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Abstract: Haze-fog has seriously hindered the sustainable development of the ecological environment
and caused great harm to the physical and mental health of residents in China. Therefore, it is
important to probe the formation of haze-fog for its early warning and prevention. The formation of
haze-fog is, in fact, a fuzzy nonlinear process. The formation of haze-fog is such a complex process
that it is difficult to simulate its dynamic evolution using traditional methods, mainly because of the
lack of their consideration of the nonlinear relationships. It is, therefore, essential to explore new
perspectives on the formation of haze-fog. In this work, previous research on haze-fog formation
is summarized first. Second, a new perspective is proposed on the application of fuzzy cognitive
map to the formation of haze-fog. Third, a data mining method based on the genetic algorithm
is used to discover the causality values of a fuzzy cognitive map (FCM) for haze-fog formation.
Finally, simulation results are obtained through an experiment using the fuzzy cognitive map and its
data mining method for the formation of haze-fog. The validity of this approach is determined by
definition of a simple rule and the Kappa values. Thus, this research not only provides a new idea
using FCM modeling the formation of haze-fog, but also uses an effective method of FCM for solving
the nonlinear dynamics of the haze-fog formation.

Keywords: formation of haze-fog; pollutants; meteorological conditions; fuzzy cognitive map;
data mining; nonlinear dynamics

1. Introduction

Presently, the formation of haze-fog in China, especially in North China, exhibits a complexity
that reflects two areas of concern. One is the existence of pollutants. Air pollution is changing from,
originally, the single-type to multiple variations. Secondary pollution [1,2], formed by a variety of
pollutants reacting with each other, is becoming increasingly prominent. The second area of concern is
related to meteorological conditions, whose changes may impact the formation of haze-fog in different
ways. First, global warming makes the local “extreme weather” more variable, and disturbance
due to EI Niño increases the likelihood of haze-fog formation [3]. Second, the Three-North Shelter
Forest Project and large scale wind power stations in Southern Inner Mongolia and Zhangbei may
make a certain influence on the wind power of North China [4]. Third, the South-to-North Water
Diversion Project has a few effects over the humidity of the area [5]. In addition, there are also other
possible factors that may affect haze-fog like atmospheric circulation, solar radiation, traffic, industrial
emissions, fires, etc. [6–10].
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In China, there is high false alarm rate in haze early warning systems. For example, Beijing
and other areas in North China experienced a haze-fog for a long duration lasting for up to 110 h on
27 November 2015, as shown as Figure 1. However, at that time, the heavy air pollution warning had
not been started in Beijing. As an example of false alarms, the heavy “red warning” of haze-fog was
given by the relevant agency for 12 a.m., 23 December 2015, but in reality, serious haze-fog occurred
south of Beijing at 5 p.m. on that day. Such issues with the prediction systems affect the prevention
decisions about haze-fog, and bring a significant impact on the traffic of the city, and the physical
and mental health of residents. The main reason for such inaccuracies in prediction is due to the
lack of research on complex relationships among the different factors in the formation of haze-fog in
traditional methods. Therefore, it is difficult to simulate their nonlinear dynamic evolution using these
methods. Thus, there exist inconsistencies between the emergency early warning of haze-fog and its
actual occurrence.
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The formation of haze-fog is based on different factors [11], which mainly involve PM2.5-based 
fine pollution particles, and prevailing weather conditions. This formation can be seen as a complex 
system. There are complex, iterative, and cognitive relationships among pollutants, weather 
conditions, pollution particles and haze-fog. For example, PM2.5 mainly involves two kinds of 
pollutants. One are primary particles emitted in the form of a solid state. The other are secondary 
particles produced by chemical reactions of the precursor pollutants, for example, NOx, SO2, etc. 
Therefore, the formation of haze-fog can be modeled in terms of the fuzzy cognitive complex system. 

FCM (fuzzy cognitive map) [12,13], as a knowledge representation of causal relationship 
(explicit and implicit) between the concepts and a method for system modeling, has been proposed 
by Kosko in 1986 and has extended ternary logic relationship in the fuzzy relationship in [−1, 1]. FCM 
is composed of the fuzzy information processing ability of fuzzy logic, the causal propagation 
method of cognitive map and the adaptive dynamic characteristics of neural network. FCM can also 
be used for the sensitivity analysis of factors, and the explanation of causal relationship, etc. This also 
supports a feedback mechanism and it is not like traditional methods that only draw a static 
conclusion. The final result may be a fixed point, limit cycle, or chaotic attractor, and FCM has been 
expanded in better expression of knowledge and reasoning ability than traditional methods. Thus, 
FCM can be used to express the complex cognitive model for haze-fog formation. 

Moreover, it is well established that the evolution of weather system is a fuzzy and nonlinear 
dynamic process [14,15]. Haze-fog is a kind of disaster weather, whose formation is a dynamic, 
nonlinear evolution process. In fact, the formation of haze-fog contains a wealth of data which can be 
exploited for its understanding. The monitoring data (such as the emission concentration of various 
pollutants, the meteorological data, etc.) provide massive and valuable data samples for research on 
the formation of haze-fog. The FCM model can be automatically obtained by learning the data [16–
19], and it has been applied in fault diagnosis, medical prediction, pollution management, and 
intelligent analysis of social phenomena and so on [20–24]. Thus, training of nonlinear and dynamic 
haze-fog formation time series data to mine the fuzzy cognitive association values becomes an 
immediate scientific issue to be solved for the formation of haze-fog. 
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The formation of haze-fog is based on different factors [11], which mainly involve PM2.5-based
fine pollution particles, and prevailing weather conditions. This formation can be seen as a complex
system. There are complex, iterative, and cognitive relationships among pollutants, weather conditions,
pollution particles and haze-fog. For example, PM2.5 mainly involves two kinds of pollutants. One are
primary particles emitted in the form of a solid state. The other are secondary particles produced by
chemical reactions of the precursor pollutants, for example, NOx, SO2, etc. Therefore, the formation of
haze-fog can be modeled in terms of the fuzzy cognitive complex system.

FCM (fuzzy cognitive map) [12,13], as a knowledge representation of causal relationship (explicit
and implicit) between the concepts and a method for system modeling, has been proposed by Kosko in
1986 and has extended ternary logic relationship in the fuzzy relationship in [−1, 1]. FCM is composed
of the fuzzy information processing ability of fuzzy logic, the causal propagation method of cognitive
map and the adaptive dynamic characteristics of neural network. FCM can also be used for the
sensitivity analysis of factors, and the explanation of causal relationship, etc. This also supports a
feedback mechanism and it is not like traditional methods that only draw a static conclusion. The final
result may be a fixed point, limit cycle, or chaotic attractor, and FCM has been expanded in better
expression of knowledge and reasoning ability than traditional methods. Thus, FCM can be used to
express the complex cognitive model for haze-fog formation.

Moreover, it is well established that the evolution of weather system is a fuzzy and nonlinear
dynamic process [14,15]. Haze-fog is a kind of disaster weather, whose formation is a dynamic,
nonlinear evolution process. In fact, the formation of haze-fog contains a wealth of data which can be
exploited for its understanding. The monitoring data (such as the emission concentration of various
pollutants, the meteorological data, etc.) provide massive and valuable data samples for research on
the formation of haze-fog. The FCM model can be automatically obtained by learning the data [16–19],
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and it has been applied in fault diagnosis, medical prediction, pollution management, and intelligent
analysis of social phenomena and so on [20–24]. Thus, training of nonlinear and dynamic haze-fog
formation time series data to mine the fuzzy cognitive association values becomes an immediate
scientific issue to be solved for the formation of haze-fog.

2. Previous Research on the Formation of Haze-Fog

The formation of haze-fog has been mainly studied from the following three perspectives: physical
chemistry mechanism, statistical analysis, and data mining.

2.1. Physical Chemistry Mechanism in the Formation of Haze-Fog

A diffusion model is used to simulate the physical chemistry mechanism in the formation of
haze-fog. This model is a numerical method, which can quantitatively simulate the emission, migration,
diffusion, and chemical reaction of pollution with time and space. As the core of air quality prediction
model, the diffusion model has gone through three generations [25,26].

The first generation, mainly, includes the Gauss model and the Lagrange trajectory model. For
example, California Puff (CALPUFF) is an atmospheric quality evaluation and prediction system
for complex terrain [27]. The Gauss diffusion model, as the core of CALPUFF, uses a large number
of discrete smoke clusters to represent continuous plume dispersion, and a “snapshot” method to
evaluate the concentrated contribution of a single smoke group to a receptor point.

In order to overcome the uniformity of the single grid in the first generation of models,
the simulated area is divided into multiple grids, and each grid has independent emission data and
meteorology data in the second generation. Based on the Eulerian mesh model [28,29], it introduces a
more complicated meteorological model and parameters, and detailed nonlinear chemical reaction
mechanism, where chemical transport models (CTM) are used to calculate the concentration of
pollutants or air pollution based on the meteorological field and the source list. The transmission
process follows the principle of mass conservation of pollutants.

In order to take into account all of these atmospheric variables into the model, USEPA
(United States Environmental Protection Agency) proposed the third generation called Models-3
(Third-Generation Air Quality Modeling System)/CMAQ (Community Multi-scale Air Quality).
This is a kind of atmospheric chemical transport model based on “one atmosphere” [25,26]. Each
chemical mechanism in Models-3/CMAQ contains a limited number of chemical reactions. In addition,
it is important that the aerosol module is involved in CCTM for the formation of haze-fog because the
increase in aerosol concentration reduces the visibility and, thus, forms haze-fog [2]. Aerosol particles
are the product of interactions between pollutants and meteorology factors and a general name for the
solid and liquid particles suspended in the air, whose main component is PM2.5.

In short, the physical chemistry mechanism applies the physical and chemical reaction of
pollutants under meteorological conditions in the diffusion for prediction of the air quality in
time-space. The methods exhibit superiority in simulating the transition and distribution of pollutants
in time-space. However, as many complex nonlinear physical and chemical mechanisms are not taken
into account, it is difficult to simulate complex physical and chemical reactions under the influence of
complex meteorological field for the physical chemistry mechanism. As a result, it sometimes fails to
predict the formation of haze-fog.

2.2. Statistical Analysis of the Formation of Haze-Fog

Statistical analysis is used to obtain the factors that influence the formation of haze-fog from the
data of haze-fog monitored by satellite or ground monitoring equipment. This is one of the most
common methods used to analyze the formation of haze-fog. There are three viewpoints related to
this approach.

The first view is of meteorological conditions. Ding et al. [30] show that relative humidity is an
important influencing factor using the comprehensive judgment method in distinguishing fog and
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haze happening in China. Fu et al. [31] obtained the influence of wind velocity and relative humidity
on haze-fog using mean and frequency calculation methods in the North China Plain. Guo et al. [32]
indicate that the long-lasting fog and haze event often occur in a high pressure weather system and
calm wind conditions. Zhang et al. [33] show that the dynamic effect on the haze-fog evolution is
almost the same as the thermodynamic effect based on meteorological factors using a multiple linear
regression model. In addition, Zhang et al. [11], Yang et al. [34], and Yang et al. [35] point out that
PLAM (Parameter Linking Air-quality and Meteorology) is a “pollution weather condition” index,
such as air pressure, temperature, wind power, relative humidity, stability, precipitation, etc., which
can quantitatively reflect the degree of static and stable weather.

The second view is of pollutants. Jansen et al. [36] obtained that both gaseous NO2 and SO2 are
main factors resulting in the reduction of visibility according to hourly concentrations of particulate
sodium and the mixing ratios by the online MARGA ADI 2080 analyzer. Shen et al. [37] obtained that
nitrate and organic compounds dominate the aerosol component during the severe haze-fog episodes
and are related to secondary aerosol formation and air mass origin by statistical analysis.

The third view is of both pollution and meteorological conditions. Zhang et al. [11] analyzed the
factors of haze-fog origins in China, especially in North China, and shows that the existence of heavy
haze-fog is related to the high concentration of aerosol particles and continuous haze-fog is related to
the prevailing calm weather in the country at present. Zhang et al. [38] focused on the changes of PM1

in the atmosphere and the influence of meteorological conditions on the weather with heavy haze-fog
at a regional background station in the Yangtze River Delta area of China. In the study performed in
Chung et al. [39], due to the increase in both water supply and emission of air pollution, the typical
pattern of historical mist and haze in London is observed commonly in Korea today. Sun et al. [40]
obtained the influence coefficient of PM2.5 and meteorological conditions on haze-fog under different
relative humidity and PM2.5 concentration levels by a multiple linear regression equation of visibility
in Beijing.

The main contributions of the methods are the determination of the possible factors affecting the
formation of haze-fog. Haze-fog is the result of a large number of pollution particles suspended in the
air and accompanying meteorological conditions. The quantitative relationships among the factors
responsible for the formation of haze-fog have seldom been constructed, besides the research [40] has
mainly focused on the influence coefficients in the formation of haze-fog. Moreover, the statistical
methods [30–40] are more like ex post, linear, and static computing, rather than nonlinear models for
the formation of haze-fog. Ultimately, they cannot simulate the sequential evolution of the formation
of haze-fog.

2.3. Data Mining Methods for the Formation of Haze-Fog

With the aim to simulate nonlinear relationships, data mining is applied in the forecast of air
quality. First, it is used to predict the concentration of pollutants [41,42], using techniques such as
neural networks, SVM (support vector machine), GM (1,1) Model (Grey model), comprehensive
forecast model, GA_ANN (genetic algorithm and artificial neural networks), etc.

It is, then, extended to apply in the formation of haze-fog. Meng et al. [43] constructed an MRM
(multiple regression model) for calculating fog and haze intensity by using a logistic function as a
haze-fog intensity function. The influencing parameters in the model are mined by fitting the measured
data of haze-fog to the model in order to forecast the haze-fog intensity.

At present, the existing data mining method [43] in predicting haze-fog only mines the influencing
weights of meteorological and pollutant indices on haze-fog from the available data because of the
limitation of the multiple regression model. They cannot get the influencing weights among these
meteorological factors or the weight among these pollutant indexes. In addition, they also do not
exploit the dynamics of data for the formation of haze-fog. Therefore, this aspect needs to be further
explored using complex nonlinear dynamic relationships among factors responsible for the formation
of haze-fog.
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2.4. Proposed Problems

The research on the formation of haze-fog is still in the early stage, especially in China. It is the
lack of focus on the complicated nonlinear relationship of haze-fog formation in traditional methods.
It is difficult to simulate the nonlinear dynamic evolution processes responsible for the formation
of haze-fog in the existing physical chemistry mechanism and statistical analysis; therefore, their
prediction and analysis on the formation of haze-fog is sometimes inaccurate.

Due to the complexity of relationships among different factors and the dynamic evolution of
the formation of haze-fog, two considerations need to be taken into account. One is the complex
cognitive model for the formation of haze-fog. Second is to discover the degree (fuzzy values) of the
cognitive relationships in the nonlinear evolution of the formation of haze-fog. These two points can
be explained as follows:

(1) The complex cognitive model for the haze-fog formation

The complex cognitive model should address certain questions about the process of haze-fog
formation. For example, what are the factors involved in the formation of haze-fog? What are the
relationships among the factors in the cognitive map for haze-fog formation? How do we represent
the states (fuzzy value) of factors in fuzzy form? How do the states and the relationships evolve
with form?

The FCM structure is similar to a recurrent artificial neural network, where concepts are
represented by neurons and causal relationships by weighted links connecting the neurons. The fuzzy
cognitive map shown in Figure 2 is a 4-tuple (C, W, A, f ) mathematically, where:
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• C = {C1, C2, . . . , Cn} is the set of n nodes of a graph, which represents a set of concepts of a system,
in general.

• W: (Ci, Cj)→ wij is a function of n × n to a pair of concepts (Ci, Cj) taking value in the range −1 to
1, with wij denoting a weight of directed edge from Ci to Cj, if i 6= j, and wij equal to zero if i = j.
Thus, W (n × n) = (wij) is a connection matrix.

There are three possible types of causal relationships between concepts:

wij > 0, which indicates positive causality between concepts Ci and Cj. That is, the increase
(decrease) in the value of Ci leads to the increase (decrease) on the value of Cj;

wij < 0, which indicates negative causality between concepts Ci and Cj. That is, the decrease
(increase) in the value of Ci leads to the increase (decrease) on the value of Cj; and

wij = 0, which indicates no relationship between Ci and Cj.

• A(t) = {A1(t), A2(t), . . . , An(t)} is a sequence of concepts activation degrees at the moment t. A(0)
indicates the initial vector and specifies initial values of all concept nodes and A(t) is a state vector
at certain iteration t.
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The state vector specifies current values of all concepts (nodes) in a particular iteration. The value
of a given node is calculated from the preceding iteration values of nodes, which exert influence on the
given node through cause–effect relationship (nodes that are connected to the given node).

• f is a transformation function, which includes recurring relationship on t ≥ 0 between A(t + 1)
and A(t).

∀i, j ∈ {1, 2, . . . , n}, Ai(t + 1) = f

∑ n
i = 1,
i 6= j

wji Aj(t)

,

where Aj(t) is the state of cause concept j at t iteration and Aj(t) is the state of effect concept i at
t + 1 iteration, wji is a cause-effect relationship weight from Cj to Ci. The transformation function
is used to confine the weighted sum to a certain range, which is usually set to [0, 1]. The three
most commonly used transformation functions are shown in Equations (1)–(3).

• bivalent

f (x) =

{
0 x ≤ 0
1 x > 0

(1)

• trivalent

f (x) =


−1 x ≤ −0.5
0 −0.5 < x < 0.5
1 x ≥ 0.5

(2)

• logistic

f (x) =
1

1 + e−µx (3)

There are several simulation scenarios, which are dependent on the transformation function.
Applying a discrete transformation function (e.g., the bivalent or trivalent function), the simulation
heads to either a fixed state vector value, which is called fixed-point, or keeps cycling between a number
of fixed state vector values, which is known as a limit cycle. Using a continuous transformation function
(e.g., the logistic signal function), the fixed-point and limit cycle, as well as a so called chaotic attractor,
may appear.

The nodes in FCM can be expressed as concepts in the formation of haze-fog. The arc between
nodes is the relationship between concepts. Each node has a time series state space. Each node or each
arc has strong cognitive semantics so that it is very intuitive to express problems. The inference of
FCM takes the advantages of computer in digital computing based on matrix operation. The state
space of FCM is formed by the automatic transmission of the evolution function from initial condition.
Thus, the dynamic behavior of haze-fog formation can be simulated through the interaction of the
concepts in the cognitive network.

(2) Discovering the fuzzy cognitive relationships in the fuzzy cognitive map for haze-fog formation

The formation of haze-fog generates a lot of data. The data are complex and sequential. How to
discover the fuzzy cognitive relationships from the data resources needs to be solved.

The FCM learning algorithm can obtain the association matrix of FCM from data. There are two
classes of FCM learning algorithms: Hebbian-based learning and evolved-based learning. The former
are Hebbian-based algorithms [17,44,45], mainly including NHL (nonlinear Hebbian learning) and
AHL (active Hebbian learning). The latter are learning algorithms based on evolution theory [17,46,47],
which are composed of PSO (particle swarm optimization), RCGA (real coded genetic algorithm),
etc. The evolutionary learning can obtain the cause-effect relationships of FCM from the time series
data. Therefore, FCM is more applicable to time series data mining, to simulate the nonlinear dynamic
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evolution process in the formation of haze-fog, and to find fuzzy cognitive relationships (values) in
the formation of haze-fog. FCM can be used to simulate the dynamic behavior of haze-fog formation
complex cognitive model for haze-fog formation.

Being aimed at the complexity in the formation of haze, from the view of the complex cognitive
relationship in the formation of haze-fog, this research is focused on mining the fuzzy cognitive
relationships (values) by nonlinear time series data for the formation of haze-fog. This can also be
applied in the prediction of the intensity of haze-fog and the analysis of complex relationship in the
formation of haze-fog for emergency warning decision support systems.

3. A New Perspective: The Fuzzy Cognitive Map for Haze-Fog Formation

3.1. The Construction of the Fuzzy Cognitive Map for Haze-Fog Formation

From the view of cognition, there is cause-and-effect relationship between the pollutants,
meteorological conditions, other possible factors, and the formation of haze-fog. The factors and
haze-fog can be simulated as concept nodes of a fuzzy cognitive map in the formation of haze-fog.
The concept nodes C = {C1, C2, . . . , Cn} are defined as a set of the concepts in the formation of haze-fog.

The concepts in the formation of haze-fog mutually affect and interact forming an organic and
complex system. There are cause-effect relationships among the concepts representing pollutants.
For example, the pollutants of SO2, NO2 may cause “secondary pollution” of PM2.5. In the same
way, there are cause-effect relationships among the concepts representing meteorological conditions,
such as temperature, may influence relative humidity. There are cause-effect relationships between
the concepts representing pollutants and meteorological conditions on the formation of haze-fog.
According to the cognitive relationships among them, the relationships of FCM can be constructed as
Figure 3.

Then the degrees of the cause-effect relationships are described as W = {wij|wij which is the value
of the arc< Ci, Cj > in [−1, 1]}, where wij is the causality degree of the concepts Ci to Cj. A represents
the state spaces of FCM in the formation of haze-fog. The concepts in the formation of haze-fog
have state spaces with time series corresponding to the sequence dataset in the formation of haze-fog.
Each state is a fuzzy value in [0, 1]. The state of the FCM in the formation of haze-fog at time t is
represented as A(t) = (Polut(t), Meteo(t), Haze(t)). The Haze(t) is a state value of haze-fog at time t.
The Polut(t) = [polut1(t), polut2(t), . . . , polutq(t)] that is one vector representing the concentrations
of pollutants at time t. The Meteo(t) = [meteo1(t), meteo2(t), . . . , meteon(t)] is one state vector of the
meteorological factors at time t.
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3.2. The Evolution Mechanism of the Fuzzy Cognitive Map to Haze-Fog Formation

There are causal relationships of the concepts representing pollutants and meteorological
conditions on the concept of haze-fog. The evolution mechanism of the formation of haze-fog follows
the cognitive inference rules of FCM which can be shown in Equation (4):

Haze(t + 1) = f
(
αi Haze(t) + β jPolut(t)Wp + γk Meteo(t)Wm + θl

)
,

t ∈ {0, 1, 2, . . . . . . , T},
(4)

where αi, βj, γk, respectively, are the parameter of haze intensity, pollutants, and meteorological
conditions in the formation of haze-fog, θl is the parameter of other possible influencing factors, f is the
evolution function, such as sigmoid, and Wp =

[
wp1, wp2, . . . , wpq

]T and the Wm = [wm1, wm2, . . . , wmn]
T .

They are the relationship vectors of pollutant and meteorological conditions of the formation of
haze-fog, respectively.

There are causal relationships among the concepts representing pollutants. The inference is shown
as Equation (5):

poluti(t + 1) = f (λi poluti(t) + ∑
i 6= j
j ∈ Si

λj polutj(t)wji) (5)

Similarly, there are causal relationships among the concepts representing meteorological
conditions. The inference is shown as Equation (6):

meteoi(t + 1) = f (ηimeteoi(t) +∑ i 6= j
j ∈ Si

ηjmeteoj(t)wji), (6)

where Si is a set of nodes associated with Ci, wji is the casual value of the Cj to Ci, and λi, λj, ηi, ηj are
the state parameters in the FCM, respectively. The logistic function can be chosen as transformation
function shown in Equation (3).

The state values of the concepts in the formation of haze-fog evolve with time after the initial state
has been determined in accordance with the nonlinear dynamic reference rules that are represented
by Equations (3)–(6), and finally may end at one of three stable states that are a fixed point, a limited
cycle, and a chaotic attractor.

4. The Approach to Data Mining of the Fuzzy Cognitive Map for Haze-Fog Formation

How to discover the degrees of cause-effect is a key issue in fuzzy cognitive mapping for the
formation of haze-fog. Massive sequential data is generated in the process of haze-fog formation. It can
be considered as a nonlinear evolution of fuzzy cognitive map for the formation of haze-fog, and the
degrees of cause-effect relationship need a data mining method of fuzzy cognitive map in order to
be discovered.

Taking the genetic algorithm in evolutionary learning as an example, the work flow using the time
series mining of the fuzzy cognitive map for the formation of haze-fog is shown in Figure 4. The key
procedures are the initialization method, the determination of mining end condition, and optimization
method. The causality value can be mined by these methods.
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The main steps are the mining of the degrees in the fuzzy cognitive map by simulating the
nonlinear changes of the fuzzy cognitive map in the haze-fog formation driven by multidimensional
sample data. The genetic algorithm is depicted in Table 1.

Table 1. The genetic algorithm of the fuzzy cognitive map.

Inputs: Sample Data from the Process of Haze-Fog Formation

Step1. Initialize parameters of genetic algorithm and the FCM within the known range.
Step2. Generate initial population based on operator.
Step3. Calculate fitness function according to the time series data.
Step4. Evolve the population.
Step5. Return to Step 3, until the fitness function is maximized (i.e., the end of mining conditions)
after finite iterations.

Outputs: The Relationship Degrees in the Fuzzy Cognitive Map for Haze-Fog Formation

Each correlation degree in the FCM can be defined as a gene. Assume that there are N genes; these
degrees (weights) can be compiled as a real vector, which represents an N-dimensional chromosome,
W(1) = [w(1)

1 , . . . , w(1)
i . . . , w(1)

N ]. According to the range of each gene, created using Logistic mapping,
it forms a numbers of M initial chromosomes {W(1), . . . , W(u), . . . W(M)} for M chromosomes.

The simulation at time t can be calculated by the previous at time t − 1 and the evolution
rules of Formulas (4)–(6). Assuming that the simulation states of the fuzzy cognitive map at time
t are A′(t) =

{
A1
′(t), . . . , Ai

′(t), . . . , Av
′(t)
}

and the actual states (from the measured data) are
A(t) = {A1(t), . . . , Ai(t), . . . , Av(t)}, the error is given as the difference between the actual value of
A(t) and the simulated value of A′(t). This error is basis of fitness function definition, such as the one
given in Equation (7). The higher the sufficiency is, the better is the fitting of time series data. When
the fitness function reaches the threshold value, the process ends:

f itness =
1

1
v ∑v

i=1
(

Ai − Ai
′)2

+ 1
(7)

The individual weights are optimized through crossover and mutations in the genetic algorithm.
A new individual is generated by crossover operation of two parent individuals. Mutation operation
gives the individual component of the real number code. Through the crossover and the mutation,
the best choice is selected from the new individuals and their parent, and it enters into the following
generation groups for the purpose of optimization.
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5. Experiments and Results

The meteorological data from NCEP (National Centers for Environmental Prediction) in the USA
has been used [48]. The meteorological data consider temperature, pressure, relative humidity, and
wind speed. The pollutant and haze-fog data have been obtained from the datacenter of the MEP
(Ministry of Environment Protection) of China. The pollutant data are about PM2.5, SO2, NO2, and CO.
These daily data have been chosen from 23 October 2014 to 6 January 2015, for Beijing.

According to the study in Section 2.2 and the data characteristics, the meteorological conditions
of temperature, pressure, relative humidity, and wind speed are identified as meteorological concepts
of the fuzzy cognitive map for haze-fog formation. According to the study of pollutants and their
characteristics summarized in Section 2.2, PM2.5, SO2, NO2, and CO have been identified as the
polluting concepts of the fuzzy cognitive map for haze-fog formation. The haze-fog has been identified
as fuzzy cognitive map for understanding its formation.

Accordingly, one weight matrix has been constructed for meteorological conditions and haze-fog.
Another weight matrix has been constructed for pollutants and haze-fog. The concepts included in the
FCM are temperature, pressure, relative humidity, wind speed, PM2.5, SO2, NO2, CO, and haze-fog.
A genetic algorithm is chosen as a data mining approach for the FCM. The experiment has been run
and the values are reported below:

• recombination method—single-point crossover;
• mutation method—random mutation;
• selection method—roulette wheel;
• probability of recombination: 0.8;
• probability of mutation: 0.5;
• population_size: 200 chromosomes;
• max_generation: 500,000;
• max_fitness: 0.9; and
• the parameters of the FCM: αi = β j = γk = λi = λj = ηi = ηj = µ = 1, θl = 0.7

Through the implementation of experiments, using the cause-effect weights in the formation of
haze-fog, the key influencing factors can be analyzed. In meteorological conditions’ wind speed has a
stronger influence on the haze-fog in Beijing. In the pollutants, PM2.5 is the main pollutant influencing
the formation of haze-fog in Beijing.

In order to verify the fuzzy cognitive map for the formation of haze-fog, the intensity of haze-fog
formation is represented as a fuzzy value in fuzzy cognitive map and a single rule of validity
determination is formulated. The fuzzy intensity has been divided into four sections. Clear cases are
in [0, 0.25), slight haze in [0.25, 0.50), mild haze in [0.50, 0.75), and severe haze in [0.75, 1]. Since the
actual value is an interval such as fog, or haze and so on, while the forecast result is fuzzy value, a rule
is defined for determining the validity of the FCM and its data mining:

if (the forecast value is in the interval of corresponding actual intensity)
the number of valid forecast in the right interval plus one;

else
the invalid number in a wrong interval plus one.

The valid forecast points to forecast value being in the range of corresponding actual intensity.
In order to further validate it over multiple times, the Kappa Index of Agreement (K) is defined to help
evaluate the outputs expressed by Equation (8), where PA is the observed consistency and Pe is the
expected consistency. If all forecast results are valid, K equals 1. The larger the Kappa value, the better
the consistency:

K =
PA − Pe

1− Pe
(8)
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The haze-fog has been predicted for the coming 10, 20, and 30 days from 7 January 2015. There are
two experiments that are implemented. They are based on the FCM and the MRM in Meng et al. [43],
respectively. The experimental results are shown in Tables 2–4. The Kappa values based on the FCM
are 0.861, 0.861, and 0.814, respectively. The Kappa values based on the multiple regression model are
0.855, 0.791, and 0.717, respectively. From the Kappa values, it can be observed that these experiments
obtain better results for haze-fog prediction.

Table 2. The forecast during 10 days.

Haze Intensity (Actual Number)

Forecast Result Haze Intensity [0, 0.25) [0.25, 0.50) [0.50, 0.75) [0.75, 1]

FCM MRM FCM MRM FCM MRM FCM MRM

[0, 0.25) (4) 4 4 0 0 0 0 0 0
[0.25, 0.50) (2) 0 0 2 2 0 0 0 0
[0.50, 0.75) (1) 0 0 0 0 1 1 0 0
[0.75, 1] (3) 0 1 0 0 1 0 2 2

Table 3. The forecast during 20 days.

Haze Intensity (Actual Number)

Forecast Result Haze Intensity [0, 0.25) [0.25, 0.50) [0.50, 0.75) [0.75, 1]

FCM MRM FCM MRM FCM MRM FCM MRM

[0, 0.25) (6) 5 5 1 1 0 0 0 0
[0.25, 0.50) (7) 0 0 7 7 0 0 0 0
[0.50, 0.75) (2) 0 0 0 0 2 2 0 0

[0.75, 1] (5) 0 1 0 0 1 1 4 3

Table 4. The forecast during 30 days.

Haze Intensity (Actual Number)

Forecast Result Haze Intensity [0, 0.25) [0.25, 0.50) [0.50, 0.75) [0.75, 1]

FCM MRM FCM MRM FCM MRM FCM MRM

[0, 0.25) (11) 10 10 1 1 0 0 0 0
[0.25, 0.50) (10) 1 1 8 8 1 1 0 0
[0.50, 0.75) (3) 0 0 0 0 3 2 0 1

[0.75, 1] (6) 0 1 0 0 1 1 5 4

6. Conclusions

First, three types of existing methods on the formation of haze-fog have been summarized in
this work.

(1) Physical chemistry methods model the actual physics and chemical reactions of pollutants
under the influence of the meteorological conditions. However, with more complex nature of
reactions, the methods fail to describe and simulate the nonlinear processes involved in the
haze-fog formation.

(2) Statistical analysis methods incorporate the factors that are involved in the formation of haze-fog
by using the measurements from equipment and the linear analysis of the contributing factors for
the formation of haze-fog. They are important cognitive bases for the formation of the haze-fog.
However, statistical analysis cannot describe the nonlinear dynamic process responsible for the
formation of haze-fog.

(3) Data mining methods can be used to discover the nonlinear relationships in the formation of
haze-fog. However, at present, because of the limitation of the model such as in Meng et al. [43],
not considering the correlations among the contributing factors and the dynamic changes in data,
the results in existing data mining methods are unsatisfactory.
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However, the following points still need to be studied further, especially under the formation
conditions that are becoming increasingly complex:

(1) Quantitatively dynamic models need to be further developed for the formation of haze-fog under
increasingly complex scenarios.

(2) The relationships among the factor concepts in the formation of haze-fog need to be well
recognized and modeled.

(3) The dynamic and nonlinear changes need to be further simulated for forecasting the formation
of haze-fog.

Thus, a new view on the formation of haze-fog addressing the above issues has been proposed.
It is aimed at the complex relationships in the formation of haze-fog using fuzzy cognition and data
mining. The research scheme has been put forward in two sections. One is construction of the FCM
and the other is the data mining approach for FCM on the formation of haze-fog. The FCM involves
the evolution mechanism in its construction. The other is the construction of the FCM for the formation
of haze-fog, and the data mining for the fuzzy cognitive relationships (degrees) from the dynamic
sequential data.

The preliminary experimental results based on genetic algorithm indicate that the nonlinear
cognitive and construction for the formation of haze-fog can get better forecast and analysis of key
influencing factors. Of course, there are many problems to be improved, such as involvement of
more influencing factors, parameter setting, comparison of several experiments, accuracy, operational
efficiency, etc. Nevertheless, the research has proposed a kind of model and method simulating
the dynamic and complex relationships among the influencing factors and haze-fog and, to some
extent, demonstrated better theoretical and practical significance for the formation of haze-fog with
increasingly complex meteorological conditions and pollutants. This can provide the basis for
forecasting the formation of haze-fog, complex analysis of the formation of haze-fog, and provide
important decision support for emergency early warning and control of haze-fog.
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