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Abstract: In the context of China’s food security, spatially explicit information on grain production
is an important asset to achieve the sustainable management of cultivated land. Previous studies
have shown that spatial mismatches exist between grain production and water and cultivated land
resources. In this paper, county-level data are used to investigate the degree of spatial (mis)match
between grain output and the geographical distribution patterns of plain, hill, and mountain counties.
We estimate the difference in grain output between these different types of counties with a Spatial
Autoregression Model. The results indicate that plain counties have the highest grain output, followed
by hill counties and mountain counties subsequently. The reasons for the higher production in plain
counties lie in the presence of more cultivated land, as well as a higher degree of irrigation and
agricultural mechanization. The current pattern of Chinese total grain production follows the law
of substituting labor with mechanization. Improving efficiency in the use of water resources and
chemical fertilizer is both urgent and crucial. In this paper, we propose that the future roles for
total grain production in relation to landforms should be: increased production and competitiveness
in plain counties, a stabilization of capacity in hill counties, and a decrease in grain production in
mountain counties.
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1. Introduction

Grain self-sufficiency is one of the most important agricultural policy goals in China. Along with
a dramatic growth in grain output, the spatial pattern of grain production has strongly changed
since the 1990s. The geographical center of grain production has been moving northwards and
westwards [1,2]. Grain circulation patterns have shifted from the traditional pattern of ‘grain in the
south being transported to the north’ to the present pattern of ‘grain in the north being transported to
the south’ [3,4]. Given the highly diverse natural and socio-economic conditions in China, the scale of
this spatial pattern is, however, still very crude. Verburg et al. [5] explored Chinese grain production
in a spatially explicit way. Since then, spatial analysis, i.e., identifying the spatial relationship of
geographic data and visualizing the results on a map, has been widely adopted in many studies [6–8],
which present more detailed knowledge about the spatial pattern of Chinese grain production.

Today, the simultaneous increase in grain output, grain import volume, and grain stocks in China
attracts more and more attention. Increased grain output has led to increased soil degradation [9],
agricultural non-point source pollution [10], and water scarcity [11]. Thus, increased attention needs
to be directed towards new sustainable strategies for grain production with reduced environmental
impacts [12]. The Chinese Central Government has enacted and promulgated more practical policies,
such as the Plan for National Cropping Structure Adjustment (2016–2020) and the Plan for National
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Agricultural Modernization (2016–2020). These policies aim at harmonizing grain production and
environmental protection in order to achieve the sustainable use of natural resources as a whole.
The success of Chinese grain production in the past, to some extent, depended on the natural resources
present [6]. However, some researchers have shown that spatial mismatches exist between grain
production and water and cultivated land resources in China [13,14]. Despite the consensus that
Chinese grain production will be impacted significantly by climate change, the relative importance
of these impacts is still under debate [15]. The impacts of climate change on Chinese grain yields in
different regions are very complicated, and it is hard to generate a general conclusion [16].

We hypothesize that the spatial pattern of Chinese grain production follows the geographical
distribution of certain specific natural factor(s). The availability of land is the basic premise for
grain production. The production potential of land resources, however, is different for plain, hill,
and mountainous regions. Differences will be more emphasized as external conditions change.
The Chinese Central Government issued the Grain for Green Project (GGP) in 1999. Under the
GGP, sloping cultivated land (particularly that with a slope of more than 25◦) is converted to forest and
grassland, with profound impacts on grain production [17–19]. Grain production is also affected by
the abandonment of cultivated land, which has emerged as a prevalent phenomenon in the mountain
regions in China [20]. Cultivated land abandonment is often due to a lack of agricultural laborers or the
rise of agricultural labor costs [21,22]. The off-farm income and per capita net income of rural residents
has dramatically increased, which has lead to fast-rising agricultural labor cost in China [23]. As a
consequence, the geographical focus of grain production might have shifted towards plain regions,
as these are more suited for mechanical agricultural practices. In other words, cultivated land in
mountainous (and/or hill) regions is more likely to be converted to ecological land [24]. Knowing the
information on the conversion between cultivated land and ecological land is helpful for achieving
sustainable land management [25].

As such, there is an urgent need to conduct research on the spatial pattern of Chinese total grain
production from the perspective of landforms (plain, hill, and mountain). To do so, we first identified
spatial clusters of grain output, given that grain output quantities are always the primary focus for
policymakers. Subsequently, we investigated the degree of spatial match between clusters of grain
output and landforms and studied the impacts of different landforms. Based on our results, we made
some suggestions to spatially coordinate total grain production and environmental protection in plain,
hill, and mountain counties.

2. Data and Methods

2.1. Data

In the China County Statistical Yearbook, all counties are classified as plain counties, hill
counties, or mountain counties, based on the dominant landforms present in their territory (Figure 1).
The county-level data on grain output (tons) in 1992, 1995, 2000, 2005, 2010, and 2014 and the total
power of agricultural machinery (104 kW) in 1992, 2000, and 2014 were extracted from the China
County Statistical Yearbook [26–31]. County-level data on cultivated land area (hm2), irrigated area
(hm2), labor (person), and chemical fertilizer (tons) in 1990 and 2008 were provided by the Ministry of
Agriculture of the People’s Republic of China.
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Figure 1. County-level dominant landform classification into plain counties, hill counties, or 
mountain counties based on the China County Statistical Yearbook [30]. 

2.2. Optimized Hot Spot Analysis 

The tools of Cluster and Outlier Analysis (Anselin Local Moran’s I [32]) and Hot Spot Analysis 
(Getis-Ord Gi* [33]) are primarily used to perform cluster analysis in the geographical information 
system (GIS). Optimized Hot Spot Analysis (OHSA) executes the Hot Spot Analysis tool using 
parameters derived from the input data characteristics. That is, it automatically aggregates incident 
data, identifies an appropriate scale of analysis, and corrects for both multiple testing and spatial 
dependence. The detailed instructions can be found in the ArcGIS Help [34]. We used the OHSA to 
identify statistically significant spatial clusters of both high and low values of grain output in China. 

2.3. Spatial Autoregression with Panel Data 

As a generalization of the linear regression model, the spatial autoregression model (SAR) can 
yield better classification and prediction accuracy for many spatial datasets exhibiting strong spatial 
autocorrelation [35]. Given that Chinese grain output is spatially dependent, we used a SAR model 
with panel data to estimate the difference in grain output in the plain, hill, and mountain counties. A 
SAR model was developed as follows: 
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where Y is the grain output, δ is the spatial auto-regressive parameter (rho), W is the spatial weights 
matrix, Geo1 and Geo2 are the dummy variables, and ui and εit represent the individual effect and error 
term, respectively. 

W was calculated based on the inverse of the Euclidean distance between counties i and j using 
the spmat command in Stata. Where no data was available on the required variables for a certain 
county, it was removed from the analysis, resulting in some counties being ‘no neighbors’. As a 

Figure 1. County-level dominant landform classification into plain counties, hill counties, or mountain
counties based on the China County Statistical Yearbook [30].

2.2. Optimized Hot Spot Analysis

The tools of Cluster and Outlier Analysis (Anselin Local Moran’s I [32]) and Hot Spot Analysis
(Getis-Ord Gi* [33]) are primarily used to perform cluster analysis in the geographical information
system (GIS). Optimized Hot Spot Analysis (OHSA) executes the Hot Spot Analysis tool using
parameters derived from the input data characteristics. That is, it automatically aggregates incident
data, identifies an appropriate scale of analysis, and corrects for both multiple testing and spatial
dependence. The detailed instructions can be found in the ArcGIS Help [34]. We used the OHSA to
identify statistically significant spatial clusters of both high and low values of grain output in China.

2.3. Spatial Autoregression with Panel Data

As a generalization of the linear regression model, the spatial autoregression model (SAR) can
yield better classification and prediction accuracy for many spatial datasets exhibiting strong spatial
autocorrelation [35]. Given that Chinese grain output is spatially dependent, we used a SAR model
with panel data to estimate the difference in grain output in the plain, hill, and mountain counties.
A SAR model was developed as follows:

ln Yit = α0 + δ
n

∑
j=1

Wij ln Yij + ϕ1Geo1 + ϕ2Geo2 + µi + εit (1)

where Y is the grain output, δ is the spatial auto-regressive parameter (rho), W is the spatial weights
matrix, Geo1 and Geo2 are the dummy variables, and ui and εit represent the individual effect and error
term, respectively.
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W was calculated based on the inverse of the Euclidean distance between counties i and j using
the spmat command in Stata. Where no data was available on the required variables for a certain county,
it was removed from the analysis, resulting in some counties being ‘no neighbors’. As a consequence,
W was not created by the definition for the ‘contiguity’ relationships between counties i and j.

Geos indicating the dominant landforms are considered to be qualitative factors. The relevant
information can be captured by defining a dummy variable or a binary variable in empirical work.
The ranking for the slope of the surface has an order of plain < hill < mountain. Thus, Geo1 and Geo2

were defined as follows: let Geo1 = 1 if plain county and Geo1 = 0 otherwise; let Geo2 = 1 if mountain
county and Geo2 = 0, otherwise; hill county is the base. The benefit of capturing qualitative information
using the values zero and one is that it leads to regression models in which the coefficients have very
natural interpretations. In Equation (1), ϕ1 is the difference in Y between a plain county and a hill
county and ϕ2 is the difference in Y between a mountain county and a hill county, keeping other
factors constant.

The endowments of land resources, including the quantity and condition for development, are
different in plain, hill, and mountain counties. More specifically, the impacts of the amount of cultivated
land, irrigation, and agricultural mechanization were considered. The amount of cultivated land has
captured extensive concern in the light of its impact on food security in China. Drought is a powerful
natural force with a significant impact on food security in China [36]. Irrigation plays a crucial role in
Chinese grain production [11]. With increasing agricultural labor costs [23], mechanization is being
used increasingly to limit the costs of grain production. In China, most cultivated land can be found in
the plain regions, followed by the hill and mountainous regions [37]. Due to the absence of a slope
of the surface, the conditions for irrigation and agricultural mechanization are more advantageous
in plain regions, compared to hill and mountainous regions. To assess the impact of cultivated land
quantity, irrigation, and agricultural mechanization on grain output, we used the following model:

ln Yit = β0 + λ
n

∑
j=1

Wij ln Yij + β1 ln Landit + β2 ln Irriit + β3 ln Powerit + ϕi + υit (2)

where λ is the spatial auto-regressive parameter (rho), Land is the amount of cultivated land, Irri is
the irrigated area, Power is the total power of agricultural machinery, and ϕi and νit represent the
individual effect and error term, respectively.

In agricultural production, chemical fertilizer and labor are two essential factors. The two control
variables were added in Equations (1) and (2). Equations (1) and (2) were thus modified to Equations (3)
and (4), respectively, as follows:

ln Yit = α′0 + δ′
n
∑

j=1
Wij ln Yij + ϕ′1Geo1 + ϕ′2Geo2

+α1 ln Fertit + α2 ln Laborit + µ′i + ε′it

(3)

ln Yit = β′0 + λ′
n
∑

j=1
Wij ln Yij + β′1 ln Landit + β′2 ln Irriit + β′3 ln Powerit

+β4 ln Fertit + β5 ln Laborit + ϕ′i + υ′it

(4)

where Fert is the input of chemical fertilizer and Labor is the amount of labor.
It should be noted that the values of Y and Power in 1992 are equivalent to those of Land, Irri,

Labor, and Fert in 1990. The mean values of Y and Power in 2000 and 2014 are also equivalent to the
values of Land, Irri, Labor, and Fert in 2008.

We used random effects estimators (RE) of Equations (1)–(4) for two reasons. First of all, the key
explanatory variables Geo1 and Geo2 are constant over time. RE avoids the problem that the coefficients
of time-invariant variables cannot be estimated. Second, the quantity of counties is much larger than
the number of years (the minimum proportion of the former to the latter is 2015: 3). The random effects
model can avoid the loss of degrees of freedom incurred in the fixed effects model associated with
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large N and relatively small T, yet we also presented the fixed effects estimators (FE) of Equations (2)
and (4) and used the Hausman test.

3. Results

3.1. Spatial Clusters of Grain Outputs

Maps of statistically significant high values (hot spots) and low values (cold spots) of Chinese
grain output in 1992, 1995, 2000, 2005, 2010 and 2014 were created using the OHSA (Figure 2). Figure 2
shows that the distribution of high and low values expanded during 1992–2000 and then shrank.
An apparent feature is the increased low values of grain output found in Zhejiang, Fujian, Guangdong,
and Hainan.
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Figure 2. Spatial clusters of Chinese grain output. (a) 1992; (b) 1995; (c) 2000; (d) 2005; (e) 2010; (f) 2014.

In 1992, high values of grain output were mainly found; (1) in northeast China, (2) south of
the Yellow River and north of the Huai River, (3) in the Jianghan-Dongting Plain, (4) in the Sichuan
Basin, and (5) south of Guangdong and Guangxi. Low values of grain output were mainly found in
Southwest China and the Loess Plateau region. Compared to 1992, more counties in northeast China
showed a high grain output in 2000. Counties across the east of the Sichuan Basin, south of the Yellow
River, and north of the Yangtze River were also hot spots of grain output. Most of the counties in
western China were the cold spots of grain output, as well as the counties in Fujian and south of
Zhejiang. In 2014, high values of grain output were concentrated in northeast China (including eastern
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Inner Mongolia), Shandong province, Huanghuai, and Jianghan-Dongting Plains. Low grain output
values were concentrated in the coastal provinces in the south of Jiangsu, southwest China, and the
Loess Plateau.

To investigate the degree of spatial match between grain production and landforms, we reclassified
the maps of Figure 2, using the following rules: (1) hot spots in plain counties and cold spots in
mountain counties are determined a ‘match’; (2) hot spots in mountain counties and cold spots in
plain counties are determined a ‘mismatch’; and (3) hill counties are defined as grey zones, i.e., we
did not consider hot or cold spots there. These rules meet the fundamental assumption that plain
counties have the highest grain output, followed by hill counties and mountain counties, because of
the difference in the endowments of land resources. As an intermediate level, hill counties with hot or
cold spots are not the keynotes compared to plain and mountain counties as a whole.

Figure 3 presents the results of the reclassification to match-mismatch. The mountain counties
with hot spots in grain output are mainly located in northeast China, Shandong province, and central
China. Plain counties with cold spots in grain output first increased, from 1992 to 2000, and then
decreased, from 2000 to 2014, in northwest China. In southeast China, plain counties with cold spots
showed a continuous increase from 1992 to 2014.
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Most grain output hot spots are located in plain counties, while most cold spots are located
in mountain counties (Table 1). As such, generally speaking, a spatial match exists between grain
production and landforms. The year 2010 represents a turning point in terms of the match degree
between grain production and landforms, changing from a decreasing to an increasing degree of
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match. A likely explanation is the Grain for Green Project, which brought cultivated land into forest
and grassland [17–19]. Additionally, migration from rural to urban areas has been higher since
about 2002 [38]. Agricultural labor loss causes the abandonment of cultivated land and a subsequent
reduction of grain output in mountain regions, as the labor loss cannot be counteracted by increased
mechanization due to the restrictions presented by the terrain [20–22].

Table 1. Distribution of hot spots and cold spots of grain output in plain, hill, and mountain counties.

Type of County

Hot Spotss

1992 1995 2000 2005 2010 2014

No. % No. % No. % No. % No. % No. %

Plain counties 273 48 326 54 356 46 304 52 304 57 292 57
Mountain counties 89 16 82 14 201 26 81 14 63 12 62 12

Type of County

Cold Spotss

1992 1995 2000 2005 2010 2014

No. % No. % No. % No. % No. % No. %

Plain counties 128 18 124 17 178 23 119 15 120 14 122 14
Mountain counties 462 64 447 61 464 59 504 65 541 64 555 65

3.2. Estimates of the SAR

Equation (1) was estimated using the Maximum Likelihood Estimate (MLE) method.
The estimates are reported in column 2 of Table 2. The Ordinary Least Squares (OLS) regression
results of Y on Geo are shown in column 1 of Table 2. The rho is statistically significant at the level
of 1%, which means the SAR model is acceptable. The estimated coefficient of Geo1 is positive and
significant at the level of 1%, and the coefficient of Geo2 is negative and significant at the level of 1%.
This indicates that grain output in plain counties is higher than in hill counties, and grain output in
mountain counties is lower than in hill counties.

Table 2. Results of regressing grain output (Y)on the dummy variables (Geo).

Independent Variables
OLS SAR(RE)

(1) (2)

Geo1 0.354 *** (0.040) 0.304 *** (0.059)
Geo2 −0.756 *** (0.037) −0.621 *** (0.056)
Number of obs. 6045 6045
rho 0.995 *** (0.003)
R2 0.152 0.173

Note: (1) Numbers in parentheses are standard errors; (2) *** denotes statistical significance at the level of 1%.

The dominating landform (Geo) can have an impact on the grain production via the amount of
cultivated land, irrigation, and agricultural mechanization. To test this, ln(Land), ln(Irri), and ln(Power)
were regressed on Geo using OLS (Table 3). Geo1 had positive significant effects on ln(Land), ln(Irri), and
ln(Power), and Geo2 had negative significant effects on ln(Land), ln(Irri), and ln(Power). These results
imply that plain counties have the largest amount of cultivated land and the highest degree of irrigation
and agricultural mechanization, followed by hill counties and mountain counties.
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Table 3. Results of regressing ln(Land), ln(Irri), and ln(Power) on Geo.

Independent Variables
ln(Land) ln(Irri) ln(Power)

(1) (2) (3)

Geo1 0.165 *** (0.045) 0.602 *** (0.049) 0.476 *** (0.034)
Geo2 −0.652 *** (0.045) −0.870 *** (0.050) −0.724 *** (0.034)
Number of obs. 3902 3426 5871
R2 0.110 0.241 0.202

Note: (1) Numbers in parentheses are standard errors; (2) *** denotes statistical significance at the level of 1%.

Next, Equation (2) was estimated using the MLE method to investigate the impact of the amount
of cultivated land, irrigation, and agricultural mechanization on grain output. The estimates are
reported in columns 2 and 3 of Table 4. The results with OLS regression of Y on ln(Land), ln(Irri),
and ln(Power) are presented in column 1 of Table 4. Using a SAR model is acceptable, given that
rho is statistically significant at the level of 1%. We preferred the RE according to the Hausman test;
because chi2 = −1629.51 < 0, we do not reject the null hypothesis that RE provides consistent estimates.
Column 2 of Table 4 shows that the estimated coefficients of ln(Land), ln(Irri), and ln(Power) are positive
and significant at the 1% level. Furthermore, ln(Land) has the greatest impact on grain output, followed
by ln(Irri) and ln(Power).

Table 4. Results of regressing Y on ln(Land), ln(Irri) and ln(Power).

Independent Variables
OLS SAR(RE) SAR(FE)

(1) (2) (3)

ln(Land) 0.506 *** (0.014) 0.393 *** (0.017) −0.001 (0.012)
ln(Irri) 0.192 *** (0.011) 0.148 *** (0.011) 0.013 * (0.007)
ln(Power) 0.295 *** (0.013) 0.141 *** (0.015) 0.007 *** (0.010)
Number of obs. 3364 3364 3364
rho 0.792 *** (0.063) 0.904 *** (0.047)
Hausman test chi2= −1629.51
R2 0.716 0.748 0.581

Note: (1) Numbers in parentheses are standard errors; (2) *** and * denote statistical significance at the levels of 1%
and 10%, respectively.

To test the robustness of these results, Equations (3) and (4) were estimated (Tables 5 and 6).
Compared to column 2 of Table 2 and column 2 of Table 4, column 2 of Table 5 and column 2 of Table 6
have much larger values of R2, respectively. The estimated coefficients of the key explanatory variables
are statistically significant, and the signs of these coefficients are constant. Additionally, the estimated
coefficients of the two control variables are within expectations, i.e., both ln(Fert) and ln(Labor) have a
statistically significant impact on grain output. The empirical evidence hence is robust.

Table 5. Results of regressing grain output on Geo and the control variables.

Independent Variables
OLS SAR

(1) (2)

Geo1 0.058 ** (0.024) 0.108 *** (0.031)
Geo2 −0.234 *** (0.023) −0.317 *** (0.030)
ln(Fert) 0.447 *** (0.009) 0.310 *** (0.011)
ln(Labor) 0.292 *** (0.011) 0.264 *** (0.011)
Number of obs. 3900 3900
rho 0.390 *** (0.052)
R2 0.763 0.781

Note: (1) Numbers in parentheses are standard errors; (2) *** and ** denote statistical significance at the levels of 1%
and 5% levels.
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Table 6. Results of regressing grain yield on ln(Land), ln(Irri), ln(Power) and control variables.

Independent Variables
OLS SAR(RE) SAR(FE)

(1) (2) (3)

ln(Land) 0.331 *** (0.013) 0.309 *** (0.014) −0.003 (0.012)
ln(Irri) 0.064 *** (0.010) 0.059 *** (0.014) 0.005 (0.008)
ln(Power) 0.064 *** (0.013) 0.014 * (0.008) 0.054 *** (0.012)
ln(Fert) 0.299 *** (0.011 0.263 *** (0.011) 0.048 *** (0.009)
ln(Labor) 0.188 *** (0.011) 0.178 *** (0.012) 0.018 * (0.010)
Number of obs. 3336 3336 3336
rho 0.378 *** (0.060) 0.810 *** (0.063)
Hausman test chi2= −526.13
R2 0.799 0.858 0.757

Note: (1) Numbers in parentheses are standard errors; (2) *** and * denote statistical significance at the 1% and 10%
levels, respectively.

4. Discussion

4.1. Interpretation

The quantity of land resources and conditions for their development vary in plain, hill, and
mountain counties. This is the major reason that the spatial pattern of Chinese total grain production
agrees with the geographical distribution of landforms, in keeping with the findings from Xu and
Zhu [39]. The results also support previous studies [17–21] on the impacts of the GGP and cultivated
land abandonment on grain production and vice versa.

In this paper, we did not consider the impacts of climate change on Chinese total grain production
in the regression models. Increasing evidence shows that the impacts of socio-economic factors
on grain production are much stronger than those of climate change [15,40–42]. With adaptation
(e.g., irrigation and increased use of fertilizers and machines), the impacts of climate change could be
reversed in China [42]. In addition, county-level data on climate (e.g., temperature and precipitation)
during 1992–2014 are unavailable. However, the conclusions of this study are supported by the
convincing results.

4.2. Implication

It is vital for sustainable land management to improve the green use efficiency of cultivated
land in plain, hill, and mountain counties. The 13th Five-Year Plan has listed ‘green development’,
or environmentally friendly growth, as a key path for economic progress. Improving land use efficiency
is a central issue in the realization of sustainable development in China today [43]. Grain production
in different types of counties is different. Any attempt to implement a one-policy-fits-all design should
be resisted. Targeted policies on sustainable land management in plain, hill, and mountain counties
will be more effective.

The amount of cultivated land area is clearly a base factor impacting the amount of grain
production. Today, cultivated land area has however reached a maximum in China. In the 13th
Five-Year Plan, the Chinese government proposed to instead improve cultivated land quality in order
to guarantee food security. An important proposed measure is the improvement in cultivated land use
by engineering projects, such as land reclamation and water conservation projects. These actions are
more likely to occur in plain counties than in hill or mountain counties.

Greater consideration should be put into mechanization in grain production, especially in rice
and maize production, to further increase grain output in plain counties. To be able to fully operate
machinery, it is necessary to level land as well as to transfer land to reduce the degree of fragmentation.
Plain counties are mainly concentrated in northern China where a water resource shortage exists.
Chinese grain production currently is not in accord with the distribution of water resources [39].
With the current scenario of global climate change, plain counties should improve access to water
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in grain production by developing proper irrigation and drainage systems. The implementation of
the South-to-North Water Diversion Project would, at least to a certain extent, relieve the pressure
caused by the water resource shortage in the North [13]. However, insufficient water supply is a
long-term problem for economic and social development. Moreover, groundwater has become the
dominant source of water supply for irrigation in the North China Plain [11]. Extensive exploitation of
groundwater is unsustainable. Therefore, plain counties (especially in northern China) must develop
water-saving irrigation to increase water use efficiency in grain production.

Having the highest concentration of grain production in China, plain counties consume the most
chemical fertilizer. Agricultural non-point source pollution caused by overuse of chemical fertilizers
should be controlled in plain counties. The implementation of the Action Plan for Zero Growth in
Chemical Fertilizer Input by 2020 is an opportunity for plain counties to reduce the overuse of chemical
fertilizer and improve efficiency in the use of chemical fertilizer in grain production.

As a cold spot of grain output, mountain counties should weaken the role of grain production
compared to the other counties in order to strengthen ecological improvement and environmental
protection. It is important for mountain counties to restore cultivated land to forest and pasture
following free market principles, e.g. abandonment due to increased agricultural labor cost [17–19].
Hill counties should stabilize grain production capacity. It is important to prevent soil erosion in hill
counties, especially in northeast China and Shandong province since they are the hill regions with the
highest grain output.

5. Conclusions

Spatial analysis was applied to investigate the pattern of total grain production in China in
relation to the dominant landforms. Plain counties produce more grain as they contain more cultivated
land and have a higher degree of irrigation and agricultural mechanization. The spatial pattern of
Chinese grain production follows the law of substitution of labor for mechanization.

The future roles of total grain production in the counties of each landform should be as follows:
increased competitiveness in plain counties, a stabilized capacity in hill counties, and a further
reduction in grain production in mountain counties. In grain production, plain counties should
improve efficiency in the use of water resources and chemical fertilizer, hill counties should prevent
soil erosion, and mountain counties should restore cultivated land to forest and pasture.
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