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Abstract: As a new service model, home health care can provide effective health care by adopting
door-to-door service. The reasonable arrangements for nurses and their routes not only can reduce
medical expenses, but also can enhance patient satisfaction. This research focuses on the home health
care scheduling optimization problem with known demands and service capabilities. Aimed at
minimizing the total cost, an integer programming model was built in this study, which took both the
priorities of patients and constraints of time windows into consideration. The genetic algorithm with
local search was used to solve the proposed model. Finally, a case study of Shanghai, China, was
conducted for the empirical analysis. The comparison results verify the effectiveness of the proposed
model and methodology, which can provide the decision support for medical administrators of home
health care.
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1. Introduction

At present, as China faces the issue of the rapidly aging population and increasing of chronic
diseases, the reduction of hospitalization costs becomes more and more urgent in China. Home health
care has shown its potential possibilities in China as the new service model. It provides continuous
effective health care that patients could obtain in hospitals; meanwhile, it also decreases the average
hospitalization rate and saves the corresponding medical expenses. During the last decade, as a
proven and useful method for reducing hospitalization costs, home health care service has experienced
a significant growth in the USA and many European countries. Unlike the hospital health care
services, home health care service providers (community hospitals, home care companies, etc.) can
offer door-to-door services, such as family bed services, palliative care and day care services, which
can improve patient satisfaction by breaking through the limit of fixed locations and optimizing the
utilization of medical resources. Home health care services have a great significance as they could
meet the clinical and psychological care demands in a personal environment of high quality services
and save medical and social resources for conventional hospitalization.

The gap between the need for health care services and the capabilities of current Chinese health
care resources is still immense, and the aging population makes the problem even worse. As the
world’s most densely-populated country, China’s population was equivalent to 18.47% of the total
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world population as of 25 January 2017, based on the latest United Nations estimates. However,
according to the report from China Daily, the medical resources of China only accounted for about
three percent of the world’s medical resources. In recent decades, China’s demographic landscape
has been thoroughly redrawn by unprecedented population changes, and the problem of a rapidly
aging population has become more severe. The elderly population has grown substantially, and its
share has reached about 10.5% of the total population in China. In particular, 80%–90% of the elderly
population suffered from various chronic diseases, which has brought about the tremendous pressure
on pension funds. According to China’s elderly population and the aging career statistics in 2015,
the elderly aged 60 years and older increased to 212 million, accounting for 15.5% of China's total
population, which was significantly higher than the ratio in the traditional standard aging society
(10%). Meanwhile, the pension services have been comprehensively increased, including pension beds,
day care institutions and meal-aid services. It can be seen that these kind of medical and pension
services serving the community and family would play important roles in health care in the aspects
of relieving pension pressure, easing the tension between limited medical resources and increasing
medical needs and improving the quality of pension and health care services.

Most studies in China focused on the qualitative description of home health care services while
paying little attention to resource management or scheduling optimization in family medical care.
Actually, despite a vast range of prospects in home health care services, as well as its application and
development in China, relevant management optimization methods designed to make the operation of
home health care more reasonable and effective are still scarce. Compared with the traditional service
industry, home health care service has its own features, as well as troubles in scheduling management.

In the resource management and scheduling of home health care service, we should take various
uncertain factors such as the uncertain demand, stochastic traveling time and high randomness of
service time into account. In addition, there are many real constraints (time windows limit, care
service priority, service consistency, workload balance, and so on). The factors mentioned above bring
difficulties and challenges to home health care service management and scheduling compared with
the traditional hospitalization. Therefore, it is necessary to explore research on scientific management
and scheduling optimization methods to solve the problems of high randomness and a dynamic
environment by taking the features of a structural network into consideration.

According to the existing research of home health care, combined with practical difficulties and
features, this paper focuses on the scheduling optimization of home health care service by considering
patients’ priorities and time windows.

The rest of this paper will be organized as follows. A literature review is presented in Section 2.
Section 3 describes the scheduling optimization model. The genetic algorithm with local search is
provided in Section 4. Section 5 provides the empirical analysis and relevant results. Finally, the
conclusion will be given in Section 6.

2. Literature Review

Many scholars have conducted research in the application of home health care. Chahed et al. [1]
pointed out that resource planning is very important in the operation of home care organizations
by properly managing human and physical resources so as to avoid the flow or the progress from
poor efficiency, medical delay and low-quality service. Eveborn et al. [2,3], Bertels and Fahle [4],
Thomsen [5] and Bennett and Erera [6] studied a program of human resources in home care, but they
did not consider the consistency of medical service requirement. Bard and Purnomo [7,8] developed
an integer programming model for the problem of scheduling nurses by using the branch and bound
algorithm, the column generation method and the Lagrangian relaxation technique. Belien and
Demeulemeester [9] integrated the scheduling of nurses and the operating room and solved it by
the column generation method. Punnakitikashem et al. [10] established a scheduling model that
involves nurses’ favor and medical contraction. Hertz and Lahrichi [11] proposed a two-stage mixed
programming model to distribute medical resources. Brunner et al. [12,13] made a plan of physicians’
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flexible scheduling. In order to make arrangements in advance, many researchers established a
stochastic patients’ scheduling programming model to examine patients’ situations [14–25]; however,
most of those studies ignored the characteristics of the home care system.

Borsani and Matta [26] proposed a human resource scheduling model of home health service
in 2006. In 2009, Kergosien [27] proposed the home health care problem and extended the multiple
traveling salesman problem. The article considers time windows (ti ∈ [ei, li], the earliest and the latest
starting time of service i), personnel continuity and other restrictions. Bachouch and Hajri-Gabouj [28]
proposed the optimal task assignment model for home health service in 2010. Although the article has
taken into account the factors and key constraints, such as balancing the workload of nurses, job skills
and time windows of the working day (for full-time nurses), it does not consider the condition of cost
minimization. A brief summary of the related literature is shown in Table 1.

Table 1. The research summary of home health care scheduling.

Article Decision Type Objective Factors Considered Model Solution
Technique

Lanzarone et al. [29]
Human resource

planning in
home care

Optimize service
quality of

human resources

Some variables and
unpredictable event

Stochastic
model Markov chain

Triki et al. [30] Periodic home health
care planning

Minimize the
total cost of

transportation
during each
time period

The adherence to the
care plan while

optimizing the routes

One two-stage
mathematical
formulation

The tabu
search and a

Mixed-Integer
Programming
(MIP)-based

neighborhood
search method

Liu et al. [31]

Vehicle routing
problem with

delivery and pickup
and time windows in

home health care

Improve the
quality and

health service at
their homes

Medical logistics
vehicle scheduling

problem in home care

Two
mixed-integer
programming

model

Heuristic
algorithms, a

genetic algorithm
(GA) and a tabu

search (TS) method

Liu et al. [32]

Weekly home health
care logistics
optimization

problem

Minimize the
maximal routing
costs of the week

Time window
constraints of patients

and precedence
constraints

Periodic
vehicle routing

problem
(PVRP) model

Tabu search and
different local

search schemes

Cappanera and
ScutellÒ [33]

Scheduling and
routing optimization

to home care
for a weekly

planning horizon

Balance the
operator

utilization

The assignment and
the scheduling in the

planning horizon

Integer linear
programming
(ILP) model

Cplex 12.4

Koeleman et al. [34]

Optimal patient and
personnel scheduling

policies for
home care

Optimal
control policy

Family medical human
resource configuration,
staff scheduling, family
health service facilities

Markov
decision
process

Successive
over-relaxation

(SOR) algorithm

Hiermann et al. [35]
Multimodal home

health care
scheduling problem

Determine
efficient

multimodal tours

Staff and customer
satisfaction

Mathematical
modeling

Meta heuristics,
simulated
annealing

hyper-heuristic

In addition, Ran Liu et al. [36] proposed a periodic vehicle routing problem, so as to reduce the
total scheduling cost. Rasmussen et al. [37] provided the crew scheduling problem of home care based
on preference-based visit clustering and temporal Dependencies. This article mainly focused on how
to allocate the home health medical staff for patients in home visits to improve the overall service level.
Apparently, more work needs to be done for the above proposed problem in the article. Cappanera and
ScutellÒ [38] provided the optimization problem of home care model generation. In order to optimize
the home care service, it also proposed that in the allocation of home care medical staff, factors such as
the capacity constraint of compatibility should be considered, and the home visiting for patients should
be included in the scheduled route. Matta et al. [39] simulated the home care service centers from
the perspective of operation management and discussed the operational framework of home health
service and the hierarchical structure of the operation management decision. Yalcindag et al. [40]
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studied the problems of the assignment of medical staff and route scheduling in home care service and
discussed how to solve the problems of personnel assignment and route scheduling though two-phase
approaches while proving continuous (long-term) service. The purposes of this article were to explain
the reasonability of these two different approaches and apply them to the doctor-seeing procedures for
the assumption of a single region. Specially, the above mentioned article focused on the interaction
between personnel assignment and routes. The assignment output results were included in the route
scheduling inputs. During the personnel assignment, the mathematical programming model (MPM)
and two different policies were used to balance the workload. Moreover, the route problem was solved
by the travelling salesman model (TSM). However, this article did not consider the route scheduling
problem if the selected place was much smaller. Lanzarone et al. [29] provided a patient stochastic
model to support human resource planning of home care service. This article provided a nursing path
for the patient of the stochastic model, which offered the main variable data prediction on the basis of
the historical data of the home care structure. Nevertheless, both continuous (long-term) care service
and workload balance still need further improvement. Nickel et al. [41] provided the problems of
medium-term or long-term planning to support the home care service and discussed how to make
medium-and-short-term plans (e.g., optimal weekly plan) by combining common heuristic algorithm
and constraint model (CHACM) based on the historical data. However, it is necessary to support
the research topic by using the actual data. Lanzarone et al. [42] provided the problem of operations
management for home care service and discussed how to balance the workload of the medical staff
by selecting the mathematical programming model (MPM) of a specific category. This model took
some features, such as continuous services, skills of the medical staff and geographic areas of the home
health service into consideration. However, considering that the patient demands are either stochastic
or certain, the stochastic patient demands cannot be satisfied in the above article. Yuan et al. [43]
provided the home care time arrangement and route scheduling problems under random service time.
The article minimized the travel cost and the predicted tardiness penalty by establishing a stochastic
programming model (SPM) and suggested that the branch and bound method (BBM) could solve
the problem.

Akjiratikarl et al. [44] adopted the particle swarm optimization (PSO)-based algorithm to solve the
home care worked scheduling problem. Duque et al. [45] presented a decision support system for the
home care service planning problem by considering the service level and travelling distance. Braekers
et al. [46] provided the method of the trade-off of cost and service level and formulated a bi-objective
scheduling problem. Rest and Hirsch [47] presented a model for daily scheduling of a real-world home
health care problem. Redjem and Marcon [48] developed a heuristic method for solving caregivers’
routing of home care services. Yalçındağ et al. [49] adopted a data-driven methodology for estimating
uncertainties in traveling times so as to solve the patient assignment problem. Mankowska et al. [50]
presented a model for the routing and scheduling problem of home health care by considering
interdependent services. Trautsamwieser and Hirsch [51] provided a model for optimizing the daily
nurse scheduling of home care services. Nguyen and Montemanni [52] presented two mixed integer
linear programming models to solve the home care services planning problem. Addis et al. [53]
discussed how to deal with uncertainty factors by adopting the cardinality-constrained method for the
health care optimization problem.

This study aims to carry out more extensive research by considering several real situations based
on the existing articles. The primary model and calculation method are presented in Section 3.

3. The Scheduling Optimization Model

3.1. Problem Definition

At present, home health care in Shanghai, China, mainly relies on the family doctor studio in
community health care service centers. A family doctor studio is equipped with 2–3 general medical
practitioners, who would provide medical care according to patients’ appointments. The types of
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services are divided into family beds and health records. On average, a doctor may visit 10–15 families
that have signed health care service contracts with family doctors. According to the “Guiding Opinions
on Promoting the Contractual Healthcare Services from Family Doctors” issued by the State Council
of China, the home health care services are regulated based on health care contracts. Residents and
families shall choose a team of family doctors to sign the health care service agreements, in which the
content, manner and time limit of the contractual health care services, as well as the responsibilities,
rights and obligations of both parties and other relevant matters have been clearly defined. In principle,
the contractual health care service is valid in a one-year term. When the original contracts expire,
residents and families can choose to extent the contracts or change health-care providers. After
the completion of the medical care for all patients, the service personnel will return to the family
doctor studio.

Therefore, this scheduling problem can be abstracted as a multiple traveling salesman problem
(MTSP). MTSP is defined as: “there are n nodes and m traveling salesmen, who start working from
a particular starting point. After the salesmen have visited the destinations, they come back to the
starting point. The goal is to find such an amount of access paths, which satisfy the requirements that
each salesman can visit a place only once in order to minimize the total cost” [54]. This paper aims
to construct a model with time windows to solve the personnel scheduling problem of home health
care services.

3.2. Mathematical Programming Model

One of the common problems in home care service is how to schedule the medical staff and
arrange their routes to minimize the travel cost, as well as service cost. This paper attempts to establish
a route scheduling model to solve this problem.

The model is constructed based on the following basic assumptions:

(1) Only one type of service is required by each patient per time;
(2) The time that it takes the doctors to reach any two patients respectively is the same;
(3) Service will be started immediately after the medical staff arrive at the patients’ homes;
(4) Medical staff are enough to meet all demands.

Subscripts:

i represents the previous service-required place (departure place);
j represents the next service-required place (destination) (i, j ∈ P = {0, 1, . . . , n};
0 represents the service center;
h represents the medical staff (h = 1, . . . , H);
k represents the type of service (k = 1, . . . , K);

Parameters:

c1ij represents the travel cost from place i to place j to provide service to patients;

c2hk represents the cost for medical staff h to provide the k-th service;
tij represents the travel time from service center i to service-required place j;

τj represents the execution time of the service required by the j-th patient;

wi represents the required waiting time of the service personnel arriving at service nodes early;
ei represents that patient i can accept the earliest starting time;
li represents that the patient can accept the latest starting time, which constitutes the time window
requirements of the provision of each patient service;
Si represents the time that the medical staff take to reach service-required place i, and S1 = e1;
Di represents the time that the medical staff take to leave service-required place i; Si ∈ [ ei, li] ,
Di = max{Ai + τi, ei + τi}, in which ei represents the earliest starting time accepted by the i-th
patient; li represents the latest starting time accepted by the i-th patient;
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yjhk represents whether the service k can be provided by the medical staff h for the service-required
place j (0: no, 1: yes), and yjhk is the input parameter;

rij represents whether the service-required place j has priority over the service-required place
i (0: yes, 1: no), and rij is the input parameter that can be determined in advance;

Decision Variables:

xijhk =

{
1i f the medical sta f f h who provides service k passes the places (i, j)
0otherwise

The mathematic model is given as follows:

min ∑
i∈P

∑
j∈P

∑
h∈H

∑
k∈K

(c1ij + c2hk)xijhk + ∑
i∈P

∑
h∈H

Pi(si) (1)

The constraints are given as follows:

∑
j∈P

∑
h∈H

∑
k∈K

xijhk = 1 ∀i ∈ P\{0} (2)

∑
i∈P

xijhk −∑
i∈P

xjihk = 0∀j ∈ P\{0}, k ∈ K, h ∈ H (3)

∑
j∈P

∑
k∈K

x0jhk = 1 ∀h ∈ H (4)

∑
j∈P

∑
k∈K

xj0hk = 1 ∀h ∈ H (5)

∑
i∈Q

∑
j∈Q

∑
h∈H

∑
k∈K

xijhk ≤ |Q| − 1∀Q ⊆ P\{0}, k ∈ K, h ∈ H (6)

wj = max(ej − si − tij, 0
)
∀j ∈ P\{0, i} (7)

∑
i∈P

∑
h∈H

∑
k∈K

xijhk(si + ti + tij + wj) = sj ∀j ∈ P\{0, i} (8)

Pi(si) = p× wi + q×max(si − li, 0) (9)

xijhk ≤ yjhk ∀i ∈ P, j ∈ P\{0}, k ∈ K, h ∈ H (10)

Di + tij + tj ≤ rijDj ∀i ∈ P, j ∈ P\{0} (11)

si ∈ [8, 18] ∀i ∈ P (12)

xijhk ∈ {0, 1
}
∀i, j ∈ P, k ∈ K, h ∈ H (13)

Formula (1) in the purposed model is to minimize the travel cost (C1), service cost (C2) and
penalty cost and fully meet all patients’ demands at the same time.

Constraint (2) represents that each patient should be serviced by medical staff exactly once.
Constraint (3) represents that the medical staff must leave immediately after reaching one

service-required place.
Constraints (4) and (5) represent that the medical staff only can leave and return to the

service-required place once, respectively.
Constraints (6) denotes the sub-tour elimination constraint.
Constraints (7)–(9) represent the time window constraint.
Constraint (7) calculates the required waiting time of the service personnel arriving at the service

nodes early.
Constraint (8) gives the time of delivery service personnel arriving at each demand point.
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Constraint (9) calculates the penalty of the medical staff if they arrived early or late at the
demand points, in which p is the penalty coefficient of arriving early and q is the penalty coefficient of
arriving late.

Constraint (10) represents that the medical staff can offer visiting services only if he or she is a
licensed qualified health care professional.

Constraint (11) is the time window restriction, which restricts the earliest departure time at each
service-required place for the medical staff. Priority r represents that the medical staff must leave for
the service-required place with higher priority to provide service. The priority levels in the analytical
approach of this paper are identified and determined by the seriousness of the patients’ conditions.
In other words, we ensure that patients with more serious conditions are accorded higher priority
in medical treatment. Specifically, we divide patients into two categories with different priorities:
emergency patients and non-emergency patients. Emergency patients are the top priority compared to
non-emergency patients. If the serious conditions of emergency patients are equivalent, the priority
classes are comprehensively determined based on factors, such as the appointment time of patients,
the location of patients and the medical resources of health care service centers. The priority levels of
non-emergency patients are usually determined by the appointment time of patients.

Constraints (12) and (13) represent the value ranges of the variables.

4. The Genetic Algorithm with Local Search

The proposed model in this paper is the variation of a multi-traveling salesman problem. If we
relaxed the constraint of patients’ priorities, the problem of “scheduling optimization of home health
care service considering patients’ priorities and time windows” will turn into the “multiple travelling
salesman problem (MTSP) with time windows” [55]. Since the traveling salesman problem (TSP)
with time windows has been proven to be a strongly NP-hard problem [56,57], we can concluded
that the problem for our research is also NP-hard. Namely, “under the assumption of the P 6= NP,
we cannot find an algorithm which can get the optimal solution in polynomial time.” Although the
optimal solution can be obtained by the exact algorithm, its running time is exponentially complex.
Therefore, the improved genetic algorithm can be used to solve the constructed model during the
large-scale solution.

The genetic algorithm is a kind of random search method, which is based on the survival of
the fittest and evolved from the biological world. Goldberg summed up a basic genetic algorithm,
and its structure is simple, which is the basis of other genetic algorithms and the prototype [58].
A population-based algorithm enhanced with a local search structure is applied to the research problem
in this paper for the following three reasons: first, the method of the hybrid genetic algorithm (HGA),
which integrates GA (the global optimization algorithm) with local search (the local optimization), has
been adopted by many scholars to solve the problem of home health care [59–62]; second, compared
to the tabu search/path-relinking (TS/PR), the method of HGA requires shorter computational time
to solve the problem, but it obtains solutions with lower quality in the same computational time
limit [63–66]; third, the problem proposed in this paper is mainly to meet the time requirements
of families in health care services, which can be solved by the method of HGA [49,67]. However,
considering the advantages of TS/PR, we would try to adopt TS/PR to deal with the research problem
in our future research to further improve the quality of solutions.

This paper refers to the basic genetic algorithm with local search, and the constructed iterative
process is shown in Figure 1.
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general method is converting MTSP to the TSP problem; that is, the virtual symbol is added  
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Assume that Point 0 represents that there is no demand for the health service center of home 
care service staff, while points 1, ..., n represent that there are 1, ..., n demand points for the m-th 
service personnel to visit. Then, a total of m − 1 virtual symbols are to be set, respectively, n + 1, ..., n + 
(m – 1). Each virtual symbol appearing in the medical personnel access path indicates that the 
medical staff return to the health service center to form a loop. Figure 2 represents the chromosome 
encoding. Specifically, the first medical staff would return to the health service center after visiting 
Point 2 and then Point 1; the second medical staff would return to health service center after visiting 
Point 6, Point 4 and then Point 5. 

 
Figure 2. The chromosome encoding. 

During the coding, we need to pay attention to avoid the problem of medical staff working 
overtime, as well as the ordinary sub-path of the situation, that is, the medical staff did not visit any 
demand points directly before they return to the health service center. In the programming, the 
fitness of these two cases will be set to the maximum value to eliminate such a chromosome. 

(2) Selection operator: 

The selection operator is used to reproduce the individuals who have a high degree of 
adaptability from the old population to the new population. The target of this model is to minimize 
the cost; therefore, the fitness function f(x) = 10/Z is used for the fitness of the chromosome. 

The roulette selection operator is used in this paper [68]. It uses the proportion of each 
individual’s fitness to determine the probability of its future generations. The execution of a 
selection operator is like spinning the wheel to select a chromosome. In addition, the best individual 
elitist preservation strategy is considered in this paper [69], which is selected on behalf of the 

Figure 1. The general framework of the hybrid genetic algorithm (HGA).

Several main procedures can be given as follows:

(1) The population structure and chromosome coding:

The first step is to initialize the population of chromosomes, and the key problem is how to
encode the chromosomes. In order to solve the MTSP problem using the genetic algorithm, the general
method is converting MTSP to the TSP problem; that is, the virtual symbol is added for coding.

Assume that Point 0 represents that there is no demand for the health service center of home care
service staff, while points 1, ..., n represent that there are 1, ..., n demand points for the m-th service
personnel to visit. Then, a total of m − 1 virtual symbols are to be set, respectively, n + 1, ..., n + (m – 1).
Each virtual symbol appearing in the medical personnel access path indicates that the medical staff
return to the health service center to form a loop. Figure 2 represents the chromosome encoding.
Specifically, the first medical staff would return to the health service center after visiting Point 2 and
then Point 1; the second medical staff would return to health service center after visiting Point 6,
Point 4 and then Point 5.

Sustainability 2017, 9, 253  9 of 22 

 

Figure 1. The general framework of the hybrid genetic algorithm (HGA). 

Several main procedures can be given as follows: 

(1) The population structure and chromosome coding: 

The first step is to initialize the population of chromosomes, and the key problem is how to 
encode the chromosomes. In order to solve the MTSP problem using the genetic algorithm, the 
general method is converting MTSP to the TSP problem; that is, the virtual symbol is added  
for coding. 

Assume that Point 0 represents that there is no demand for the health service center of home 
care service staff, while points 1, ..., n represent that there are 1, ..., n demand points for the m-th 
service personnel to visit. Then, a total of m − 1 virtual symbols are to be set, respectively, n + 1, ..., n + 
(m – 1). Each virtual symbol appearing in the medical personnel access path indicates that the 
medical staff return to the health service center to form a loop. Figure 2 represents the chromosome 
encoding. Specifically, the first medical staff would return to the health service center after visiting 
Point 2 and then Point 1; the second medical staff would return to health service center after visiting 
Point 6, Point 4 and then Point 5. 

 
Figure 2. The chromosome encoding. 

During the coding, we need to pay attention to avoid the problem of medical staff working 
overtime, as well as the ordinary sub-path of the situation, that is, the medical staff did not visit any 
demand points directly before they return to the health service center. In the programming, the 
fitness of these two cases will be set to the maximum value to eliminate such a chromosome. 

(2) Selection operator: 

The selection operator is used to reproduce the individuals who have a high degree of 
adaptability from the old population to the new population. The target of this model is to minimize 
the cost; therefore, the fitness function f(x) = 10/Z is used for the fitness of the chromosome. 

The roulette selection operator is used in this paper [68]. It uses the proportion of each 
individual’s fitness to determine the probability of its future generations. The execution of a 
selection operator is like spinning the wheel to select a chromosome. In addition, the best individual 
elitist preservation strategy is considered in this paper [69], which is selected on behalf of the 

Figure 2. The chromosome encoding.

During the coding, we need to pay attention to avoid the problem of medical staff working
overtime, as well as the ordinary sub-path of the situation, that is, the medical staff did not visit any
demand points directly before they return to the health service center. In the programming, the fitness
of these two cases will be set to the maximum value to eliminate such a chromosome.

(2) Selection operator:

The selection operator is used to reproduce the individuals who have a high degree of adaptability
from the old population to the new population. The target of this model is to minimize the cost;
therefore, the fitness function f(x) = 10/Z is used for the fitness of the chromosome.

The roulette selection operator is used in this paper [68]. It uses the proportion of each individual’s
fitness to determine the probability of its future generations. The execution of a selection operator is
like spinning the wheel to select a chromosome. In addition, the best individual elitist preservation
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strategy is considered in this paper [69], which is selected on behalf of the population to the highest
degree of individual and directly copied to the offspring. It ensures the best individual smoothly enters
into the next generation and thereby speeds up the convergence of the population and improves the
efficiency of the algorithm.

(3) Crossover operator:

The relevant crossover strategy is adopted in this paper [70–72], which can increase the population
diversity without changing any certain part’s order of its parent. This method will speed up the
algorithm convergence. The specific steps are given as follows:

Randomly select A code from Parent Generation B; keep them in the corresponding location of
the Filial Generation A. In order to ensure that two of the same chromosome can cross to produce
different offspring, we consider switching the third part of Parent Generation A with the first part
of Parent Generation B. After that, the rest of the parts of Filial Generation A can be selected from
Parent Generation B in order (skip existing codes), and the selection of Filial Generation B is one in the
same way.

• Before crossing:

Parent Generation A: 872,139 | 546

Parent Generation B: 983 | 567,142
• After crossing:

Filial Generation A: 721,546 | 983

Filial Generation B: 546 | 983,712

(4) Local search and mutation:

The local search is adopted with a fixed probability in HGA. If a generated random number (0, 1)
is less than q, then the local search will be executed. The two-opt exchange will be used for local
search; more detailed information can be found in [73–76]. The two-opt exchange for our research is
executed in the case of a single route by replacing two of its arcs in the tour using two other arcs [77,78].
For example, let us assume that there is a single route consisting of many demand nodes with a given
order for one health care service center, and the {(p, p + 1); (q, q + 1)} is traversed in this order, which
forms a crisscross [79]. The two-opt exchange will eliminate the crisscross of the arcs (p, p + 1), (q, q + 1)
by replacing them with (p, q), (p + 1, q + 1) to reconnect a new route [80]. The same method can be
used for multiple different routes for the local search. Especially, if the fitness cannot be changed
for 10 generations, then the system will execute the mutation operator. For mutation operation, the
multiple exchange mutation operator is adopted. We randomly select two parts from the chromosomes,
then exchange the gene from the two parts and repeat the process a few times.

(5) Terminate evolution conditions:

Considering that the genetic algorithm is an iterative process, we must set the appropriate
termination of the evolution conditions to terminate the algorithm. When the algorithm meets the
termination conditions set, individuals who have the largest fitness during the evolutionary process
will be given as the optimal solution, and the calculation will be terminated.

In this paper, we set up the following two termination rules:

(1) It has reached the predefined evolution generations, namely 3000 generations.
(2) The best individual of the population cannot obtain more improvements in 200 consecutive generations.
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5. Empirical Analysis

5.1. The Analysis of the Calculation Results

In order to verify the proposed model, the Yichuan sub-district located in eastern Putuo district,
Shanghai, China, is used for empirical analysis, which has 1.12 square kilometers with about
26,900 households and 87,800 residents. There are 20 neighborhood committees in this sub-district.
In the numerical examples, we assume that the Yichuan street community health service centers are
equipped with five home health care providers, who need to provide 30 patients with family beds or
health archive services. The red dots in Figure 3 represent the home health service-required places in
this paper to study the home health care assignment problem of Yichuan sub-district, Shanghai, China.
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This paper takes the Yichuan Sub-district Community Health Service Center (a first-level medical
institution) as the service center to provide home health care services. This center has convenient
service stations. These stations can supply guiding services, medical advice, business information
consultation and other handy services for the patients initiatively. Meanwhile, those patients who are
unable to move freely or have special needs can be paid home visits though telephone appointments
and can be provided with all kinds of visiting services, such as hospital beds and medical tests at home.

This paper assumes that the certain service demand of each service-required place can be
processed centrally within a certain period of time. There are five medical staff in the service center, of
which, the mastered skills are summarized in Table 2.
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Table 2. Relevant data of service staff.

Service Staff Mastered skills

h1 Home Treatment
h2 Home Treatment, Health Record
h3 Hospital Bed at Home
h4 Hospital Bed at Home
h5 Hospital Bed at Home, Health Record

The parameter settings for the model and algorithm are listed in Tables 3 and 4. The first
dataset of five medical staff in Table 2 and the positions of health care service demands (P1–P30, the
1st demand point to the 30th demand point) in Figure 3 are provided by the Yichuan Sub-district
Community Health Service Center, Shanghai, China; whereas the second dataset is generated randomly.
Specifically, the exact location of each patient is randomly sampled in the selected district from a
normal distribution with the mean and standard deviation, respectively. The number of medical staff
is also randomly generated based on the small-scale (A.3.3–A.5.45), medium-scale (B.3.50–B.8.80) and
large-scale (C.9.90–C.12.120) instances.

Table 3. Parameter setting for the model.

Parameter Value

The service hours for hospital bed at home (k1) (hour) 0.5
The service hours for health record (k2) (hour) 0.3

travelling speed (km/h) 8
Unit travel costs (RMB/km) 2

The penalty coefficient for early arrival 1
The penalty coefficient Late arrival 2

Table 4. Parameter settings for the algorithm.

Parameter Value

The size of population 500
The probability of crossover 0.5
The probability of mutation 0.5

Termination generation 3000

Using Eclipse IDE to make a Java program running on Windows 7 operating system, it takes
2.4 s to reach the results. The optimal results of route scheduling can be obtained (shown in Table 5
and Figure 4).

In order to further verify the proposed model, we assume that there are three care givers and
50 patients in the Yichuan Sub-district Community Health Service Center, Shanghai. We also use the
same Java program to run this model. The optimal results of route scheduling are shown in Table 6,
and the time windows of each node are presented in Table 7.
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Table 5. The calculation results.

Route Node i Node j Service Personnel Service Type

P0→P20(K1)→P24(K1)→P19(K1)→P18(K1)→P28(K1)→P8(K1)→P0

0 20 h1 k1
20 24 h1 k1
24 19 h1 k1
19 18 h1 k1
18 28 h1 k1
28 8 h1 k1
8 0 h1 k1

P0→P2(K1)→P26(K1)→P6(K1)→P27(K1)→P7(K1)→P0

0 2 h2 k1
2 26 h2 k1
26 6 h2 k1
6 27 h2 k1
27 7 h2 k1
7 0 h2 k1

P0→P3(K1)→P4(K1)→P1(K1)→P0

0 3 h3 k1
3 4 h3 k1
4 1 h3 k1
1 0 h3 k1

P0→P12(K2)→P11(K2)→P14(K2)→P13(K2)→P15(K2)→P21(K2)→P25(K2)→P22(K2)→→P23(K2)→P0

0 12 h4 k2
12 11 h4 k2
11 14 h4 k2
14 13 h4 k2
13 15 h4 k2
15 21 h4 k2
21 25 h4 k2
25 22 h4 k2
22 23 h4 k2
23 0 h4 k2

P0→P9(K1)→P5(K1)→P16(K1)→P17(K1)→P10(K1)→P29(K1)→P30(K1)→P0

0 9 h5 k1
9 5 h5 k1
5 16 h5 k1
16 17 h5 k1
17 10 h5 k1
10 29 h5 k1
29 30 h5 k1
30 0 h5 k1
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Table 6. The optimal results of route scheduling.

The Target Results

Final generation 2904

Minimum cost 48.0

Route 1
P0→P22(K1)→P1(K1)→P21(K1)→P15(K1)→P16(K1)→P36(K1)→P34(K1)→P43(K1)
→P8(K1)→P49(K1)→P17(K1)→P35(K1)→P37(K1)→P10(K1)→P30(K1)→P26(K1)

→P6(K1)→P32(K1)→P5(K1)→P28(K1)→P13(K1)→P38(K1)→P0

Route 2 P0→P18(K1)→P45(K1)→P33(K1)→P44(K1)→P14(K1)→P48(K1)
→P19(K1)→P4(K1)→P42(K1)→P11(K1)→P31(K1)→P12(K1)→P2(K1)→P3(K1)→P0

Route 3 P0→P9(K1)→P25(K1)→P23(K1)→P47(K1)→P46(K1)→P24(K1)→P41(K1)→
P50(K1)→ P27(K1)→P7(K1)→P40(K1)→P20(K1)→P39(K1)→P29(K1)→P0
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Table 7. The time window of each node.

Route Node Earliest
Starting Time

Latest
Starting Time

Service
Personnel Service Type

Route 1

P22 8 11 h1 k1
P1 8 11 h1 k1

P21 8 12 h1 k1
P15 8 11 h1 k1
P16 9 12 h1 k1
P36 8 12 h1 k1
P34 10 16 h1 k1
P43 8 12 h1 k1
P8 9 12 h1 k1

P49 12 15 h1 k1
P17 10 13 h1 k1
P35 13 17 h1 k1
P37 13 16 h1 k1
P10 10 14 h1 k1
P30 13 16 h1 k1
P26 12 15 h1 k1
P6 9 15 h1 k1

P32 15 18 h1 k1
P5 10 16 h1 k1

P28 14 17 h1 k1
P13 13 17 h1 k1
P38 14 17 h1 k1

Route 2

P18 10 14 h2 k1
P45 8 11 h2 k1
P33 9 15 h2 k1
P44 9 15 h2 k1
P14 8 12 h2 k1
P48 10 14 h2 k1
P19 12 15 h2 k1
P4 9 15 h2 k1

P42 13 17 h2 k1
P11 12 15 h2 k1
P31 14 17 h2 k1
P12 13 16 h2 k1
P2 14 17 h2 k1
P3 15 18 h2 k1

Route 3

P9 10 13 h3 k2
P25 10 14 h3 k2
P23 9 12 h3 k2
P47 10 13 h3 k2
P46 9 12 h3 k2
P24 10 13 h3 k2
P41 10 16 h3 k2
P50 10 16 h3 k2
P27 13 16 h3 k2
P7 10 16 h3 k2

P40 9 15 h3 k2
P20 13 17 h3 k2
P39 15 18 h3 k2
P29 15 18 h3 k2
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The minimum cost and the algebraic relationship are shown in Figure 5. As shown in Figure 5, the
cost of the first generation is as high as 9262 due to the high time-windows penalty. After 15 generations
of evolution, a sharp drop appears in the cost. The cost fluctuation tends to be stable at the 77th
generation, and we obtained the optimal solution at the 2904th generation. The convergence of the
experiment proved that it is feasible to adopt the genetic algorithm to solve this issue.Sustainability 2017, 9, 253  16 of 22 
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In the analysis of the paramedics arrival time for each demand point, we can find that no medical
staff’s arrival time go beyond the latest starting time, which means that the model ensured the travel
arrangements in accordance with the time window constraints of the maximum extent, effectively
improving patient satisfaction; indicating the reliability of algorithm.

5.2. Comparisons of Schedules’ Quality

At present, most scheduling of home health care service was performed by manual operation,
which is time-consuming and cannot produce better results. Additionally, commercial optimization
software (like the Cplex solver) can obtain the best solution with small-scale demand points. In order
to further verify the proposed model and algorithm, we compare the scheduling quality by considering
different demand points of home care service based on two main criteria: cost and time [81]. The
performances of the three methods (HGA, GA and Cplex) were compared using the same datasets.
Each method is experimented on 20 times. The average calculation results are regarded as the final
results. The mean computation times (min), recorded for Cplex, GA and HGA, are given in Figure 6.

As shown in Figure 6, we can see that the average calculating time of HGA is less than those of
the methods of GA and Cplex for small-scale demand points. Especially, with the increasing demand
points, the average calculating time of HGA is relatively stable; meanwhile, there is a sharp surge in
the average calculating time of Cplex. In addition, when the demand points are more than 40, Cplex
would not obtain any results.

The average error with different demand points is shown in Figure 7.
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The group (instance A.3.3–A.5.45) in Figure 7 represents the small problem instances with
3–45 patients. A.3.3 means that there are three care givers and three patients and one health care
center. From Figure 7, we can see that the maximum average error for all of the groups for small
problem instances is less than 0.81%. For the medium-sized instances (from B.3.50–B.8.80) and the
large-sized instances (from C.9.90–C.12.120), Cplex cannot give the solution. As shown in Table 8, the
calculation results of HGA are superior to GA under any circumstance. The average error is smaller
than the standard GA. Therefore, the proposed model and HGA can be validated.
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Table 8. The comparisons of the calculation results of different algorithms.

Instance Cplex GA HGA

B.3.50 - 50 ± 0.61 48 ± 0.23
B.5.60 - 69 ± 0.45 66 ± 0.18
B.6.70 - 76 ± 0.39 71 ± 0.22
B.8.80 - 96 ± 0.27 88 ± 0.14
C.9.90 - 123 ± 0.28 102 ± 0.23

C.10.100 - 165 ± 0.51 122 ± 0.45
C.12.120 - 188 ± 0.42 141 ± 0.29

Currently, the dispatch of medical staff is fulfilled by manual scheduling. On the one hand, it
cannot avoid the occurrence of inevitable errors; on the other hand, reasonable scheduling is hard
to attain because the demand is random and uncertain. When the health care service demand is
high, patient wait time would be longer, and the emergency patients would not obtain timely medical
treatment. The model constructed in this paper considers the time windows of patients (the shortest
and longest time limitations). The solution results can meet the requirements of patients on the
medical service time. In particular, the model considers the priority levels of different patients, so
that it could effectively arrange the order of medical treatment. In this way, patients’ priority levels
(prioritization) are determined by the seriousness of the patients’ conditions, and the patient wait time
can be effectively improved, which is conducive to improve the patient satisfaction. To summarize,
the optimization method of this paper can improve patient wait time and patient satisfaction degrees
and, thus, help save medical cost due to delayed treatment. Patient satisfaction is an important and
commonly-used indicator for measuring the quality in health care. Although patient satisfaction is
multi-dimensional [82–84], four indexes are usually used to measure the patient satisfaction in home
health care [85]: response time, patient wait time, service quality and service price. In general, response
time is affected by factors, such as the level of convenience in contact and the number of medical staff.
Patient wait time, a quality indicator of home health care service, is influenced by location planning
of home health care service centers, as well as the dispatch of medical staff. Service quality in home
health care is affected by levels of health care workers and the degree of advancement of medical
equipment. Service price is influenced by the pricing scheme or the price specifications regulated by
the government.

6. Conclusions

Under the constraint of scarce medical resources, home health care can offer convenient and
effective medical services to the elderly and other special groups with less investment. In addition,
reasonable arrangements for nurses and their routes not only can reduce input costs, but also can
improve the degree of patient satisfaction. In order to solve this problem, this paper conduct research
on the scheduling optimization problem of home health care. The proposed model can optimize the
scheduling of home health care staff, and the genetic algorithm with local search was used to solve
this model. In addition, some uncertainties of services and traveling time should be considered in
the further study. In particular, how to establish a stochastic programming model to find the most
effective solutions to the problem will be an important research direction.

Notably, it is also necessary to compare the home health care system vs. the hospital system for a
period of time to comprehensively analyze the advantages and disadvantages of the home health care
system. Although there are several comparisons in the literature between the home health care system
and the hospital system, more detailed comparisons are still needed to provide policy implications
for the development of home health care. For instance, Benbassat and Taragin [86] found that the
home health care system can reduce readmissions and improve the care quality with less expenditure.
Starfield and Shi [87] considered effectiveness, costs and equity for home health care and found that
better health and lower overall costs of care could be achieved by home health care. Bruce et al. [88]
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found that “poor medical and functional status for the patient” is the major disadvantage of home
health care compared to the hospital system. In this paper, we mainly focus on the improvement of the
efficiency, as well as the quality of home health care based on the proposed model and methodology. In
order to test the effectiveness of the proposed model, we conducted a survey about the implementation
effect of the optimization method and found that the home care system can reduce the care cost and
improve patient satisfaction by providing more efficient and convenient services. Considering the big
data requirements, we will try to compare the home health care system vs. the hospital system for a
period of time in our future research.

In addition, we would like to consider more factors, such as the workload of the medical staff,
in order to balance the time window constraints and the optimal allocation of health care personnel
using the improved intelligent optimization algorithm [89,90] according to the actual needs of the
situation [91,92] in the future research.
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