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Abstract: Natural organisms which employ inherent material properties to enable a passive dynamic
response offer inspiration for adaptive bioclimatic architecture. This approach allows a move
away from the technological intensity of conventional “smart” building systems towards a more
autonomous and robust materially embedded sensitivity and climatic responsiveness. The actuation
mechanisms of natural responsive systems can be replicated to produce artificial moisture-sensitive
(hygromorphic) composites with the response driven by hygroexpansion of wood. The work
presented here builds on previous research on lab-scale material development, to investigate in
detail the applicability of wood-based hygromorphic materials for large-scale external applications.
The suitability of different material production techniques and viability of potential applications is
established through a detailed programme of experimentation and the first one-year-long durability
study of hygromorphic wood composites in full weathering conditions. These results provide the
basis for the design of an optimised responsive cladding system. The opportunities and challenges
presented by building integration and architectural functionalisation of responsive wood composites
are discussed based on a hierarchy of application typologies including functional devices and
components, performance-oriented adaptive systems, the value of aesthetic and spatial experience
and place-specific contextual integration. The design of the first full-scale building application of
hygromorphic wood composites is presented.

Keywords: hygromorphic wood composite; durability; fabrication; biomimetic design; adaptive
facade; sustainable architecture; passive building design

1. Re-Shaping Adaptive Architecture with Responsive Wood Composites

1.1. Ecologically Embedded versus Technologically Imposed Response

The accepted notion of a modern building is inextricably connected with the expectations
of permanence and stability from both the structure and the interior climate, defying the natural
variations of the external environment. In this context, a conventional building envelope is given
the role of a barrier between the controlled interior space and transient outdoor conditions [1].
In contrast to traditional vernacular architecture, which has commonly been designed to employ
the local climatic conditions, such as daylight and solar thermal radiation [2–4], modern buildings,
often featuring extensively glazed facades, tend rely heavily on artificial heating, ventilation and air
conditioning (HVAC) to maintain the desired interior comfort [5,6]. This overreliance on active (i.e.,
energy-dependent) building systems impacts energy performance of buildings during their operation,
which accounts for approximately 80%–90% of the total energy consumed during their lifecycle [7,8].
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The implementation of adaptive building technologies capable of real-time automated response
to changeable environmental and operating conditions provides a possibility of improving a building’s
energy efficiency and facilitating enhanced occupant comfort [9,10]. This can be achieved by means
of increasing the synchronisation and automation of the existing active systems [11] to optimise
their performance and through incorporation of additional dynamic features, such as automated
louver shading [12], that reduce the need for actuation of artificial lighting and HVAC. The intelligent
climatically responsive behaviour of contemporary adaptive architecture is usually enabled by the
application of separate mechanical and electrical components performing the sensing, processing,
controlling and actuating functions [9,13]. Jean Nouvel’s Institut du Monde Arabe, one of the earliest
and most well-known buildings equipped with kinetic cladding, exemplifies this techno-centric design
approach. Its cladding consists of series of 30,000 motor-controlled mechanical apertures designed to
regulate the passage of light through the south façade [14]. The intricate arrangement of the openings
imitates traditional Arabic Mashrabiya patterns, however, due to multiple mechanical failures and
prohibitive maintenance costs, the operation of the system was abandoned soon after the building
was completed in 1987 and is currently inactive [15]. Advancements in computational technologies
and development of new materials have enabled de-coupling the response of cladding elements
and improved robustness and adjustability of increasingly complex kinetic facades in recent projects,
such as Al Bahr Towers in Abu Dhabi [12] and Media-TIC building [16] in Barcelona. Although
the movement of the façade elements in these projects is electrically actuated and therefore these
systems remain energy-reliant, they allow a significant reduction in the total energy consumption of
the buildings [12,16]. However, the implementation of technologically-intensive smart architecture
beyond the scope of landmark projects remains challenging due to its high cost and complexity [5].

The benefits of high-performance high-tech intelligent building technologies and zero-energy
low-tech passive design can be combined in adaptive systems where the response is implemented by
smart materials with embedded sensitivity to climatic stimuli [5,13,16]. The inspiration for material
fabrication techniques and response mechanisms, which can be employed for this “hybrid” design
approach, can be drawn from biological systems that function reliably and autonomously whilst
minimizing resource usage [16,17].

Examples of such natural responsive systems include plant species that have evolved functional
mechanisms of repeated moisture-induced shape morphing enabled solely by inherent hygroscopic
properties and intricate hierarchical structure of their tissues. For instance, opening of seed-producing
scales of conifer cones in a dry environment (Figure 1B) actuates the dispersal of ripe seeds ensuring
favourable conditions for their germination [18]. This mechanism results from the bilayered structure
of the scales which consist of cells with differing orientation of stiff cellulose microfibrils (CMFs),
exhibiting large transverse and small longitudinal swelling and shrinkage (hygroexpansion) [19–21].
The anisotropic dimensional changes of CMFs are translated into differential hygroexpansion of the
scales’ layers which results in bending. The response of conifer cones is reversible and repeatable over
many cycles even after the seeds are released and the tissues of the scales are biologically dead [13].

The ability to convert relatively small unidirectional dimensional changes into geometrically
amplified movement permitted by the bilayer principle is also observed in a number of other natural
systems, such as wheat awns [22], orchid tree seedpods [23] (Figure 1A), seed capsules of ice plants [24]
and stems of spikemoss [25]. This principle can be adopted to produce artificial materials with
programmable reversible moisture-induced response (hygromorphs) consisting of hygroscopic active
layers, and passive layers, which provide constraint to planar hygroexpansion and force the composites
to bend or twist, depending on the orientation of the layers (Figure 1). The development and potential
application of hygromorphic materials in adaptive building skins provides opportunities for design of
passively responsive bioclimatic architecture that is in constant synchronization with variable levels of
atmospheric humidity and ambient moisture.
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Figure 1. Examples of possible shape transformations of bilayered hygromorphic wood composites 
analogous to natural responsive systems. In addition to bending (B), local curvature changes can be 
converted into a variety of more complex response forms, such as twisting (A), achieved by adjusting 
the direction of wood grain in the active layer (αg), and sinusoidal curve (C), enabled by alternate 
arrangement of the layers. 

1.2. Wood versus Synthetic Active Layers 

One of the main challenges for the development of hygromorphs suitable for building 
integration is how to scale up their size and mechanical strength to meet the requirements of 
large-scale applications, whilst retaining sufficient responsiveness [26]. The fulfilment of these 
criteria depends on the ability of the active layer to produce substantial hygroexpansion and 
generate enough force to drive the curvature changes of the composites. Wood is one of few natural 
hygroscopic materials which encompasses these characteristics and, in fact, greatly surpasses the 
combination of strength and magnitude and speed of moisture-induced response achievable with 
many synthetic alternatives [27], such as hydrogels [23], electro-active and layer-by-layer deposited 
hygroscopic polymers [28,29] and bacterial spores [30]. This points to good potential for application 
of wood for active layers of large-scale hygromorphs. 

In the last decade, rapid advancements in material fabrication technologies have enabled the 
production of hygromorphic materials with synthetic active layers mimicking the natural structure 
of wood. This can be achieved by embedding oriented natural or synthetic cellulose-rich fibres 
within a hot-pressed [31] or 3D printed [32] polymer matrix. The main advantages of this approach 
are more consistent material properties and the ability to adjust the direction of the fibres within a 
single piece of material. However, the response speed of the resulting composites is reduced due to 
limited hygroscopicity of polymer-coated fibres [32]. In contrast, wood as a functional tissue of trees 
is naturally provided with multiple passageways for water adsorption and transport. In addition, it 
exhibits a pronounced orthotropy in many of its properties, including hygroexpansion [33], which 
helps prevent the undesirable effects of double curvature observed in composites with homogenous 
volumetric active layer expansion [34]. The ability to choose an active layer from a wide range of 
commonly available wood species with different properties, and to select different orientations of 
cut, provides the opportunity to tune the hygromorphic response and tailor durability and 
appearance for particular applications [34]. The use of a widely available, naturally formed, 
biodegradable, moisture-responsive material with low embodied energy [35–38] as the functional 
component of the composites has potential to reduce their environmental impact and decrease the 
complexity of material fabrication compared to hygromorphs with synthetic active layers.  

Earlier works on wood-based hygromorphs have primarily been focused on the investigation of 
the effects of material configurations (including the choice and orientation of the layers) on the 
responsive capacity of the composites in short-term lab tests [13,26,34,39], application of the 
knowledge about the material properties and behaviour for parametric design generation and 
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analogous to natural responsive systems. In addition to bending (B), local curvature changes can be
converted into a variety of more complex response forms, such as twisting (A), achieved by adjusting
the direction of wood grain in the active layer (αg), and sinusoidal curve (C), enabled by alternate
arrangement of the layers.

1.2. Wood versus Synthetic Active Layers

One of the main challenges for the development of hygromorphs suitable for building integration
is how to scale up their size and mechanical strength to meet the requirements of large-scale
applications, whilst retaining sufficient responsiveness [26]. The fulfilment of these criteria depends
on the ability of the active layer to produce substantial hygroexpansion and generate enough force
to drive the curvature changes of the composites. Wood is one of few natural hygroscopic materials
which encompasses these characteristics and, in fact, greatly surpasses the combination of strength and
magnitude and speed of moisture-induced response achievable with many synthetic alternatives [27],
such as hydrogels [23], electro-active and layer-by-layer deposited hygroscopic polymers [28,29]
and bacterial spores [30]. This points to good potential for application of wood for active layers of
large-scale hygromorphs.

In the last decade, rapid advancements in material fabrication technologies have enabled the
production of hygromorphic materials with synthetic active layers mimicking the natural structure of
wood. This can be achieved by embedding oriented natural or synthetic cellulose-rich fibres within
a hot-pressed [31] or 3D printed [32] polymer matrix. The main advantages of this approach are
more consistent material properties and the ability to adjust the direction of the fibres within a single
piece of material. However, the response speed of the resulting composites is reduced due to limited
hygroscopicity of polymer-coated fibres [32]. In contrast, wood as a functional tissue of trees is
naturally provided with multiple passageways for water adsorption and transport. In addition, it
exhibits a pronounced orthotropy in many of its properties, including hygroexpansion [33], which
helps prevent the undesirable effects of double curvature observed in composites with homogenous
volumetric active layer expansion [34]. The ability to choose an active layer from a wide range of
commonly available wood species with different properties, and to select different orientations of cut,
provides the opportunity to tune the hygromorphic response and tailor durability and appearance
for particular applications [34]. The use of a widely available, naturally formed, biodegradable,
moisture-responsive material with low embodied energy [35–38] as the functional component of the
composites has potential to reduce their environmental impact and decrease the complexity of material
fabrication compared to hygromorphs with synthetic active layers.

Earlier works on wood-based hygromorphs have primarily been focused on the investigation
of the effects of material configurations (including the choice and orientation of the layers) on the
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responsive capacity of the composites in short-term lab tests [13,26,34,39], application of the knowledge
about the material properties and behaviour for parametric design generation and modelling of
responsive [40] and self-constructing [32] surfaces with complex geometries and construction of
small-scale prototypes [41] and temporary architectural installations [39] showcasing the technology.
Wide availability of the applicable components of wood-based hygromorphic composites and improved
understanding of the principles for choosing their configurations [26,34] has made it possible to
produce working responsive bilayers on low budget and without the need for sophisticated equipment,
which is quite unique in the context of smart materials. This has been employed in several short
academic and design projects [42,43]. However, the existing research on long-term durability of
the materials and consistency of their response, necessary to substantiate the currently limited
discussion of their potential applications, is scarce and the material fabrication techniques and response
pre-programming methods, which can enable the desired robust and reversible response, have not been
sufficiently investigated and described. This paper seeks to further the insights into these key areas.

2. Addressing Challenges in Design and Production of Hygromorphic Composites

2.1. Methods of Material Fabrication

The production of wood-based hygromorphic composites capable of withstanding the internal
stresses and large changes in curvature resulting from differential hygroexpansion over multiple cycles
of response without delamination, requires the selection of fabrication methods that simultaneously
provide high strength, stiffness, flexibility and durability of the interfacial bond between the layers [34].
At the same time, negative effects of the bond on the response size and speed must be minimised. Four
different methods of material fabrication have been tested, including gluing, mechanical fixing and
spot-gluing of rigid passive layers and direct lamination of glass fibre- and bio-fabrics (Figure 2).
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Gluing enables the production of a wide range of semi-synthetic hygromorphs with polymer, 
fiberglass or other synthetic passive layers and cross-grained laminates consisting of two wooden 
layers with different grain directions, such as in Figure 2 panel type 1. However, the choice of 
adhesive is limited due to stringent requirements for their water-resistance and mechanical 
properties when cured at high relative humidity and with substrates that have a high moisture 
content (MC). It has been experimentally established that only certain high-performance structural 
adhesives, which cure at room temperatures, can meet these requirements. These include selected 
two-part epoxies and polyurethane glues, such as Permabond ET5428 and Purbond HB-S309, 
respectively. However, none of the tested adhesives are effective when used with damp fully 

Figure 2. Demonstration prototype incorporating responsive panels with four different types of layer
bonds. The passive layers are shown in the numbered circles (1—wood, 2 and 3—fiberglass and
4—jute fabric).

Gluing enables the production of a wide range of semi-synthetic hygromorphs with polymer,
fiberglass or other synthetic passive layers and cross-grained laminates consisting of two wooden
layers with different grain directions, such as in Figure 2 panel type 1. However, the choice of adhesive
is limited due to stringent requirements for their water-resistance and mechanical properties when
cured at high relative humidity and with substrates that have a high moisture content (MC). It has
been experimentally established that only certain high-performance structural adhesives, which cure
at room temperatures, can meet these requirements. These include selected two-part epoxies and
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polyurethane glues, such as Permabond ET5428 and Purbond HB-S309, respectively. However, none
of the tested adhesives are effective when used with damp fully expanded wooden layers that have
MC above ~30% (fibre saturation point, MCf). Once the adhesives come in contact with free water
within the wood, their dissolution leads to decreased viscosity resulting in excessive penetration and
staining of the active layer (Figure 3B) as well as loss of bond strength. Microscopic examination of the
composites with glued layers has shown that the selected adhesives, which have dynamic viscosity
ranging from 20,000 mPa.s to 35,000 mPa.s when applied in room conditions, only permeate the cavities
of the wood cells that are adjacent to the glued surface with the rest of the active layer unaffected. This
minimizes the unwanted reduction in the hygroscopicity of wood, which is the largest constraint for
the use of low viscosity adhesives, such as cyanoacrylates, in the production of hygromorphs.
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Figure 3. Issues addressed through improved methods of material fabrication: (A) delamination;
(B) excessive penetration of adhesives or laminating resins into wood; (C) cracking of wood; and
(D) local buckling of the layers between fixing points.

The need for a separate glue layer can be eliminated if a reinforcing fabric, such as interwoven
glass fibres or natural bio-textiles, is laminated directly onto wood using liquid epoxy or bio-resin.
Excessive soaking and starvation of the resin matrix can be prevented by pre-coating the active layer.
However, due to precise timing required to ensure that the preliminary epoxy coating achieves just the
right viscosity before lamination of the main passive layer, this extra production stage adds significant
complexity to the fabrication. The use of bio-textiles, such as jute (Figure 2 panel type 4), flax or
hemp, can reduce the embodied energy and cost of directly laminated passive layers in comparison
to those with glass fibre reinforcement [38,44,45]. However, almost inevitable variations in the MC
of the hygroscopic fibres can lead to their detachment from the resin matrix [31,46] and undesired
changes in the properties of the passive layer. A common characteristic of the standard gluing and
direct lamination production techniques is that the passive layer remains impermeable to water, and
moisture exchange only happens through one side of the active layer which slows the response.

Mechanically fixing the composite layers guarantees that the issues of reduced hygroscopicity of
wood and delamination (Figure 3A) are avoided. This method is well-suited for automated production
and enables replacement and reuse or recycling of the layers. The passive layer can be perforated
between the points of connection allowing moisture access through both sides of the composite. The
integrity and quality of the riveted (Figure 2 panel type 2) or bolted connections is independent
from the moisture content of the layers meaning that even wet wood can be used. Mechanical layer
fixing methods are most applicable for hygromorphs with relatively thick active layers (above ~3 mm)
due to the connections creating points of local stress concentrations, which can lead to cracking of
wood veneer along the weaker longitudinal grain direction (Figure 3C). Thin wood veneer can still be
coupled with perforated passive layers if the mechanical connections are replaced with a pattern of
separate glued areas (spot-glued) to facilitate an improved distribution of the interfacial forces during
the response (Figure 2, panel type 3).

The effects of the discussed material fabrication techniques on the responsiveness (magnitude of
curvature changes) and reactivity (rate of curvature changes) of the resulting composites have been
investigated in a lab test with controlled cyclic changes of ambient moisture conditions. Three samples
of each of the four types of composites, listed in Figure 2, have been subjected to two successive cycles
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of wetting and drying and one cycle of ambient relative humidity (RH) change. In wet test stages, the
samples were continuously sprayed with fine water mist, whereas in dry and humid stages, they were
positioned in a room with ~40% RH and a climatic chamber pre-conditioned to ~85% RH, respectively.
Constant temperature of around 25 ◦C was retained throughout the test. The duration of each test
stage was sufficient for all samples to complete their response. The transition of the test conditions
was purposefully abrupt in order to eliminate it as a factor affecting the response rate.

The response of the samples has been photographed with a DSLR camera at five minute intervals.
Circular curvature (inverse of the curvature radius) has provided a good geometrical representation of
their shape. The curvature has been determined from the photographs taken at selected time steps
using transparent reference charts, placed between the samples as shown in Figure 4. This method is
more laborious than automated data extraction based on digital coordinate tracking of marked sample
parts, employed by Ruggeberg and Burgert [26], however, it enables simultaneous testing and direct
performance comparison of multiple samples in equal conditions, which improves the consistency and
validity of test results.
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hygromorphs with mechanical fixings (Figure 5). Similar to previous observations by Holstov et al. 
[34], all samples have responded significantly faster to wetting, where 80% of the total curvature 
change is achieved within the first 20–30 min depending on the composite type, than to ambient 
humidity changes, where the same proportion of the response takes 2–3 h. This is explained by the 
difference between quick initial adsorption of liquid water into wood dominated by capillary forces 
compared to much slower processes of molecular diffusion, evaporation and transport of water 
within the cell walls of the wood layer [21,33]. In addition, all composites exhibit a delayed response 
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Figure 4. Experimental setup for lab-based tests on material reactivity to controlled wetting and drying
and ambient relative humidity changes. Each sample stand accommodates three composite samples
separated by transparent curvature reference charts. The sample stands are levelled with the camera
and directed towards it to minimise the parallax effect, thus simplifying the curvature determination.
The sign convention for circular curvature measurements, where “A” and “P” are active and passive
layers respectively, is shown in the top left corner.

The results of the test have shown that spot-glued composites have the overall highest response
speed among hygromorphs with analogous configurations and, owing to comparatively small amount
of trapped water between the layers, they are noticeably quicker to dry from a wet state than
hygromorphs with mechanical fixings (Figure 5). Similar to previous observations by Holstov et al. [34],
all samples have responded significantly faster to wetting, where 80% of the total curvature change
is achieved within the first 20–30 min depending on the composite type, than to ambient humidity
changes, where the same proportion of the response takes 2–3 h. This is explained by the difference
between quick initial adsorption of liquid water into wood dominated by capillary forces compared
to much slower processes of molecular diffusion, evaporation and transport of water within the cell
walls of the wood layer [21,33]. In addition, all composites exhibit a delayed response to drying after
wet stages due to the initial evaporation of free water (stored in cell cavities) which does not influence
the dimensional changes of the active layer.
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drying and changeable ambient humidity. The tested composites consisted of 1 mm rotary-cut silver
birch (Betula pendula) active layers and 0.2 mm rigid or 300 gsm laminated epoxy-glass passive layers.
Full results of this test are provided in Supplementary Data File S1.

Pronounced differences between the total curvature ranges of the tested composite types indicate
that the choice of material fabrication method affects both the speed and magnitude of the response.
The reduced responsiveness of mechanically fixed and directly laminated composites results from
local buckling of the active layer between the fixing points (Figure 3D) and differences between the
stiffness of rigid and laminated epoxy-glass layers, respectively. Responsiveness of hygromorphs
can be adjusted through selection of material configurations with different thickness, stiffness and
hygroexpansion of the layers [34].

Identical hygromorphic composite configurations can be pre-programmed to exhibit response
within different curvature ranges depending on application requirements (Figure 6). The
pre-programming is applied during the material fabrication by pre-conditioning the wood to a specific
moisture content, setting the initial shape of the composites, using pre-stressed layers or a combination
of these methods. For example, hygromorphs with mechanically fixed layers can be pre-programmed
to assume a straight shape in wet conditions if the MC during production of the active layer is equal
to, or greater than, MCf and the layers are joined flat. Despite the inability to glue wet wood, the
same pre-programming can be achieved with glued, spot-glued and directly laminated composites
if the wood layers are pre-conditioned at high relative humidity and the materials are set into a
slightly curved initial shape with the passive layer on the convex side (negative curvature). These
pre-programming methods have been used for panels of prototypes “A” and “C” in Figure 7.

Whilst the composites prepared with saturated or nearly saturated active layers produce a
consistent reversible response to cyclic wetting, drying and changeable ambient humidity, thin initially
straight hygromorphs fabricated in room conditions exhibit a distinct difference between the first and
subsequent response cycles returning to a reversed curved shape after the first drying (Figures 5 and 6).
There is also a noticeable, albeit less pronounced, tendency for the response of these composites to shift
towards a lower or more negative curvature with each consecutive response cycle. Conversely, it has
been observed that hygromorphs with comparatively thick dry-bonded active layers (above ~5 mm)
gradually obtain positive dry curvature after the first few wetting and drying cycles. This points
to the possibility of selecting a “balanced” intermediate active layer thickness enabling a consistent
cyclic response of dry-bonded hygromorphs. This principle has been employed when configuring
the responsive panels, used for prototype “D” in Figure 7. Alternatively, the inconsistencies in the
response of the thinner composites can be compensated by reducing the production MC of the active
layer, preparing the composites with a positive initial curvature or using pre-tensioned passive or
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pre-compressed active layers. The first two of the above calibration methods have been used for
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Figure 6. Average response of hygromorphic composite samples with different pre-programming,
but identical dimensions and configurations (the same as glued composites in Figure 5). Different
initial curvature and active layer pre-conditioning (where “HUM” is ~90% relative humidity (RH)
at 23 ◦C, “ROOM” is ~35% RH at 23 ◦C and “OD” is oven-dried at 65 ◦C), have been applied for
pre-programming. Same experimental setup and data collection methods have been employed as in
the test described at the end of Section 2.1. Full results of this test are provided in Supplementary Data
File S2.

2.2. Response Mechanisms and Cladding Configurations

Adjustment of the geometry and arrangement of hygromorphic composite panels and orientation
of the layers and the direction of wood grain, allows transformation of local curvature changes of the
materials into a range of more complex shape-morphing mechanisms involving different combinations
of bending and twisting (Figure 1). The resulting movement can be employed to drive porosity
changes of adaptive skins [39], actuate larger non-responsive elements [26], enable self-assembly of
various constructs [27,41] and even power rotary or crawling locomotion [30]. The tunable and scalable
response of the materials provides multiple opportunities for unique and creative designs of adaptive
building skins with hygromorphic cladding.

The operational functionality of the responsive facades can be controlled both on material level
and through design of cladding configurations and supporting understructure. Beyond aesthetic
design considerations, the choice of cladding overlay pattern can influence the rate and degree of
porosity changes [39] and enable additional functions, such as to prevent permeation of rainwater
through the hygromorphic skin. The latter requires the clad surface to be inclined to set the direction
of water flow and the cladding elements to be ordered and overlaid in such a manner that each
panel overlaps the one below it, similar to wall shingles or roof tiling. Figure 7 shows two examples
of possible cladding designs where the arrangement of overlapping composite panels, inspired by
lizard skin (“A” and “B”) and rectangular roof tiles (“C” and “D”), provides full surface coverage in
pre-determined ambient conditions. Both of these designs are based on repeated patterns of identically
sized panels facilitating simplified production.

In addition to testing of the developed cladding patterns and the ability to pre-program the
response direction of hygromorphs, the prototypes have been used to further explore the effects of
layer perforation on the response speed. The right side of each of the illustrated cladding modules
contains panels with perforated top layers. In agreement with the test results summarized in Figure 5,
the curvature change rate of thin spot-glued panels with perforated passive layers (in module “B”)
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is approximately 30% higher than that of the glued panels without perforations. In contrast, since
moisture is relatively quickly transferred across the small thickness of outside-faced veneer layers
in panels of cladding module “A”, the reactivity of these panels remains constant with active layer
perforation or without. The response speed of the thicker panels in prototypes “C” and “D” is also not
affected by additional perforation of either of the layers as moisture access throughout the composites
is already enhanced due to bolted connection points.
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Figure 7. Prototypes of responsive cladding modules with different layer configurations and opposite
pre-programming of panels in wet (left) and dry (right) conditions. The left and right sides of the
prototypes consist of panels with standard and perforated active (A,C) and passive (B,D) layers,
respectively. The configuration of thin panels (A,B) is the same as glued composites in Figure 5.
Thick panels (C,D) comprise 3.2 mm thick quarter-cut English oak (Quercus robur) and 0.35 mm
epoxy-glass layers.

The ability to control the response speed of thin composites through selective perforation of
the passive layer has been employed to modify the cladding configuration with diamond-shaped
responsive panels and improve its operational robustness, which is relied on the panels opening and
closing in the correct order. The modified configuration, shown in Figure 9B, features perforated
side panels (“B2”) fixed along the vertical lines of the understructure and horizontal panels with
spot-glued perforated top (“B1”) and glued bottom halves (“B3”) bending in opposite directions. The
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two-directional response is achieved by inverse arrangement of the layers in “B1” and “B3” (similar
to Figure 1C). Different response direction and speed of the adjacent panels prevents them from
clashing, while a high degree of porosity change during the response is maintained. The resistance of
cladding with this configuration to excessive panel bending due to wind or snow load or imprecise
pre-programming is also increased as four panels overlap in the middle of each opening and “B3”
bends towards the tips of the other panels.

The reliance on sequential response of the overlapped panels can be eliminated if all panels within
the diagonal checkerboard pattern have the top half bending down towards the understructure and
bottom half bending up away from it, as shown in Figure 8C. Although the maximum porosity of
the resulting cladding in the open state is somewhat reduced when compared to the configuration
used for prototype in Figure 9B, this design has a number of key advantages including the ability
to use a single type of cladding panels and apply passive layer perforation on both of their sides
(Figure 8A) to maximise the response speed. In addition, unlike the prototype in Figure 9B, this panel
arrangement provides separation between the edges of the adjacent panels in the open state. This
prevents unwanted stresses caused by the interaction between the panels. Since the top corner of
each composite panel is above the centre line of the adjacent panels due to overlapping, a simple
linear understructure lattice (Figure 8B top) is not suitable for this cladding arrangement as it obstructs
the movement of the composites. Figure 8B shows stages of development and optimization of the
understructure design. The selected design (Figure 8B bottom) is based on a repeated pattern of
uniform curves, which enables simplified cladding assembly.
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Figure 8. Prototype of hygromorphic cladding module incorporating identical overlapping composite
panels (A) bending in two directions shown in dry/open and wet/closed states (C). A timelapse of
the response is provided in Supplementary Video S3. The spot-glued panels consist of 0.6 mm black
walnut (Juglans nigra) veneer and 0.2 mm thick epoxy-glass. The understructure (B) has been designed
to prevent obstruction to the movement of the panels (red highlights) and maximise the resulting
porosity changes. The chosen design (B bottom) is based on a repeated pattern of uniform curves
reminiscent of fish scales.

2.3. Material Durability

Wood as a natural organic material is susceptible to biodegradation, particularly when exposed to
warm humid environment, the conditions favourable for fungal growth. In nature, the balance between
the rate of decay, which enables constant elimination of fallen trees and dead branches, and biosynthesis
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of wood in living trees is essential to preserve equilibrium in the ecosystem. A range of artificial
preservative treatments are often applied to enhance the durability of man-made wooden products
and structures and slow their degradation in challenging climatic conditions. However, the use of
standard wood protection methods, including a variety of surface coatings and impregnated chemicals,
results in reduced hygroscopicity of wood [35,47–49]. This normally advantageous side-effect renders
these methods unsuitable for hygromorphic wood composites, which require the exchange of moisture
between the active wooden layer and ambient climate to drive their response. Small thickness of the
composites and the stresses which result from their repeated response and interaction between the
shape-shifting cladding panels present further challenges for their long-term durability even when
compared to unprotected sawn wood alone.

Previous research on hygromorphs has mainly involved short-term tests of their responsive
properties in controlled laboratory environment [19,34]. Two longer-term studies have included
two-year-long testing of hygromorphic panels in an enclosed transparent container, protecting the
materials from direct exposure to the elements, whilst permitting their reaction to outdoor relative
humidity changes, [39] and a nine-month-long outdoor test of small scale hygromorphic actuators [26].
Despite the use of samples with inherently non-durable active layers, including sycamore maple
(Acer pseudoplatanus), European beech (Fagus sylvatica) and Norway spruce (Picea abies) [50], neither of
these tests have been long enough to result in significant loss of responsive capacity of the materials.
The existing studies provide limited insight into the longer-term effects of degradation on visual aging
and mechanical wear of hygromorphic cladding panels and are insufficient to assess the usability
lifespan of the materials.

One-year-long outdoor testing of hygromorphic cladding modules and material samples has
been conducted to explore the durability of the composites in full weathering conditions, test their
response speed to natural weather patterns and evaluate the performance of the developed panel
arrangements. Long-term field tests have been chosen over accelerated cyclic lab tests due to the
inability of artificially recreating the simultaneous effects of multiple degradation factors present in
the natural outdoor environment, such as precipitation, UV radiation, biological decay, wind and
snow loading and mechanical erosion. The responsive cladding modules, shown in Figure 7C,D and
Figure 9B, and twenty-four 50 mm × 125 mm glued composite samples with four different material
configurations and two opposite types of pre-programming (details of the material configurations are
given in Supplementary Data File S4) have been mounted onto a triangular wooden frame, placed on
a flat building roof (Figure 9A). The condition of each sample and selected panels of the responsive
cladding modules has been assessed weekly based on the extent of layer delamination, fungi-induced
degradation, mechanical decomposition, cracking, discolouration and staining of the layers. The
changes in the responsive capacity of the composites have also been monitored throughout the
test by taking their wet shape, measured at least once every month, as a reference point. The test
methods and degradation assessment reference criteria (described in Supplementary Data File S4)
have been developed using the existing recommended procedures for experimental evaluation of
wood durability [51], modified for the use with composites. Visual assessment methods have been
adopted due to the impracticality of gravimetric measurements of comparatively small lightweight
panels, which would have to be regularly removed and reattached to the understructure. Although
less subjective than visual assessment, photographic analysis could not be used because of changeable
shape of the panels. Destructive testing methods, such as pick or splinter tests [52], had to also
be avoided due to the need to preserve the integrity of the samples and enable their continued
response function.
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Figure 9. (A) Outdoor testing prototype incorporating hygromorphic panels and samples with
different material configurations and pre-programming; (B) responsive cladding module with
improved arrangement of panels in wet/closed and dry/open state after 12 months in full weathering
conditions; (C) time plot of fungi-induced degradation, where “prep D” and “prep W” are composites
pre-programmed to assume flat shape in dry and wet conditions, respectively; (D) illustration of the
fungi-induced degradation categories from (C); (E) time plot of other effects of degradation, including
(from left to right) average sample cracking, mechanical decomposition and active and passive layer
colour changes (use the key from (C)); and (F) illustration of the material degradation effects from
(E) in the same order. Full test results and description of the assessment categories for the degradation
effects plotted in (C,E) are given in Supplementary Data File S4.

The key results of the durability study have been plotted in Figure 9C,E with examples of the
identified degradation effects illustrated in “B”, “D” and “F”. No delamination of the composites
beyond the initial minor damage to the interlayer bond of several glued panels, incurred during
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material production, has been observed. Despite frequent high winds characteristic to the North
East of England and some particularly windy days during storm Eva in December 2015 and storm
Angus in November 2016 with the speed of wind gusts exceeding 25 m/s [53,54], none of the panels
and samples have become damaged or detached from the understructure. The composites have also
been able to withstand a minor snow coverage of up to 20 mm without noticeable effects on their
pre-programmed shape. However, several signs of mechanical material degradation have progressively
become apparent, particularly on thin responsive panels with silver birch active layers. The first of
these signs has been the formation of cracks along the grain of the veneer layers near the panel fixing
points (Figure 9(F1)). The cracks, caused by the pressure from the adjacent panels and uneven drying of
the composites, have started appearing around four months into the test, when gradual proliferation of
mould and incipient photo-degradation of lignin (the material bonding wood cells and cell components
together) in the surface layers of wood have begun affecting its tensile strength [47,49].

The UV-induced lignin decomposition has intensified during the summer months due to increased
daily solar irradiation. This has resulted in an onset of surface erosion (Figure 9(F2)) on panels with
wood layers on top (“prep W”) after nine months from the start of the test—around the same time as the
first changes in the responsiveness of these panels have been observed. On average, untreated wood
can lose about 0.5 mm of thickness per decade due to weathering and abrasion by airborne particles of
dust and sand [33,47,49]. This makes surface erosion a significant factor of thin composite degradation.
By the end of the one-year-long test, the curvature range of the composites with outside-faced 1 mm
thick birch active layers had been reduced by around 10% leading to a visually distinguishable
deviation of the panels from a completely flat shape in wet state (Figure 9B). Other tested composites
with the same pre-programming have been less affected by the surface erosion due to larger thickness of
their active layers. Hence, their responsive capacity has remained constant (Supplementary Videos S5
and S6). No signs of wood cell erosion have been spotted on the samples and panels with passive layers
on top, owing to comparatively limited exposure of their active layers to direct sunlight in dry weather.
The effects of fungal attack on these panels have also been less profound, due to their up-bent wet shape
preventing accumulation of rainwater on the surface of the active layer. However, the resistance of the
composites to moulding has been most significantly influenced by natural durability of the selected
wood species determined by the content of toxic phenolic extractives [47,49,52]. Consequently, while
hygromorphs with active layers made of naturally durable English oak and European larch heartwood
have become covered with relatively sparse and small mould patches that have not greatly affected
their appearance, the composites with perishable birch veneer layers have been impacted much more
severely. Other effects of visual aging have included discolouration of the wooden layers (Figure 9(F3))
caused by gradual leakage of extractives and removal of lignin [47,49] and UV-induced yellowing of
the epoxy matrix in fiberglass (Figure 9(F4)). As seen from the diagrams in Figure 9E (middle-right and
right), these changes have always been more pronounced in the layers of the composites positioned
on top.

The observed degradation rates suggest a projected usability lifespan of around one year for
hygromorphs with perishable wood layers used outside. The thicker composites with naturally
durable layers should be able to withstand the challenging outdoor weather conditions for two years
or above without significant changes of their responsive capacity. Substantially improved longevity of
the materials can be expected if they are protected from wetting or deployed indoors, thus preventing
the moisture content from rising above MCf [21] in order to avoid optimal conditions for fungal growth
and issues associated with slow uneven drying. Visual aging of untreated wooden layers is inevitable
within the first year of the use outside. However, the changes are not necessarily deleterious to the
aesthetic appeal of the composites as long as the fungal growth is not too apparent. In fact, the natural
silvery-grey look of aged wood is often considered attractive and is the reason why certain wood
species naturally-resistant to fungal growth are sometimes left untreated and unfinished [55]. Similarly,
the inherent variability of wood properties, leading to a perceptible divergence between the response
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of identically configured composites, can in fact enhance the subjective enjoyment of hygromorphic
skins by emphasising their similarity with natural living organisms.

3. Sustainable Materialisations

3.1. Synchronised Climate-Responsiveness

Continuous monthly interval photography of the outdoor testing prototype paired with
simultaneous measurements of weather data have been used to assess the degree of synchronisation
between the dynamic behaviour of the materials and natural variable rhythms of local outdoor climate
in Newcastle upon Tyne, UK. Changes in ambient relative humidity and direct contact with condensed
or precipitated moisture are the main climatic stimuli for response of hygromorphs, but the rates of
moisture exchange between the active wooden layers and ambient environment are also influenced
by air temperature, solar irradiation and wind speed. The thinner hygromorphic panels and samples
have demonstrated an ability to react swiftly to sporadic short-term precipitation and follow repeated
diurnal cycles of humidity changes, which are most pronounced in the summer months when the
average difference between humidity at night (higher) and during the day can reach 25%. Increased
relative humidity before rain initiates transformation of the responsive cladding in advance. This
preliminary response can benefit applications that require a quick formation of a rainproof barrier
(Figure 10A). Among other factors, the response rate to relative humidity is affected by curvature of
the composites (Figure 6) as twisted panels can physically confine the active layers. Slower response of
the thicker panels allows adherence to longer-term relative humidity patterns, with full response only
occurring during prolonged periods of precipitation or drought. In the North East of England, where
the average relative humidity during the winter months approaches 90% and frequency of rainy days
is similar across different seasons, the thicker composites may only achieve their dry shape during
several continuously dry weeks in summer.
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Figure 10. (A) Design concept of modular outdoor seating with a responsive canopy roof and an
integrated drainage and rainwater collection system; and (B) artistic render of a teahouse with interior
wall cladding comprised of responsive elements designed to imitate opening and closing of tea-flowers.

Based on our developing understanding of the responsive characteristics of hygromorphic
wood composites, we have begun to identify and speculate on opportunities for their application in
environmentally responsive building design [34]. The weather dependant behaviour of hygromorphs
predisposes their climate- and region-specific applications and we have been exploring varied and
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novel potential use scenarios of different material specifications beyond adaptive façade cladding
through design work that integrates postgraduate students in both Architecture and Engineering
at Newcastle University. For instance, thick composites with slow gradual response can be applied
in climates with distinct rainy seasons, such as San Francisco, US and Jakarta, Indonesia [56], for
large landscape scale flood warning and alleviation. Thin composites with higher response rate and
curvature changes can be deployed in a range of indoor adaptive systems responding to building
occupancy and use, such as increased humidity during public gatherings or resulting from cooking or
showering (Figure 10B).

3.2. A Typology of Applications

The continuing development of hygromorphic shape-changing materials will open up new
applications and design possibilities not yet considered, with opportunities for corresponding changes
in quality of life, material sustainability and environmental benefits [57]. It is this multi-dimensional
character of hygromorphic technologies that particularly interests us as they offer opportunities to
extend the accepted and conventional definition of what constitutes sustainable materiality within
architectural design. The possibilities for varied and integrative design applications provide for the
merging of competing and often contradictory demands that are placed on building technologies
within environmentally responsive and adaptive architectures. Hygromorphic material systems
could therefore enable simultaneously addressing a wide range of sustainability considerations [34]
that go beyond energy efficiency and embody the concerns of human comfort, ecological aesthetics
and local relevance. One of the fundamental challenges for the future development and building
integration of hygromorphic wood composites is in speculating on, understanding and then exploiting
the full potential of the technology to address this expanded range of design criteria and applications.
A review of current research and literature would suggest a hierarchy of four overlapping typologies
of application within architectural design:

(1) Functional devices/components (actuators, micro-generators, sensors, locomotion engines etc.);
(2) Performance-oriented adaptive systems (enhanced occupant comfort, energy efficiency etc.);
(3) Formal/aesthetic/spatial experience value (enhanced visual appearance of dynamic facades);
(4) Contextual/location-specific value (buildings as a physical representation of local environment

and climate).

1. The simplest level of application for hygromorphic composites is as discreet functional devices
where the main design challenge is in integrating and combining the materials with other technologies
and building components. As we progress through the hierarchy of applications to those that impact
on the building envelope, human comfort, spatial or formal experience and aesthetics, the extent and
demands on the technology and on the need for wider building integration increase substantially.
Here we focus on the challenges of these complex and highly integrated applications, which have an
inherent requirement for interdisciplinary design methods and approaches.

2. The integration of adaptive and kinetic façade systems that enable adjustment and
self-optimisation of building properties in response to ambient climatic conditions can help shift the
role of the building envelope from an environmental barrier towards an environmental mediator [1]
that exploits rather than blocks the effects of natural heating, cooling and light to continuously
maintain occupant comfort whilst reducing the demand for the use of conventional active building
systems. The application of materials with intrinsic sensitivity to climatic stimuli can serve as an
underpinning principle for development of simpler, yet more versatile adaptive building skins with
passive embedded response.

3. One of the most interesting and engaging aspects of hygromorphic materials are the striking
visual effects that can be achieved through their design integration coupled with their shape-changing
and adaptive behaviour. The biomorphic expressiveness of hygromorphs relates to what Guy and
Farmer [58] (p. 143) have referred to as “eco-aesthetics”, an environmental design approach that
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promotes biomimetic architectural forms where the formal, aesthetic and sensual values of buildings are
considered just as important to sustainable architecture as reduced energy consumption or ecological
footprint. Within this design logic there is an emphasis on architectural forms that mimic nature and
in doing so celebrate the wider environmental problem of how we relate to, and interpret nature. The
prototypes built by Achim Menges and his colleagues at Stuttgart University including “Hygroscope”
art gallery installation and “FAZ” and “Hydroskin” temporary pavilions, embed this approach and
demonstrate that integration of hygromorphic materials provides opportunities for what Menges terms
a “unique convergence of environmental and spatial experience.” [13] (p. 58). In these aesthetically
driven applications, there is an emphasis on creating a dramatic ecologically-embedded architecture
where “the perception of the delicate, locally varied and ever-changing environmental dynamics is
intensified through the subtle and silent and silent movement of the responsive envelope” [13] (p. 58).

4. According to Guy and Farmer [58] (p. 144), one of the key threads in contemporary
environmental discourse around sustainable architecture is an emphasis on developing buildings that
are both designed to be grounded in their site and fully expressive of the characteristics of their location.
This approach emphasises a fundamental concern for authenticity and the notion that truly sustainable
buildings need to more fully relate to the concept of locality and place. Sustainability means adapting
to, and living within the constraints and possibilities imposed by the characteristics of a particular
region. “Universal“ technological solutions are considered unsustainable because they often fail to
coincide with the particular values of a place or people. The application of hygromorphic materials
requires that designers make technical decisions which are based on an understanding of site as well
as developing a place-specific design strategy that acknowledges the importance of the local climate
as a key constituent and driver of the material application. In this sense, the continuous response
of hygromorphs provides for a unique ability to adapt to and reflect the particular local ecological
conditions and weather patterns. An interesting example of hygromorphic materials deployed to
both relate to, and to express very particular site conditions is Jason Payne’s proposals for Raspberry
Fields in Round Valley, Utah [59]. This proposed renovation of an existing, one-room schoolhouse is a
sensitive response to the differential weathering patterns found on the existing timber shingle cladding,
which varies on each building elevation depending on orientation to the sun and prevailing winds.
The proposed design seeks to utilise the hygromorphic response of newly added, inversely hung
timber shingles to emphasise and amplify the expression of these existing weathering patterns. This
project exemplifies an innovative construction approach that borrows from the established techniques
of the existing vernacular buildings of the area. The building is therefore conceived as an expression
of both the local climate, through the deployment of the natural hygromorphic behaviour of timber
cladding, and design traditions.

The next step in our research work is to develop some of these ideas for place-based applications
of hygromorphs through their monitored integration into a permanent observatory building for nature
and bird-watching in the Kielder Forest, Northumberland, UK (Figure 11). To our knowledge, this will
be the first permanent application of building integrated hygromorphic wood composites. The Kielder
Forest is a large forestry plantation in Northumberland and is the largest man-made woodland in
England. It was planted to provide the UK with a sustainable source of constructional timber. Kielder
is dominated by conifers and the main species in the forest are spruce, pine, fir and larch. The use
of hygromorphs in this particular project has been inspired by the proliferation of pine cones at the
site and influenced by the relevance of hygromorphic materials to the locality as well as the wishes of
the client (Kielder Water and Forest Park Trust) to deploy them as a means to educate visitors about
the immediate environment. This project will not only allow to test the real-world practical viability
of hygromorphic systems but also to gauge and ascertain the reception and understanding of the
materials on behalf of visitors and users within the local ecological context.
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4. Conclusions and Recommendations for Future Research

Over the last 20 years, the research on biomimetic moisture-responsive composites has advanced
rapidly from the identification of the opening mechanism of pine cones in 1997 [20], the development
of man-made bilayer responsive materials [19,22] in 2009, and more recently widespread research
into synthetic hygromorphs [23,27–30] and tentative steps towards application [26,27,39]. Within
existing published work, details of fabrication techniques, material response over multiple cycles,
durability, and response to external weathering are scarce and we have sought to address this gap in
available knowledge.

For the first time, the results of long-term outdoor field testing of wood-based hygromorphic
cladding have been reported. Overall, the panels performed extremely well with minimal delamination
and no cracking or breakage despite exposure to wind and many cycles of wetting and drying on an
exposed roof in Newcastle upon Tyne, UK. The role of fabrication methods in ensuring durability and
correctly programmed, repeatable behaviour has been described, and the results of long-term field
testing have helped establish the significance of different degradation factors and provide an estimate
of the expected lifespan of the materials. Whilst biodegradability reduces the environmental impact
of hygromorphic wood composites at end of life, it also affects their durability and longevity. The
panels may need to be replaced more regularly than conventional cladding, increasing maintenance
requirements. Mechanical fixing enables panels to be deconstructed, damaged layers to be replaced,
and “technical and biological nutrients” to be separated at end of life for effective recycling [60].
Further long-term full-scale field testing, coupled to multiple-cycle lab tests and numerical simulation
of stresses within the bilayer composites, should enable panels to be developed with enhanced
functional longevity.

Beyond technical considerations, we have started to explore the potential functional and aesthetic
benefits of hygromorphs wood composites in adaptive architecture. The ability to create building
elements which passively respond to the local climate and weather conditions, at timescales varying
from a few minutes (thin panels responding to rain and diurnal humidity cycles) to monthly or
annual (thicker panels responding to seasonal humidity changes and average rainfall), provides new
opportunities for sustainable responsive architecture. Whilst the case study described here is in a
remote, natural location with obvious benefits of using “low-tech” wood-based cladding, there is also
potential for these materials to form part of the burgeoning “living architecture” movement [61], where
they could provide climate-responsive elements alongside green roofs and green walls within modern,
dense urban environments.

Supplementary Materials: The following are available online at www.mdpi.com/2071-1050/9/3/435/s1. Excel
Spreadsheet S1: Test of composite samples with different types of layer bond, Excel Spreadsheet S2: Test
of composite samples with different pre-programming, Video S3: Closing and opening of prototype with
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two-directional panel response, Excel Spreadsheet S4: Long-term outdoor test data, Video S5: Outdoor testing
timelapse (initial), Video S6: Outdoor testing timelapse (after 12 months).
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