation of initially adsorbed Sb(III), leading to the partial desorption of Sb(V) back into the treated
water [23,24]. This mechanism becomes more intense when applying iron-manganese oxy-hydroxides
(Fe-MnOOH), due to the rapid oxidation of Sb(III) and the subsequent release of formed Sb(V) [25,26].
Although this strategy promotes the advantage of converting antimony to the less toxic Sb(V) species,
the result of this reaction is of doubtful use, since efficient adsorption results for Sb(V) can be
provided only for acidic pH values (i.e., below 5); therefore, it is not particularly useful for drinking
water applications.

From the practical point of view, the treatment/removal of antimony from water by using
adsorbents has to be approached in a different way than in the system of As(III)/As(V). Many studies
indicate that commercial sorbent materials based on FeOOH developed for arsenic removal fail to be
efficient for the removal of antimony. Particularly, granular ferric hydroxide (GFH), CFH12 or Bayoxide
E33 have been tested in several studies, indicating a weak performance for antimony removal, i.e., one
to two orders of magnitude below the corresponding values for arsenic, since the adsorption capacity
at the residual concentration of 5 µg/L ranged between 0.03 and 0.65 mg Sb/g [27–30].
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The aim of this work is to determine the major parameters featuring an effective iron
oxy-hydroxide adsorbent material that can enable a high potential for antimony uptake, i.e., able to
provide a residual Sb concentration below the respective drinking water regulation, and to suggest a
relatively simple preparation method that can create such a customized material. To the best of our
knowledge, the application of this kind of FeOOH has not been previously reported and comprises a
fully new approach in antimony removal options, which leaves the field for further improvements
open. In this regard, a series of FeOOH was prepared by the precipitation of iron salts under different
pH and redox potential values. The adsorption capacity of these adsorbents for Sb(III) and Sb(V)
species was evaluated in comparison to commercial FeOOH- and Fe-MnOOH–based products, already
used for arsenic treatment, by applying batch and column experimental protocols.

2. Materials and Methods

2.1. Adsorbents

In order to establish the correlation of structural and surface properties of FeOOH with their
efficiency to capture/remove antimony, a series of samples were synthesized by oxidation-hydrolysis
of FeSO4·H2O under high redox potential and various pH values, using a laboratory two-stage
continuous flow reactor [31]. The reaction setup was pumped with a 40 g/L FeSO4·H2O solution
at a 10 L/h rate, whereas redox potential and pH were regulated by the addition of drops of H2O2

(50% w/w) and NaOH (30% w/w), respectively. Particularly, in each synthesis, the pH was set at a
constant value (4, 7, 9) and for this condition the redox potential was controlled to the corresponding
maximum point, before oxygen bubbles appear, i.e., from +410 to +170 mV for the specific pH range.
Formed solids were collected from the outflow of the system and thickened using an Imhoff tank. The
obtained sludge was washed, centrifuged and dried for 4 h at 110 ◦C. The material was ground either
as fine powder (with size less than 63 µm) for the batch adsorption experiments, or as granules (with
size 0.25–0.50 mm) for the column tests. The specific surface area of the samples was determined by the
volumetric method (BET) in the range 120–150 m2/g. The production cost of such process scaled up to
industrial-operation terms is estimated to be around 2 €/kg split to 0.9 €/kg for reagents, 0.2 €/kg
for energy, 0.4 for labor and 0.5 €/kg for other (maintenance, packaging, depreciation, etc.) costs.
For comparison reasons, the commercially available FeOOH and Fe-MnOOH products approved for
arsenic treatment, such as GFH (237 m2/g), AquAsZero (190 m2/g), Bayoxide (135 m2/g) namely
consisting of akagaenite, tetravalent manganese feroxyhyte and goethite, respectively, were also
examined in this study.

2.2. Batch Experiments

Stock solutions of Sb(III) or Sb(V) (100 mg/L) were prepared from reagent grade Sb2O3 and
K[Sb(OH)6], respectively. Working standards were freshly prepared by proper dilution of the
stock solutions in a test water matrix, containing the interfering ions of a typical natural water.
The natural-like water was prepared according to National Sanitation Foundation (NSF) standard,
containing 252 mg NaHCO3, 12.14 mg NaNO3, 0.178 mg NaH2PO4·H2O, 2.21 mg NaF, 70.6 mg
NaSiO3·5H2O, 147 mg CaCl2·2H2O and 128.3 mg MgSO4·7H2O, diluted in 1 L of distilled water. Prior
to adsorption experiments, pH was adjusted to the target value, by adding either NaOH or HCl of
0.1 or 0.01 N. Adsorption batch experiments were carried out by placing 5–25 mg of adsorbents’ fine
powder, with size less than 63 µm, in 300 mL conical flasks and shaking with 200 mL of aqueous Sb(III)
or Sb(V) solutions for 24 h at 20 ◦C. Initial antimony concentrations ranged between 100 and 5000 µg/L
to provide equilibrium concentrations between 2 and 1000 µg/L. Initial pH values were adjusted
at 6, 7 and 8 and adsorption isotherms were recorded at each equilibrium pH. At the end of each
experiment, the suspensions were filtered through a 0.45 µm pore-size membrane filter. The collected
samples (100 mL) were first acidified by adding 1 mL of 8 N HNO3 and then antimony species were
stabilized in the Sb(V) form with the addition of 0.2 mL of 0.1 N KMnO4. Initial and residual antimony
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concentrations were determined by Graphite Furnace Atomic Absorption Spectrophotometry, using a
Perkin-Elmer AAnalyst 800 instrument, with a calibration curve of Sb(V) standards. The detection limit
of the method, which was calculated from 7 replicates of 2–10 µg Sb/L, was estimated to be 1.5 µg/L.

2.3. Kinetics

The evolution of antimony concentration with contact time (0–24 h) was monitored during batch
adsorption experiments, by introducing 20 mg of adsorbent dispersed in 200 mL of Sb(III) solution in
NSF water matrix with initial concentration 500 µg/L at pH 7 and 20 ◦C. Sampling was performed
with higher frequency during initial treatment times, whereas it was performed at extended time
intervals, when equilibrium was approached.

2.4. Column Tests

Rapid small-scale column tests (RSSCT) were performed to evaluate the efficiency of tested
adsorbents in a full-scale system, by designing the experiments in such a way that would simulate a
full-scale adsorption column with an Empty Bed Contact Time (EBCT) of 5 min. This was achieved
by operating a small-scale laboratory experiment with an EBCT 3 min, using a Reynolds-Schmidt
numbers product of around 2000, and an hydraulic loading q of 0.5 L/h. Granules of adsorbents with
size 0.25–0.50 mm were introduced in laboratory glass columns (of 1.1 cm diameter and 40 cm height),
equipped with PTFE valves and a glass frit to hold the material. Columns were filled at a height of
26 cm by granules of the qualified FeOOH adsorbent (mads = 15 g) and AquAsZero (mads = 12 g). The
system was fed either by Sb(III) or Sb(V) solution (Co = 100 µg/L) in NSF water matrix pumped from
the top of the column. The equilibrium pH was adjusted to 7 ± 0.1. Water samples were periodically
collected from the effluent and analyzed for the residual antimony concentration (Ce). The adsorption
capacity Q (mg·Sb/g adsorbent) at each time t was determined by the implementation of Equation (1):

Q =
t

∑
t=0

(Co − Ce)·q·dt/mads (1)

2.5. Leaching Behavior

Antimony desorption tests were performed by using the spent adsorbents from RSSCT
experiments to check their compliance with the regulations for environmentally safe disposal. A given
mass of the solid-loaded with Sb sample was placed in a container with a specific volume of a leaching
solution, according to standard leaching test EN 12457 [32].

3. Results

3.1. Adsorption Evaluation

The optimum preparation conditions for the synthesized FeOOHs were determined according to
their efficiency to remove antimony species from water, by evaluating the corresponding adsorption
isotherms in the pH range commonly encountered in drinking water. Figure 1 presents the results
for the representative adsorbents synthesized at pH values of 4, 7 and 9, which were tested in batch
adsorption experiments for Sb(III) and Sb(V) removal from NSF water. The isotherms were extended to
higher Sb concentrations than those usually encountered in natural water to better clarify the existence
of any trend and to obtain a more accurate fitting of the results. It is demonstrated that all examined
materials appear to be potentially efficient for Sb(III) uptake, with the maximum adsorption capacity
achieved by the FeOOH synthesized at pH 4, which in turn was qualified as the optimum adsorbent.
By the fitting of the Sb(III) adsorption data by a Freundlich-type curve, an adsorption capacity at
the residual concentration of 5 µg/L equal to 3.1 mg/g was estimated for the qualified adsorbent,
which is abbreviated as Q5 henceforth. However, the Q5 value was decreased close to 2 mg/g when
the synthesis procedure took place at neutral or alkaline pH values. On the other hand, the tested
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adsorbents were not proved able to achieve final Sb(V) concentrations below the regulation limit of
5 µg/L, indicating very low capacities in the studied residual concentration range (Figure 1b).
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Figure 1. Antimony adsorption isotherms for synthesized FeOOH samples prepared by precipitation
at pH values 4, 7 and 9; uptake of (a) Sb(III), and (b) Sb(V), dissolved in NSF water at pH 7. Inset:
magnification of the isotherm in the concentration range 0–100 µg/L.

The efficiency of the qualified FeOOH for Sb(III) adsorption was relatively stable in the water
pH range of 6–7, where the dominant antimony form is Sb(OH)3 (Figure 2). However, the adsorption
capacity slightly decreased when the adsorption took place either under more acidic (pH 5) or more
alkaline conditions (pH 8). In addition, the qualified FeOOH was found to be more efficient for the
removal of Sb(III), when compared to certain commercially available arsenic adsorbents.
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Figure 2. Influence of water pH on Sb species adsorption efficiency of qualified FeOOH. Initial
concentrations: 1000 µg Sb(III)/L, 250 µg Sb(V)/L, Adsorbent 50 mg/L, NSF water matrix, 20 ◦C.
Estimated loadings: 18.4–19.1 mg/g for Sb(III) and 2.6–3.4 mg/g for Sb(V).
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GFH and Bayoxide provided lower Q5 values of 1.4 mg/g and 0.6 mg/g, respectively, while
AquAsZero was unable to reduce the residual Sb(III) below the limit value of 5 µg/L (Figure 3).
Similarly, the commercial FeOOH adsorbents failed to meet the drinking water regulation limit for
Sb(V) (data not shown).Sustainability 2017, 9, 238  6 of 11 
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Figure 3. Sb(III) adsorption isotherms for GFH, Bayoxide and AquAsZero, which are commercially
available adsorbents, in comparison to that of FeOOH prepared at pH 4. Experiments were conducted
in NSF water matrix at pH 7.

3.2. Kinetics

The evolution of the residual Sb(III) concentration by increasing the contact time during the batch
experiments indicated a very rapid adsorption process, as 85% removal was observed within the first
10 min of contact time, while 96% of the equilibrium concentration was reached after the first hour.
Figure 4 shows the kinetic data obtained for the FeOOH samples prepared at pH values of 4 (qualified
FeOOH) and 7. These experimental points were best fitted by a pseudo-second-order equation:

t
qt

=
1

kq2
e
+

t
qe

(2)

where t is the contact time (min), qt the adsorption capacity at this time (mg/g), qe the maximum
capacity at equilibrium and k the corresponding adsorption constant (g/mg·min). The fitting
parameters qe and k were estimated to be 4.043 mg/g and 1.050 g/(mg·min), respectively, for the
adsorbent prepared at pH 4, while the corresponding values for the adsorbent prepared at pH 7
were 3.326 mg/g and 0.823 g/(mg·min). Since the FeOOH samples were porous particles that were
vigorously agitated during the adsorption period, it is reasonable to assume that the rate was not
limited by mass transfer from the bulk liquid to the external surface of particles. The fact that the
inclined lines (inset of Figure 4) do not pass through the origin verifies this assumption, indicating
simultaneously that the limiting rate step of adsorption is attributed to the intraparticle diffusion effect
and the plateau to the equilibrium [33].
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samples synthesized at pH 4 (qualified FeOOH) and 7, in NSF water adjusted at pH 7.

3.3. Column Experiments

Figure 5 summarizes the breakthrough curves for both Sb(III) and Sb(V) uptake by the qualified
FeOOH, as well as by the commercial AquAsZero. The commercial FeOOH products GFH and
Bayoxide were not studied further here due to the previous publications of relevant data from
large-scale column operations [30,34]. The results show that the efficiency of the qualified FeOOH,
prepared in this study, at the breakthrough concentration of 5 µg/L, was approaching the Q5 value
of 3 mg/g for Sb(III) removal, which is close to that defined by the batch adsorption experiments
(Section 3.1). This Q5 value corresponds to 19.2 × 103 bed volumes. On the contrary, AquAsZero
provided a Q5 value of only 0.2 mg/g for Sb(III) due to the oxidation of the latter to Sb(V). It should
be clarified that AquAsZero was incorporated in this study just to illustrate the negative effect of
oxidation in antimony removal. In any case, however, both adsorbents completely failed to capture the
Sb(V) species even during the initial times of the column experiments, thus confirming the results of
our batch experiments.
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Figure 5. Breakthrough curves of granular qualified FeOOH and AquAsZero for Sb(III) and Sb(V)
removal during RSSCT experiments. Initial concentration 100 µg/L in NSF water, adjusted at pH 7.

3.4. Leaching Tests

The spent adsorbents from the RSSCT experiments were subjected to leaching tests according
to the EN 12457 procedure. The leaching results of the spent adsorbents loaded by Sb(III) indicated
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that the qualified FeOOH should be treated as inert waste, while AquAsZero should be treated as
non-hazardous waste (Table 1). In contrast, both adsorbents should be characterized as non-hazardous
wastes after Sb(V) uptake.

Table 1. Leaching characteristics of spent adsorbents tested in RSSCT experiments.

Spent Adsorbent Adsorption Load (mg·Sb/g) EN12457-01 (mg/kg) 1

Sb(III)

Qualified FeOOH 5.1 0.05
AquAsZero 3.4 0.22

Sb(V)

Qualified FeOOH 0.30 0.55
AquAsZero 0.35 0.68

1 Limit for inert wastes 0.06 mg Sb/kg and limit for non-hazardous wastes 0.7 mg Sb/kg.

4. Discussion

An overview of the examined materials, regarding their adsorption capacity for Sb(III) as derived
by batch experiments, is presented in Figure 6. The Q5 values of synthesized FeOOHs were found
to be at least 35% higher than the best commercially available adsorbent (GFH), while the capacity
for the qualified FeOOH synthesized under acidic conditions (pH 4) was almost double. The direct
comparison of the Q5 values determined in this study with the relevant Sb adsorbents’ efficiencies
reported in literature was not possible because most of them focused on the maximum adsorption
capacity, which is obtained at residual concentrations far higher than the drinking water regulation
limit of 5 µg/L. With respect to the synthesis conditions, the optimization of the adsorption behavior
was observed when FeOOH adsorbent presents high surface charge density. . Specifically, a surface
charge density of 2.5 mmol OH−/g was determined for the qualified FeOOH, while the corresponding
surface charge densities for the samples synthesized at pH values of 7 and 9 were 0.8 and 0.5 mmol
OH−/g, respectively [31].
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In addition, the pH dependence of the adsorption efficiency (Figure 2) should be correlated with
the isoelectric point (IEP) of FeOOH in combination with the corresponding Sb(III) speciation (Figure 7).
Particularly, at pH values below IEP (7.2), the net surface charge of FeOOH is positive, while at pH



Sustainability 2017, 9, 238 9 of 11

values above IEP it becomes negatively charged [31]. Therefore, in the NSF water matrix at a pH
lower than 6, a part of the Sb(III) is present in the Sb(OH)2

+ form, which is repulsed by the positive
surface of FeOOH, resulting in a lower adsorption efficiency. Similarly, at pH 8, part of the Sb(III)
appears in the Sb(OH)4

− form, which is repulsed by the negatively charged surface of FeOOH. In the
case of Sb(V), Sb(OH)6

− is the dominant form in the examined pH range (5–8). Therefore, adsorption
efficiency is stable at the pH range of 5–6, where the FeOOH surface is positively charged but decreases
significantly as the water pH approaches IEP and diminishes at water pH 8 where the FeOOH surface
becomes negatively charged, thus repulsing antimonate oxyanions.

However, the FeOOH adsorbents were found to be effective only for Sb(III) uptake at levels able to
fulfill the drinking water regulation limit of the EU. Their low affinity with Sb(V), which was observed
in this study by both batch and column tests, was also verified by large-scale results. For instance,
an adsorption capacity of 0.04 mg/g at a breakthrough concentration of 21 µg/L was determined
at a Melivoia (Greece) water treatment plant using Bayoxide [30], and an adsorption capacity of
0.06 mg/g was reported in a demonstration project of the US EPA using GFH [34]. Even worse,
AquAsZero (Fe-MnOOH products) appear ineffective for both Sb species. The low performance of
AquAsZero should be correlated with the high oxidative potential, arising with the Mn4+ substitution
in the oxy-hydroxide structure which results in the formation of Sb(V), showing very low affinity
for adsorption.
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5. Conclusions

The developed positively charged FeOOH adsorbent may be applied as an efficient Sb(III)
adsorbent, because it showed improved adsorption capacity under reliable water treatment conditions.
Considering that the cost of the qualified FeOOH would be similar to that of the commercial FeOOH
adsorbents (9 ± 1 €/kg), the adsorbent cost is estimated to be close to 30 ± 3.4 €/103 m3 for every
10 µg Sb(III)/L removed. For the water treatment cost estimation, the energy cost (10 ± 1) €/103 m3

and labor cost (10 ± 5) €/103 m3 should be superadded, though they do not depend on the Sb(III)

http://vminteq.lwr.kth.se
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concentration. Removal of Sb(V), which is the stable form in oxygenated groundwater, may therefore
require a primary reduction to Sb(III) and then sorption of Sb(III) onto FeOOHs.
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