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Abstract: As an important facet of modern agricultural development, greenhouses satisfy
ever-increasing demands for agricultural production and, therefore, constitute a growing proportion
of global agriculture. However, just a handful of countries regularly collect statistics on the land cover
of greenhouse infrastructure. Even when collected, these data cannot provide the detailed spatial
information required for environmental risk assessment. It is, therefore, important to map spatial
changes in greenhouse land cover using remote sensing (RS) approaches to determine the underlying
factors driving these changes. In this paper, we apply a support vector machine (SVM) algorithm
to identify greenhouse land cover in Shouguang City, China. Enhanced thematic mapper (ETM)
images were selected as the data source for land use classification in this study as they can be freely
acquired and offer the necessary spatial resolution. We then used a binary logistic regression model
to quantitatively discern the mechanisms underlying changes in greenhouse land cover. The results
of this study show that greenhouse land cover in Shouguang increased by 50.51% between 2000
and 2015, and that 90.39% of this expansion took place between 2010 and 2015. Elevation, slope,
precipitation, and the distance to the nearest rural settlements and coastline are all significant factors
driving expansion in greenhouse land cover, while distance to the nearest urban areas, rivers, roads,
railways, and coastline have contributed to contractions in this land use type. Our research provided
a practical approach to allow the detection of changes in greenhouse land cover in the countries with
using free or low-cost satellite images.

Keywords: land use change; greenhouse land; driving forces; logistic regression; Shouguang
city; China

1. Introduction

Agriculture is essential to sustain population levels as well as for the development of material
(e.g., industry) and non-material production sectors [1,2]. Although countries around the world
vary in their speed of agricultural development, all pursue modern approaches because they enable
both high productivity and economic benefits [3,4]. Greenhouse use has emerged in response to
these developments, as an important tool in modern agriculture [5] that can enhance both the quality
and output of products by using artificial facilities to alter horticultural environments [6]. Because
greenhouses are effective ways to utilize water and land resources, as well as enhance output rates [7],
it is not surprising that their usage has comprised an increasing proportion of global agriculture [8].
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Greenhouse area has been expanding around the world [9]. Over the last two decades, greenhouse
area worldwide has increased five-fold and this expansion continues to accelerate [10]. Usage globally
is mainly concentrated in Asia, with China accounting for almost half of the overall worldwide
total [11]. To meet accelerating demands for vegetables, the greenhouse area in China doubled between
2006 and 2010 [12]. Europe boasts the second largest greenhouse area globally, encompassing over
20% of the total [13]; in this region, greenhouses are mostly concentrated in Italy, Spain, and the
Netherlands. In contrast, the greenhouse area in North and South America accounts for just a small
proportion of the global total; and though greenhouse production is an important component of the
U.S. horticultural sector, total greenhouse area is just 9100 hectares, of which 8000 hectares is used for
ornamental production [14].

Most countries around the world do not collect regular statistics on greenhouse area. Indeed,
of the few that do, just a handful collates yearly figures, including the Netherlands, Germany, and
Canada. Thus, detecting greenhouse land cover using RS data has become a research target; very high
resolution satellite images have been utilized in previous studies to identify greenhouse land cover.
For example, Sönmez and Sari [15] manually identified the boundaries of greenhouses in the Antalya
region of Turkey using IKONOS satellite images, achieving a classification accuracy of 96%, while
Aguera et al. [16] used QuickBird satellite images to detect greenhouses in southeastern Spain. In earlier
work, Aguera et al. [17] and Aguera and Liu [18] developed an automatic greenhouse extraction
method based on IKONOS and Quickbird satellite images, achieving classification accuracies of 90%
and 84.20%, respectively. Using the same satellite images as the source of data, Carjaval et al. [19] then
applied an artificial neural network classifier to identify greenhouse land cover in southeastern Spain.

In addition to IKONOS and Quickbird images, researchers have also investigated the use of other
satellite data sources to map greenhouse land cover. Tarantino and Figorito [20], for example, showed
that traditional classification techniques face challenges when used to identify greenhouse land cover
in complex areas. These workers therefore applied an object classifier to detect greenhouse land cover
using aerial images, achieving an accuracy of 90.25%. Building on this, Koc-San and Sonmez [21] used
WorldView-2 satellite images to map greenhouse land cover in Antalya, Turkey. These images are
quite promising for the detection of greenhouse land cover.

However, while it is feasible to detect greenhouse land cover using very high resolution satellite
images, mapping issues remain. In the first place, high resolution images are generally not free to
acquire, and often incur high cost. Thus, for a country such as China that has a huge area, it has
been very difficult to monitor large-scale greenhouse land cover using high-resolution satellite images.
Secondly, time series encapsulated by high-resolution satellite images are usually short, limiting
long-time detection of greenhouse land cover changes. Finally, most of the previous research has
focused on determining the current status of greenhouse land cover, and has ignored analysis of
underlying drivers. Such an analysis will contribute to a deeper understanding of the expansion of
greenhouse land cover and provide a scientific basis for future forecasting and land use policy decisions.

The aim of this paper is to map and analyze changes in greenhouse land cover within the city of
Shouguang, China, using free-to-download Landsat images that encapsulate a continuous time series
of over 40 years. We also attempt to discern the factors driving greenhouse land cover change in this
region by applying a logistic regression model.

2. Study Area

The city of Shouguang (118◦32′E–119◦10′E, 36◦41′N–37◦19′N) is situated on the coastal plain
of north-central Shandong Province and covers an area of 2200 km2 (Figure 1). This city has a
warm-to-temperate continental monsoonal climate, characterized by a dry spring, a hot and rainy
summer, a cool autumn, and a dry and cold winter with little snow. The altitude of the city varies
between 1 m and 110 m, decreasing from south to north. Shouguang is the cradle of Chinese winter
greenhouses and enjoys the reputation as the “home of vegetables”. This city is the largest production
base and distribution center of commercial vegetables in China.
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2015. All these images consist of ETM data downloaded from the Landsat 8 data sharing system 

[22]. The properties of these images are listed in Table S1. As one ETM image scene covers an area 

of 185 km × 185 km, a total of three images were downloaded in order to detect greenhouse land 

cover in Shouguang. The meteorological data used in this paper were sourced from the website of 

the China Meteorological Administration [23], while digital elevation model (DEM) data at a spatial 

resolution of 30 m were extracted from the Geospatial Data Cloud [24]. Road and settlement data 

were collected from the Data Center for Resources and Environmental Sciences, Chinese Academy 

of Sciences [25]. 

3.2. Methods 

3.2.1. Greenhouse Land Cover Mapping 

Five steps were followed in order to map greenhouse land cover in Shouguang: image 

pre-processing, feature extraction, supervised classification, post-processing, and thematic mapping 

(Figure 2). Of these, the aim of the first step, image pre-processing, is to improve image data while 

suppressing distortion [26]; however, as ETM images have already been geometrically corrected 

and radiometrically calibrated before download, we only performed image mosaic and masking 

processes, as well as de-striping, cloud removal, and atmospheric correction using the software 

packages ENVI 5.1 (Exelis Visual Information Solutions: Broomfield, CO, USA, 2013) and Arcgis 

Figure 1. Location and classification verification for Shouguang, using ground reference data from
Google Earth. We selected 50 samples classified as greenhouse land in 2015 and verified them using
Google Earth images. Of these samples, the six highlighted in red were incorrectly classified as
greenhouse land, while of the ten enlarged boxes, 1 and 8 actually comprise arable land. The other
six comprise greenhouse land.

3. Data and Methods

3.1. Data Sources

We used RS images to extract greenhouse land cover in Shouguang during 2000, 2010, and
2015. All these images consist of ETM data downloaded from the Landsat 8 data sharing system [22].
The properties of these images are listed in Table S1. As one ETM image scene covers an area of
185 km × 185 km, a total of three images were downloaded in order to detect greenhouse land cover
in Shouguang. The meteorological data used in this paper were sourced from the website of the China
Meteorological Administration [23], while digital elevation model (DEM) data at a spatial resolution
of 30 m were extracted from the Geospatial Data Cloud [24]. Road and settlement data were collected
from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences [25].

3.2. Methods

3.2.1. Greenhouse Land Cover Mapping

Five steps were followed in order to map greenhouse land cover in Shouguang: image pre-processing,
feature extraction, supervised classification, post-processing, and thematic mapping (Figure 2).
Of these, the aim of the first step, image pre-processing, is to improve image data while suppressing
distortion [26]; however, as ETM images have already been geometrically corrected and radiometrically
calibrated before download, we only performed image mosaic and masking processes, as well as
de-striping, cloud removal, and atmospheric correction using the software packages ENVI 5.1 (Exelis
Visual Information Solutions: Broomfield, CO, USA, 2013) and Arcgis 10.3 (Esri: New York, NY, USA,
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2014). As a result of this image pre-processing, clearer and more accurate images of the Shouguang
administrative region were obtained (see Figure S1).
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Figure 2. Flow chart illustrating greenhouse land mapping. The process of greenhouse land cover
mapping was divided into five steps, as shown on the right of this figure. Steps one and two focus on
the processing of satellite images, while steps three and four are classification.

The second step, feature extraction, aims to generate new fused images that can be used to
increase classification accuracy at later stages. This step includes three sub-steps: spectral feature
extraction, textural feature extraction, and image fusion (Figure 2). Of these, spectral features are
the unique spectral reflection and radiation properties of different ground features, the result of
differences in material compositions and structure. Thus, using spectral features, it is possible to
identify greenhouse land cover in images, although noise that can influence image interpretation
is usually present in original images. The aim of spectral feature extraction is therefore to extract
useful spectral information via analysis or calculation. To do this, four methods (i.e., calculation of
normalized difference vegetation index (NDVI); extraction of first and second spectral components;
brightness, greenness, and wetness of images; and principal component analysis (PCA)) were applied
using the software ENVI5.1 (see Supplementary Materials for full methodological details). The next
sub-step involves the extraction of textural features, a set of metrics computed in image processing
designed to quantitatively describe the perceived texture of an image. This provides information on
the spatial arrangement of color or intensities in an image [27–29]; extraction was performed using a
PCA analysis, performed during the spectral feature extraction sub-step. Thus, textural features of
images were analyzed in this study using eight common indexes [30,31] encompassing mean, variance,
homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation. Following
these two sub-steps, spectral and textural features were then fused to create new satellite images which
were used as the basis for greenhouse land cover classification.

In the third processing step, we used a SVM for image classification. In this context, a SVM is a
machine-learning algorithm based on statistical learning theory, Vapnik–Chervonenkis dimensions,
and structural risk minimization [32]. This approach enables the management of high-resolution,
multiple-band images, as well as large-sized segmented satellite data [33]. Indeed, because SVMs
have favorable generalization capacities, they are often used to solve small-sample nonlinear and
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high-dimensional pattern identification problems, as well as for prediction and comprehensive
evaluation [34]. SVMs work by generating a hyperplane that represents an optimal separation of
linearly separable classes in a decision boundary space [35] (see Supplementary Material for a full
mathematical description). In brief, a SVM forecasts the destination values of test data by developing a
model using training data. The basic process of running a SVM includes steps to select a training data
set, compute separability, training using a SVM algorithm, and the acquisition of classification results.
Thus, for this study, land use in Shouguang was divided into seven types encompassing greenhouses,
other arable, forested, grassland, water area, construction, and unused. Training samples of these
different land use types were then selected using pre-processed ETM images (see Supplementary
Material for methods); separability was calculated to be 1.8, which indicates that ground features are
easily distinguishable from one another. We therefore used a SVM to classify land use in Shouguang,
generating three land use maps (Figure 3).
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Figure 3. Maps to show the distribution of land use in: 2000 (a); 2010 (b); and 2015 (c). The arable land
use category includes paddies and dry land, while the forest category includes forests, shrubs, and
woods. The grassland category includes grasses of different densities, while the water area category
includes rivers, lakes, reservoirs, and ponds. The construction land use category includes urban areas
and rural settlements, while the unused land category includes sandy land, as well as gobis and salinas.

As part of post-processing, it is important to assess accuracy. To do this, the most popular
technique applies an error, or confusion, matrix [33,36–38]. Based on this matrix, we calculated both
overall accuracies and Kappa Statistics (see Supplementary Material for full method) using validation
data [36,38,39]. A total of 100 samples that differed from training classification samples were selected
to assess classification accuracy. The results of this step show that classifications of Shouguang land use
types for 2000, 2010, and 2015 all attained a satisfactory level of accuracy: 98.17%, 98.54%, and 96.60%,
with Kappa coefficients of 0.9738, 0.9813, and 0.9548, respectively. In addition, as ground referencing
is an essential component of any analysis that relies on RS data, we also visually interpreted Google
Earth data at a resolution of 0.5 m to further verify our classifications. However, as Google Earth data
for 2000 and 2010 were unavailable, we were only able to apply this method to verify classification
accuracy for 2015 (see Figure 1). A total of 50 samples for 2015 were selected, of which 44 were found to
be correctly classified as greenhouse land. This translates to a ground referenced classification accuracy
of 88%.

3.2.2. Driving Force Analysis of Greenhouse Land Cover Change

To explore spatial patterns in greenhouse land cover change in the city of Shouguang, as well as
the possible reasons for these changes, we investigated 13 potential “driving forces”, including the
distance to the nearest coastline (coastline), the distance to the nearest highway (highway), the distance
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to the nearest railway (railway), the distance to the nearest provincial road (provroad), the distance to
the nearest ordinary road (road), the distance to the nearest urban settlement (urban), the distance to
the nearest rural settlement (rural), and the distance to the nearest river (river), as well as elevation,
slope, aspect, soil water content (swc), and precipitation (∆precip, encapsulating the change between
2000 and 2015). As precipitation data for 2015 were unavailable, data for 2012 were used in this study.

We selected driving forces for analysis by relying on expert knowledge and previous research.
In the first place, we assumed that changes in greenhouse land cover are closely related to
topography [40–42], as the key factors of elevation, slope, and aspect influence the complexity and cost
of construction. In addition, climatic factors, such as precipitation, influence the growth of vegetables
and are thus important in decisions about greenhouse construction [9,43–46], while distance factors,
such as the distance to the nearest road or railway, will influence transportation convenience and thus
the final cost of vegetables wholesale [47–49]. Additional distance factors, such as the distance to the
nearest settlement or river, can also influence the management of vegetables planted in greenhouse
facilities [50–53].

We analyzed the relationship between spatial patterns of greenhouse land cover and our driving
forces using binary logistic regression [54]. Although all driving force data were transformed to a grid
at 30 m resolution for this analysis, it should be noted that if all pixels are selected as regression samples,
serious spatial autocorrelation will occur and no meaningful results will be acquired [40,41,55,56].
Although the effects of spatial autocorrelation on the results of regression analyses can be minimized
by using just a sub-sample of pixels [56,57], the appropriate proportion has varied in previous studies
between 15% and 40% [40,55,58]. In this study, we used an approximate median sample proportion
(30%) based on previous research, and analyzed variation in driving forces from the contrasting
perspectives of land expansion and contraction.

In a binary logistic regression, independent variables are used as forecasted values to compute
the occurrence probability of an event. Thus, this probability can help to quantitatively discern the
relationship between land use distribution and various influencing factors [59]. In this study, the
dependent variable (Y) denotes greenhouse land expansion or contraction; this binary value, 1 or 0,
denotes the presence or absence of expansion and contraction [60,61]. The probability (Pi) describes the
extent to which Y will change to 1 (see Equation (1)); thus, Pi is very close to either 0 or 1, as follows:

Pi(Y = 1|X1, X2, . . . , Xn ) =
1

1 + e
α+

n
∑

i=1
βiXi

(1)

In this expression, Pi (Y = 1|X1, X2, . . . , Xn) denotes the probability of Y given by Xi (where
i is the driving force variable) and thus the change from non-greenhouse to greenhouse land cover
(expansion) and vice versa (contraction). At the same time, βi is the regression coefficient for each
driving force variable, while 1–Pi is the probability of no greenhouse land expansion or contraction.
Thus, subsequent to Logit transformation, the equation for the binary logistic regression model is
as follows:

Log
(

Pi
1− Pi

)
= β0 + β1X1,i + β2X2,i + . . . + βn,i (2)

Independent coefficients can be assessed in this expression using maximum likelihood estimation;
thus, analyzing the significance of this regression as well as the value for each coefficient, it is possible
to interpret how each driving force affects greenhouse land expansion or contraction.

Relative operating characteristics (ROC) analysis can then be used to further assess the explanatory
power of logistic regression models [41,62]. In this context, ROC values indicate that spatial patterns
of most land use types can be reasonably explained by the independent variables [42]. ROC analysis is
based on a rate curve of true versus false positives for a range of threshold values that are then used to
classify probabilities into two classes [55]. In general, the accuracy of a model can be considered to
be either low, credible, or high when ROC values are lower than 0.7, between 0.7 and 0.9, and higher
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than 0.9, respectively [41,55,63,64]. ROC values for the expansion and contraction models reported in
this study are 0.786 and 0.844 (Figure 4), respectively, suggesting that our analysis of driving forces
is credible.
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Figure 4. ROC curve for: expansion (a); and contraction (b) regression models. This ROC curve
was used to test the degree of fit of each binary logistic regression; the area ratio under the curve
corresponds to a ROC value between 0 and 1. Thus, larger is the value, the higher is the explanatory
power of the logistic regression model.

3.2.3. Analysis of the Distribution of Greenhouse Land Use around Urban Areas

To determine the spatial relationship between greenhouse land and urban areas, we created
13 buffers around each urban settlement, at 2 km intervals. Thus, by analyzing the distribution
of greenhouse land in each buffer, we investigated associations between this land use type and
urban settlements.

4. Results

4.1. Land Use Changes

The results of this study show that in 2000 the main land use types within the city of Shouguang
were arable (32.38%), construction (17.26%), water areas (21.60%), and greenhouse land (22.60%)
(Figure 3; Table 1). The remaining three land use types accounted for just 6.16% of the total area.
Between 2000 and 2015, changes in land use within Shouguang included the rapid expansion
of greenhouse land (50.51%), forests (46.46%), and construction land (46.78%), as well as drastic
contractions in areas of other arable land (–49.27%) and grassland (–76.98%).

Table 1. Land use changes (km2) in Shouguang between 2000 and 2015.

Greenhouse
Land

Unused
Land Forest Water

Area
Other

Arable Land
Construction

Land Grassland

2000 514.78 66.51 5.79 491.87 737.45 393.12 68.07
2010 539.76 82.30 11.36 550.07 568.57 495.70 29.81
2015 774.80 47.37 8.48 480.11 374.11 577.03 15.67

4.2. Changes in Greenhouse Land Use

Results show that, although greenhouse land use expanded continuously between 2000 and 2015,
the rate of expansion was markedly higher in the later period (i.e., 8.71%/year between 2010 and 2015)
compared to earlier (i.e., 0.49%/year between 2000 and 2010) (Table 2). During the earlier period,
a total of 223.25 km2 of land was converted to greenhouse use, while 198.28 km2 of this existing land
use type was converted to other uses. This inter-conversion resulted in a net increase in greenhouse
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land of just 4.85 km2, while over the second five-year period, this reached 287.79 km2, not much higher
than during the earlier period (223.25 km2). However, the net decrease in land used for greenhouses
fell as low as 52.75 km2 during this period, resulting in a more rapid overall increase in this land use
type. The inter-conversion of land use types during the earlier period mainly comprised other arable
land and greenhouse land, while this transition was mainly between greenhouse and construction
land during the later period.

Table 2. Changes in area (km2) of land used for greenhouses between 2000 and 2015.

2000–2010 2010–2015 2000–2015

Decrease Increase Decrease Increase Decrease Increase
Unchanged GHL 316.5 316.5 487.01 487.01 384.23 384.23

Unused land 12.22 0.29 0.06 18.51 2.17 0.66
Forest 1.92 1.23 0.03 2.21 1.33 2.36

Water area 5.05 4.70 1.35 10.03 1.24 3.94
Other arable land 119.81 173.54 0.00 143.95 61.43 272.78
Construction land 58.58 42.8 51.31 112.78 63.94 110.56

Grassland 0.70 0.69 0.00 0.31 0.44 0.27
Total GHL 514.78 539.76 539.76 774.80 514.78 774.80

Abbreviations: GHL, greenhouse land; Unchanged GHL, GHL that did not undergo land use conversion; Increase,
newly added GHL converted from other land use types; Decrease, GHL converted into other land use types.

Results show that between 2000 and 2010, expansion in greenhouse land was mainly concentrated
in the south of the city, with a modest increase in the northwest, while contraction mainly took place
in the central region (Figure 5a). However, between 2010 and 2015, expansion in greenhouse land
mainly took place in the central and southern regions (Figure 5b), while the southern and northwestern
sectors, as well as some sites in the east, experienced slight contraction.
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4.3. The Relationship between Greenhouse Land Use and Urban Settlements

The results show that distance to the nearest urban settlement is generally negatively correlated
with area of greenhouse land (Figure 6). The total land area used for greenhouses was more than
100 km2 within the three buffers closest to urban settlements (i.e., between 0 km and 2 km, 2 km and
4 km, and 4 km and 6 km). The area of this land use type also gradually declines with increasing
distance from urban settlement (Figure 6); compared to 2000 and 2010, the area of greenhouse land in
2015 was increasingly concentrated within the 10 km buffer zone.
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Figure 6. Areas of land used for greenhouses within various buffers at 2 km intervals around urban
areas. The area of greenhouse land within these buffers gradually decreases closer to urban areas.

4.4. Forces Driving Changes in Greenhouse Land Use

4.4.1. Expansion-Inducing Forces

The results of our binary logistic regression (Table 3) show that five variables significantly
influenced the expansion of greenhouse land use between 2000 and 2015; these were distances to
the nearest coastline and rural settlement, as well as elevation, slope, and precipitation. Specifically,
positive and negative values for regression coefficients show that distance to the nearest coastline and
slope both had positive effects on expansion, while the other three driving forces exerted negative
effects. The positive effects on expansion of distance to the nearest coastline and slope mean that
greenhouse land use has preferentially expanded in areas far from the coastline zone, as well as in areas
with relatively high slopes. In contrast, the negative effects of distance to the nearest rural settlement,
elevation, and changes in precipitation between 2000 and 2012 have also caused greenhouse land
use to expand preferentially in areas close to rural settlements and in regions characterized by low
elevation and small changes in precipitation.

Regions adjacent to the coastline zone are usually characterized by serious soil salinization and
are thus unsuitable for greenhouse land use expansion. Greenhouses also require a large amount
of labor; thus, areas close to rural settlements can be convenient for vegetable cultivation and for
attracting construction workers. The low-elevation areas of Shouguang are relatively warm and thus
are suitable for vegetable cultivation. These areas have witnessed expansions in greenhouse land
use. At the same time, however, it is interesting to note that this land use type in Shouguang has
been preferentially expanded in hilly areas rather than flat ones because of the scarcity of flat arable
land. Shouguang is a densely-populated region with a long history of greenhouse land use; however,
expansion of this land use type in flat areas is problematic, because many are already covered with
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greenhouses. In addition, because the Shouguang region is relatively flat overall, even sloping areas
do not necessarily limit greenhouse construction. This land use type has also tended to expand in
areas characterized by slight changes in precipitation, because stable climatic condition reduce the risk
of vegetable cultivation disasters.

Table 3. Analysis of forces driving expansion in greenhouse land use between 2000 and 2015.

B S.E. Wald df Sig. Exponent (B)

Coastline 0.054 0.021 6.403 1 0.011 ** 1.055
Highway −0.033 0.028 1.391 1 0.238 0.967
Railway −0.005 0.033 0.024 1 0.877 0.995
Urban −0.038 0.057 0.447 1 0.504 0.963

Provroad −0.047 0.058 0.645 1 0.422 0.954
River 0.050 0.080 0.388 1 0.534 1.051
Rural −0.365 0.186 3.858 1 0.050 *** 0.694
Road 0.066 0.129 0.263 1 0.608 1.068

Aspect 0.000 0.001 0.119 1 0.730 1.000
Swc 0.137 0.120 1.317 1 0.251 1.147

Elevation −0.065 0.024 7.387 1 0.007 *** 0.937
Slope 0.119 0.054 4.870 1 0.027 *** 1.127

∆precip −0.024 0.011 4.548 1 0.033 ** 0.976
Constant 0.677 2.808 0.058 1 0.809 1.968

Abbreviations: Swc, soil water content in 2008; ∆precip, changes in precipitation between 2000 and 2012; B,
regression coefficient values; S.E., standard error; Wald, statistical value that tests the influence of an independent
variable on a dependent one; df, degree of freedom; Sig., P-value for which “**” and “***” denote a significant
coefficient at an alpha level of 0.01 and 0.001, respectively; Exponent (B), odds-ratio for each variable.

4.4.2. Contraction-Inducing Forces

Regression results (Table 4) show that distances to the nearest coastline, railway, urban settlement,
river, and road all exert significant effects on the contraction of land used for greenhouses. Indeed, with
the exception of distance to the nearest railway, regression coefficient values show that the other four
factors all exert negative effects on greenhouse land contraction. The area of land used for greenhouses
has preferentially contracted close to coastlines, urban areas, rural settlements, and roads, as well as in
regions far from railways.

Table 4. Analysis of forces driving contraction in greenhouse land use between 2000 and 2015.

B S.E. Wald df Sig. Exponent (B)

Coastline −0.069 0.040 2.969 1 0.085 * 0.934
Highway 0.090 0.073 1.538 1 0.215 1.095
Railway 0.126 0.069 3.359 1 0.067 * 1.134
Urban −0.263 0.131 4.030 1 0.045 ** 0.769

Provroad 0.000 0.138 0.000 1 0.998 1.000
River −0.426 0.187 5.186 1 0.023 ** 0.653
Rural −0.217 0.630 0.119 1 0.731 0.805
Road −1.186 0.533 4.957 1 0.026 ** 0.305

Aspect −0.001 0.002 0.055 1 0.815 0.999
Swc −0.091 0.244 0.139 1 0.709 0.913

Elevation −0.008 0.054 0.025 1 0.875 0.992
Slope −0.010 0.121 0.006 1 0.937 0.990

∆precip −0.046 0.030 2.445 1 0.118 0.955
Constant 7.660 6.039 1.609 1 0.205 2121.511

Abbreviations as in Table 3.
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Greenhouse land use has also preferentially contracted in regions adjacent to the coastline, as these
areas are not suitable for vegetable cultivation because of their high soil salt content. In addition,
land area used for greenhouses has also tended to contract in regions adjacent to urban areas and
rural settlements, as land has a high probability of being occupied by these usage types. Because
greenhouses also tend to generate soil and water pollution, this land use type has tended to contract in
regions close to rivers, as well as far from railways because of transportation issues.

5. Discussion

In addition to the spatial driving factors discussed above, increases in greenhouse land use area
in Shouguang are closely related to policy. Because this city is a major Chinese vegetable center,
it is necessary for Shouguang to continuously enlarge its area of cultivation to satisfy domestic and
foreign demands for produce. Thus, to achieve this goal, the local government has enacted a series
of policies to encourage the construction of greenhouses. For example, because construction costs
are relatively high compared to the low income of farmers in this region, the government provides
subsidies for greenhouse-building and has reduced the fees related to construction. Banks in the
city are also encouraged to make loans to farmers to build greenhouses, while the technical support
provided by the government and other social organizations is a popular way to help farmers improve
greenhouse management.

Changes in dietary patterns present another potential factor that has induced expansion in the
land used for greenhouses. It has been reported that dietary patterns globally are changing from low
to high calorie intakes [65], and this leads to increased consumption of vegetables compared to cereals.
Between 2000 and 2013, the annual cereal consumption of Chinese residents increased by 19.75%,
while that of vegetables increased by 48.43% [66], a trend that is projected to continue. According
to the Guideline of Food and Nutrition Development in China [67], the vegetable consumption of
Chinese residents is projected to increase by 44.48% by 2020 compared to consumption in 2014, while
the consumption of grain is expected to decreased by 4.26%. These changes in Chinese dietary patterns
are likely to induce further conversions from arable land used for the cultivation of grain to greenhouse
land for vegetable production.

The global food surplus may also affect greenhouse land expansion in Shouguang. For example,
food availability in 2010 was estimated to be 20% higher than required globally [68], leading to a
waste problem. Thus, as a country that suffers from a severe food deficit, China has long emphasized
grain production; following 12 years of continuously increasing output, grain production in China
reached 620 million tons in 2015 [69] and led to large volumes of food waste. It has been reported that
household food waste in China equates to roughly 2.5% of grain output each year [70]. Thus, this
Chinese food surplus provided another potential driving force for the reduction of grain production
on arable land and the expansion of vegetable production in greenhouses.

In order to reduce the effects of spatial autocorrelation, we randomly selected 30% of our samples
and performed a binary logistic regression based on previous results [40,41,55,56,58]. However, the use
of this sampling method to assess the robustness of regression results is problematic; regression
of a different set of samples might lead to slight changes in results and influence the analysis of
driving forces. More robust assessment of regression results using a wider range of samples should be
emphasized in future work.

6. Conclusions

This research focused on detecting temporal and spatial patterns in greenhouse land use as well
as the forces driving this change in the rapidly developing Chinese city of Shouguang. The results of
this study show that greenhouse land use in Shouguang increased by 50.51% between 2000 and 2015.
However, 90.39% of this expansion occurred in the period between 2010 and 2015. The area of land
used for greenhouses in Shouguang overtook other arable land in 2010 and had reached 2.07 times this
level by 2015. Grain production in this city is gradually being replaced by greenhouse vegetables.
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Our comparisons show that greenhouse area in Shouguang has preferentially expanded in areas
far from the coastal zone, in regions close to rural settlements, and in those that are characterized by
low elevations and slight precipitation. In addition, since the availability of flat areas for greenhouse
construction is limited, new increases in this land use have tended to be in the hilly regions of
Shouguang. At the macroscale, encouragements due to government policy, changes in dietary patterns,
and the global food surplus may also have forced expansions in greenhouse land.
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