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Abstract: Industrial energy and environment efficiency evaluation become especially crucial as
industrial sectors play a key role in CO2 emission reduction and energy consumption. This study
adopts the additive range-adjusted measure data envelope analysis (RAM-DEA) model to estimate
the low-carbon economy efficiency of Chinese industrial sectors in 2001–2013. In addition, the CO2

emission intensity mitigation target for each industrial sector is assigned. Results show that, first, most
sectors are not completely efficient, but they have experienced and have improved greatly during the
period. These sectors can be divided into four categories, namely, mining, light, heavy, and electricity,
gas, and water supply industries. The efficiency is diverse among the four industrial categories.
The average efficiency of the light industry is the highest among the industries, followed by those of
the mining and the electricity, gas, and water supply industries, and that of the heavy industry is the
lowest. Second, the electricity, gas, and water supply industry shows the biggest potential for CO2

emission reduction, thus containing most of the sectors with large CO2 emission intensity mitigation
targets (more than 45%), followed by the mining and the light industries. Therefore, the Chinese
government should formulate diverse and flexible policy implementations according to the actual
situation of the different sectors. Specifically, the sectors with low efficiency should be provided with
additional policy support (such as technology and finance aids) to improve their industrial efficiency,
whereas the electricity, gas, and water supply industry should maximize CO2 emission reduction.

Keywords: low-carbon economy efficiency; RAM model; Industrial sectors; CO2 emission intensity;
mitigation target assignment

1. Introduction

The Chinese economy has maintained an average annual growth rate of approximately 10%
since the implementation of the reform and opening up policy [1]. The GDP of China grew from
149.541 billion US$ in 1978 to 11.008 trillion US$ in 2015 [2], which corresponds to nearly 13% of the
global total share from approximately 1.8%, thus making China the second largest economy in the
world. However, the rapid growth of the GDP has resulted from a series of events that are closely
associated with the depleting energy resource and environmental degradation [3–5]. Specifically, the
energy consumption of China has been ranked first in the world [6,7], reaching 4.258 billion tons of
standard coal equivalent in 2014 (more than l2.3% of that in 2013) and accounting for 23% of the world’s
total [8]. Meanwhile, the energy consumption generates large quantities of undesirable gases, including
CO2, which contributes largely to global warming. According to statistics, the Chinese CO2 emissions
reached 9153.9 bt (27.3%) in 2015, which is the largest share of emissions [9]. Consequently, the low
efficiency of energy utilization and heavy pollution impedes sustainable development seriously [10].
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To address this issue, China announced a mandatory CO2 emissions reduction target of 40%–45% per
unit GDP until 2020 relative to the level in 2005. This goal is officially incorporated into the long-term
plan for national economic and social development.

The national economy of China has been overwhelmingly dominated by the industry,
which shares more than 40% of the GDP [2]. However, economic growth inevitably causes adverse
impacts. The energy consumption of the industry in 2014 accounted for more than 69% of China’s
total, and the energy consumption-related CO2 emissions accounted for 60% of China’s total [2].
Consequently, the industry plays a critical role in energy saving and emission reduction in China.
Currently, China is in the accelerated development stage of industrialization, the completion of which
is a long process. Meanwhile, the requirement for energy consumption and CO2 emissions is still
strong [11], while the energy consumption structure cannot be changed immediately. Furthermore,
the different industrial sectors have disparities of different aspects, such as energy consumption,
industrial structure, and technology innovation. Thus, an objective evaluation should be especially
conducted in the industrial sectors, and the emission reduction target must be allocated among the
sectors with clear objectives of carbon emission reduction. The evaluation results will be meaningful
and valuable for realizing the current environmental condition, realizing the efficiency promotion
potential of the industry, and thus formulating practical schemes for sustainable development and
implementing effective controls for environmental protection [12].

The data envelope analysis (DEA) model provides an effective non-parametric method for
evaluating the relative efficiency of the homogeneous decision-making units (DMUs) with multiple
inputs and outputs [13–16]. This model has been widely applied to the measurement of the
environmental efficiency of an industry [17,18]. For example, Wu et al. [19] measured industrial
energy efficiency performance through several environmental DEA models related with CO2

emission. Wang and Wei [20] applied a newly developed DEA-based method to evaluate the regional
emission efficiency of the industrial sectors in 30 major cities of China in 2006–2010. Li et al. [21]
measured the energy efficiency of Chinese industrial sectors from 2001 to 2010 using the improved
super-slack-based measure (SBM) model. Zhang et al. [22] evaluated the industrial CO2 emission
efficiency, emission reduction potential, and profits brought by emission reduction in 30 provinces
of China in 2005–2012. However, most previous studies ignored the undesirable outputs, such as
environmental pollution [23,24], which exist as an obvious by-product of industrial activities [25].
On this note, any efficiency evaluation that is blind to this point cannot explain the real production
process and leads to unreliable results. Scholars have made numerous attempts to combine the
undesirable outputs with efficiency measurements. For example, Haynes et al. [26], Reinhard et al. [27],
and Hailu et al. [28] treated the outputs as direct inputs, whereby outputs are maximized and inputs
are minimized simultaneously. Scheel [29] and Zhu [30] proposed converting the undesirable outputs
into desirable outputs based on the reciprocal conversion method [31]. Seiford et al. [32] used the
data transition method to handle the undesirable outputs. Chung et al. [33] extended the radial-based
model proposed by Färe et al. [34], who suggested the directional distance function (DDF) approach,
in which each DMU can simultaneously increase its desirable and undesirable outputs through the
same degree of proportionality within the production possibility set. Nearly all conventional DEA
models are restricted to radial and oriented measurement and do not consider the effects of slack
variables. This may induce biased estimation results. Although this approach can deal with the
undesirable outputs in an efficiency evaluation successfully, DDF essentially belongs to radial-oriented
measurement [35–37].

Tone [38] proposed the SBM model, which, unlike the traditional model, is an additive non-racial,
non-oriented approach [39]. In this approach, slack variables are directly added into the target
function [40]. This model overcomes the drawback in other efficiency measures and provides a more
accurate efficiency measurement that addresses the problem of undesirable outputs. However, the
approach was somewhat argued by Sueyoshi et al. [23] because the indicator selection of the SBM
model was subjective and the efficiency of the same DMUs under different direction vectors was
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inconsistent. Cooper et al. [41] introduced the range-adjusted measure (RAM) model to measure
the unified efficiency of the desirable and undesirable outputs. Subsequently, Sueyoshi et al. [23]
extended the RAM model, wherein input excesses and output shortfalls, which are recognized as
slacks, are considered in the model based on the additive structure. The RAM model removes the
separation of the input and output orientations, and the radial limitation avoids the influence of
subjective parameters.

Consistent with the output-oriented optimization, the RAM model has three types [41]: PE-RAM
(operational efficiency), CE-RAM (carbon environmental efficiency), and LCE-RAM (low-carbon
economy efficiency). The PE-RAM model only considers the desirable outputs in the optimization
process, ignores the environmental regulation, and measures the economic efficiency. The CE-RAM
model only considers the undesirable outputs and eventually obtains the environmental efficiency.
The LCE-RAM model accounts for the desirable and undesirable outputs and attains low-carbon
economy efficiency, that is, unified efficiency, to acquire a win–win situation for economic growth and
environmental protection.

This study separates inputs into energy and non-energy given the influence of the energy
substitution effect [42]. The energy inputs could replace the non-energy inputs in the efficiency
accounting process, and the negative shift of an energy input is also used in attaining the efficient
frontier for a desirable output [43]. Thus, the energy slack variable indicates whether the energy can
increase or decrease with the separation of the positive and negative parts.

The study aims to intensively investigate the status of the industrial economic–environment
performance in China not only by measuring the level and variance trend of the industrial low-carbon
economy efficiency in China but also by assigning CO2 emission intensity mitigation to 36 industrial
sectors. The LCE-RAM model is applied appropriately to realize this study objective because this
approach measures efficiency by integrating environment efficiency with economic efficiency.

This study provides a comprehensive efficiency model that integrates desirable and undesirable
outputs into the Chinese industrial sectors unlike the previous studies, which did not incorporate the
undesirable outputs in their framework. This study is also one of the first applications of the RAM
model in the industrial sectors.

This study carefully introduces the LCE-RAM model and the distribution model of the CO2

emission intensity mitigation target in Section 2 to evaluate industrial performance concisely. Section 2
also discusses the data and variables utilized in the efficiency evaluation. Section 3 presents the primary
results of the paper. Details of the efficiency results and the CO2 emission intensity mitigation targets
are discussed in Section 4. Section 5 provides the summary and a discussion of several extensions of
the paper.

2. Materials and Methods

2.1. LCE-RAM Model

This study assumes a production system with K DMUs, in which the lth DMU (l ε [1, K]) uses
N non-energy inputs (such as labor and capital) of xl = (x1l, x2l, . . . , xNl) and I energy inputs of
el = (e1l, e2l, . . . , eIl) to produce M desirable outputs (such as industrial value) of yl = (y1l, y2l, . . . ,
yMl) and simultaneously yield J undesirable outputs (such as CO2) of ul = (u1l, u2l, . . . , uJl). Thus,
the production possibility sets, which divide inputs into non-energy and energy, include desirable and
undesirable outputs that can be expressed as:

P(x, e) = {(x, e, y, u);(x, e) can produce (y, u)}. (1)

sx
n is the excess input for non-energy inputs, considering sx

n (n = 1, 2, . . . , N), se−
i (i = 1, 2, . . . , I),

se+
i (i = 1, 2, . . . , I), sy

m (m = 1, 2, . . . , M), and su
j (j = 1, 2, . . . , J) as the slack variables. The plus or

minus in se−
i and se+

i indicates energy expansion and cut two projection directions, respectively. In an
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actual measurement, se−
i and se+

i cannot co-exist, that is, energy consumption cannot decrease and
increase concurrently. su

j stands for the excessive emissions of pollutants.
This study integrates energy, CO2 emissions, and economic growth into a framework to realize

a reasonable judgment on the current level of coordination among these variables to present a
comprehensive efficiency model as follows:

RAMl = max

N
∑

n=1

sx∗
n

Rx
n
+

I
∑

i=1

se+∗
i +se−∗

i
Re

i
+

M
∑

m=1

sy∗
m

Ry
m
+

J
∑

j=1

su∗
j

Ru
j

N+M+I+J

s.t.



K
∑

k=1
λkxnk + sx

n = xnl , n = 1, 2, ..., N;

K
∑

k=1
λkeik − se+

i + se−
i = eil , i = 1, 2, ..., I;

K
∑

k=1
λkymk − sy

m = yml , m = 1, 2, ..., M;

K
∑

k=1
λkujk + su

j = ujl , j = 1, 2, ..., J;

K
∑

k=1
λk = 1;

λk ≥ 0, k = 1, 2, ..., K;
sx

n, sy
m ≥ 0; se+

i , se−
i ≥ 0, se+

i · se−
i = 0;

su
j ≥ 0.

. (2)

In the above formula, the slack variables are incorporated into the subject function, which is the
necessary condition of optimality. Then, the optimal RAM scores can be measured for the sectors
in each period through Equation (2). To overcome the unbounded solution, Equation (2) is required
to satisfy the nonlinear condition se+

i × se−
i = 0, which implies that the slack variables are mutually

exclusive. Rx
n (n = 1, 2, . . . , N), Re

i (i = 1, 2, . . . , I), Ry
m (m = 1, 2, . . . , M), and Ru

j (j = 1, 2, . . . , J) represent
the maximum possible values of inefficiency for non-energy inputs, energy inputs, desirable outputs,
and undesirable outputs, respectively. These variables are determined by the upper and lower bounds
in the following manner: 

Rx
n = (xnk)max − (xnk)min, (n = 1, 2, ...N)

Re
i = (eik)max − (eik)min, (i = 1, 2, ...I)

Ru
j =

(
ujk

)
max

−
(

ujk

)
min

, (j = 1, 2, ...J)

Ry
m = (ymk)max − (ymk)min, (m = 1, 2, ...M)

. (3)

Then, the low-carbon economy efficiency of the lth DMU can be defined as follows:

θ = 1 − RAMl (4)

The efficiency status requires all slacks to be zero in the model. At this time, the industry is
at a Pareto optimal level. Otherwise, the DMU is inefficient, and the inputs and outputs can be
further improved.

The unified efficiency reflects the reasonable judgment of the coordination between economic
growth and emission reduction control; its improvement requires considering the economic and
environmental efficiency. Therefore, the LCE-RAM model holds two frontiers based on dual output as
depicted in Figure 1. The horizontal axis represents the energy input, the vertical axis denotes desirable
and undesirable outputs, the contour line (EFGH) indicates an efficient frontier for a desirable output,
and the contour line (ABCD) indicates an efficient frontier for an undesirable output. Specifically,
the inefficient sector L can achieve an efficient frontier for a desirable output by moving along LF
through increasing the desirable output to ymk + sy

m from ymk while reducing the energy consumption



Sustainability 2017, 9, 451 5 of 18

to eik − se−
i from eik. By contrast, the projection from L along the directions close to H expresses

an extensive economic growth trend because expanding a desirable output is accompanied by the
deterioration in energy consumption. Similarly, industry L can attain a frontier for undesirable output
by shifting toward the LA and LC directions. The former projection is referred to as natural reduction.
In this case, the industry achieves CO2 emission reduction by decreasing the energy input. The latter
implies significant management improvements via optimizing the energy structure or utilizing new
generation technology and equipment. Hence, the CO2 emissions are reduced by su

j , although the
energy consumption is improved to eik + se+

i from eik.
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Figure 1. Visual structure of unified efficiency [19].

2.2. Assignment Model of the CO2 Emission Intensity Mitigation Target

As mentioned, a joint emission reduction agreement is unnecessary in reaching the low-carbon
goal because the economic growth modes and industrial structures, including the energy consumption
structures of the different Chinese industrial sectors, vary considerably. Simply restricting the polluting
industries and developing the low emission industries can reduce emissions to some extent but is not
conducive to economic development. Hence, the target setting approach should consider industrial
differentiation. Therefore, in terms of the reduction targets and requirements of economic development,
rationally allocating the emission allowances to each sector will help relieve the burden of emission
reduction, define responsibilities clearly, and adjust the industry and energy structure properly, which
can promote the transformation toward a low-carbon economy and ensure economic development
sustainably. This study considers the CO2 emission intensity as an indicator in formulating the
mitigation assignment targets to ensure an effective and fair distribution. This study also investigates
the capacity of each DMU to increase output and reduce emission because of the industrial structural
adjustment, and adds them into the objective function, eventually providing the plan for allocating
emission allowances to each industry.
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2.2.1. Industrial Output and CO2 Emission Potential Measurement

The LCE-RAM model is based on slack variables, which represent the inefficiency level. Hence,
according to Cooper [41], the desirable outputs inefficiency and undesirable outputs inefficiency can
be decomposed as follows:

NEy =
1

1 − θ
×

M
∑

m=1
sy

m/Ry
m

(N + M + I + J)
, (5)

NEu =
1

1 − θ
×

J
∑

j=1
su

j /Ru
j

(N + M + I + J)
. (6)

Based on the definition of variable specific inefficiency proposed in Equations (6) and (7), the
improvement potential for industrial output and CO2 emission can be obtained as follows:

ypk = (NEy)k × yk, (7)

upk = (NEu
) k

× uk. (8)

2.2.2. Assignment of CO2 Emission Intensity Mitigation Target

Considering the stated mitigation target (40%–45%), the CO2 emission intensity mitigation targets
in 2013 are mathematically expressed as follows:

D2020 = (1 − I)× D2005, (9)

AD =
(D2020 − D2009)

11
, (10)

D2013 = D2009 + 4AD. (11)

In Equation (9), I is the CO2 emission intensity mitigation target, which is 45%, proposed by the
Chinese government. AD is the annual average emission intensity mitigation value from 2009–2020.
D2009 and D2005 are the actual CO2 emission intensity values for all the industries in years 2009 and
2005, respectively. D2020 and D2013 are the CO2 emission intensity target values for all the industries in
the years 2020 and 2013, respectively.

The realization of this CO2 emission intensity mitigation goal for the entire industry can be
translated into an absolute output-increasing target and a CO2 mitigation target at the industry level
and be assigned to varied sectors. Thus, the ideal industrial output and CO2 emission target for each
sector after adjustment can be presented as

ymk = yk + ∆yk, (12)

umk = uk − ∆uk. (13)

Therefore, the CO2 emission intensity mitigation targets for the different sectors in 2013 can be
reached through the following model:

maxl =
K
∑

k=1

∆uk
uk

+
K
∑

k=1

∆yk
yk

s.t.


∑ umk
∑ ymk

= ∑ (uk−∆uk)
∑ (yk+∆yk)

= D2013

0 ≤ ∆uk ≤ upk
0 ≤ ∆yk ≤ ypk
k = 1, 2, ......36

, (14)
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where umk is the target value of the undesirable output for sector k, and ymk is the target value of the
industrial output for sector k.

Then, the target CO2 emission intensity for sector k can be obtained as:

dmk =
umk
ymk

. (15)

The proportion of CO2 emission intensity mitigation for the industrial sector in 2013 can be
expressed as follows:

Rk = 1 − dak/dmk, (16)

where dak is the actual CO2 emission intensity for industry k in 2013.

2.3. Data and Variables

Given the availability and integrity of the data, this study selects 36 sub-industries, excluding
“other mining industries” and other industries, in China between 2001 and 2013 as the research objects
because of the absence of relevant data from these sectors (Table 1). For a detailed study, the 36
sub-industries are classified into four industrial categories, namely, mining, light, heavy, and electricity,
gas, and water supply industries, according to the “classification and code standard of the national
economy industry” released by the National Bureau of Statistics of China [13].

In studies on environmental efficiency, input indicators generally include non-energy (e.g., capital
and labor) and energy inputs, while outputs are generally divided into desirable (industrial output)
and undesirable outputs (CO2 emissions) [44]. Specific instructions and related statistical description
follows (the dataset is listed in Table 2).

Labor. This term describes the average number employees in the enterprises over the designated
scale as the proxy for labor input.

Capital. This term describes the utilization of the outstanding net value of fixed assets of the
enterprises over the designated scale as the proxy for capital input.

Energy. The energy consumption of industrial enterprises includes all types of energy (e.g.,
coal, oil, gas, and electricity), and all energy consumption data are converted into tons of coal
equivalent (TCE).

Desirable output. The gross output value of the enterprises over the designated scale as a desirable
output expects a yield from the industrial output in 2013, and missing data by the two moving averages
are obtained. These values have been adjusted from a nominal value to exclude the effects of general
price level changes between 2001 and 2013.

Undesirable output. The calculation of the CO2 emissions is guided by the 2006 Intergovernmental
Panel on Climate Change (IPCC) guidelines for the National Greenhouse Gas Inventories and is based
on the total amount of fuels combusted and the averaged carbon content of the fuels [45].

The above data are collected from the statistical and energy statistical yearbooks of China [46].
Table 1 presents the descriptive statistics of the input and output data of the 36 major industrial sectors
in China from 2001–2013.
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Table 1. Names and details of 36 sub-industries.

Industry Classification Industry Code Industry Name

Mining industry

1 Coal mining and washing
2 Oil and natural gas mining
3 Ferrous metal mining
4 Non-ferrous metal mining
5 Non-metal mining

Light industry

6 Agricultural product processing
7 Food manufacturing
8 Beverage manufacturing
9 Tobacco manufacturing
10 Textile industry
11 Textile clothes, shoes, hats manufacturing
12 Leather, fur, feather manufacturing

13 Wood processing, wood, bamboo, cane, palm, and straw
manufacturing

14 Furniture manufacturing
15 Papermaking and paper products
16 Press and intermediary replication
17 Cultural, educational, and sport goods manufacturing

Heavy industry

18 Oil processing, coking, and nuclear fuels processing
19 Manufacturing of chemical
20 Manufacturing of medicines
21 Manufacturing of chemical fiber
22 Manufacturing of rubber
23 Manufacturing of plastics
24 Manufacturing of non-metal products
25 Smelting and rolling process of non-ferrous metal
26 Smelting and rolling process of Ferrous metal
27 Manufacturing of metal products
28 Manufacturing of ordinary machinery
29 Manufacturing of special equipment
30 Manufacturing of transportation and equipment
31 Manufacturing of electric machines

32 Manufacturing of communication device, computers and
other electronic

33 Manufacturing of instruments, cultural and official
mechanics

Electricity, gas and
water industry

34 Production and supply of electricity, power
35 Gas production and supply
36 Water production and supply

Table 2. Descriptive statistics of input and output variables, 2001–2013.

Indicators Non-Energy Inputs Energy Input Desirable Output Undesirable Output

Variables Labor (x1) Capital (x2) Energy (e) Industrial output (y) CO2 emission (u)
Unit 104 person 109 Yuan 104 TCE 109 Yuan 104 Tons
Min 14 30,505.56 59,887.77 4.37 211.07

Max
945.34

7.16 39.12 99,652.67 213,291945.34
Media 134.9 968.53 1069.77 4513.88 14,397.85
Mean 206.83 2153.89 3971.3 9452.20 4537.48

Note: Each sample has 468 observations; each panel data includes five indicators of 36 industrial sectors from 2001
to 2013. TCE = ton of standard coal equivalent.

3. Results

3.1. Low-Carbon Economy Efficiencies of the Four Major Industrial Categories and Their Trends

Figure 2 illustrates the evolving trends, the average unified efficiency values of the Chinese
industry, and the four categories that experienced a marked increase in the study period. The mining
and the light industries grew at a stable rate in terms of efficiency and maintained an upward trend
for the overall performance. The efficiency of the heavy industry fluctuated acutely in 2008–2010
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and maintained a slight fluctuation since then. The efficiency of the electricity, gas, and water
supply industry fluctuated dramatically, and showed a drastic drop to the lowest value in 2002 at
approximately 0.82 and increased sharply in 2007 and 2009 with the main peak at approximately 0.99 in
2008 and 2010. This industry also improved the most among the four major categories. The efficiency
of the electricity, gas, and water supply industry was obviously lower than the light industry in
2002–2010, but the growth rate of the former was faster than that of the latter; thus, it outperformed
the light industry after 2010 and has demonstrated stability since then.
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3.2. Efficiency Characteristics of Industrial Sectors

The average low-carbon economy efficiency values of the different categories vary considerably
as illustrated in Figure 3. The light industry has the highest unified efficiency (0.950). The industrial
sectors, such as the tobacco, fur, feather, and leather manufacturing; manufacturing of instruments
and cultural and official mechanics industry, with high levels of efficiency, belong to the light
industry. The electricity, gas, and water supply industry ranks second (0.928), followed by the mining
industry with an average value of 0.916, which is slightly lower than the average overall efficiency.
The low-carbon economy efficiency of the heavy industry (0.895) is the worst, with an approximate
room of 10.5% for efficiency improvement related to the efficient frontier. The least efficient sectors,
such as the manufacturing of chemical industry, manufacturing of non-metal products industry, and
smelting and rolling process of non-ferrous metal industry, belong to the heavy industry. The largest
low-carbon economic efficiency gap, which is between the best and the worst performing Chinese
industrial categories, is approximately 0.055.
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Figure 3. Average unified efficiency values for the four major industrial categories in China.

The results for the various sectors are arranged in Table 3 and are also depicted in Figure 4.
The differentiation in efficiency level is apparent for the 36 major industrial sectors in China. Nearly
all of these sectors show an upward trend, and only a few sectors present a downward trend.
The efficiency value and the growth rate of each sector in the different years are distinguishable
from each other. Additionally, Figure 4 shows that the average unified efficiencies of most of the sectors
are over 0.90, and over half of these sectors surpass 0.95. However, several industrial sectors hold
relatively low unified efficiency values; for example, the unified efficiency of the textile industry is
0.823 and that of the production and supply of electricity and power industry is 0.845. The coal mining
and washing and the manufacturing of chemical industries have the unified efficiencies of 0.704 and
0.790, respectively. The efficiencies of the manufacturing of non-metal product and the smelting and
rolling process of non-ferrous metal industries are 0.646 and 0.64, respectively, which are much lower
than 0.70, suggesting that these two sectors can potentially improve by no less than 35%.

Table 3. Unified efficiency of the 36 Chinese industrial sectors in 2001–2013.

Industry Classification 2001 2003 2005 2007 2009 2011 2013 Mean

Mining industry

1 0.701 0.760 0.811 0.809 0.807 0.831 0.844 0.795
2 0.909 0.917 0.937 0.938 0.926 0.934 0.932 0.928
3 1.000 0.938 0.950 0.945 0.932 0.959 0.946 0.953
4 0.972 0.984 0.951 0.939 0.932 0.959 0.952 0.956
5 0.957 0.967 0.951 0.926 0.924 0.960 0.955 0.949

Light industry

6 0.913 0.907 0.939 0.903 0.912 0.949 0.945 0.924
7 0.948 0.951 0.958 0.906 0.934 0.953 0.945 0.942
8 0.928 0.936 0.963 0.976 0.967 0.973 0.965 0.958
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 0.762 0.730 0.790 0.831 0.841 0.889 0.913 0.822
11 0.930 0.893 0.914 1.000 0.943 0.970 0.966 0.945
12 0.975 1.000 1.000 1.000 1.000 1.000 0.922 0.985
13 0.977 0.975 0.949 0.930 0.921 0.958 0.951 0.952
14 1.000 1.000 0.949 0.928 0.917 0.956 0.951 0.957
15 0.902 0.892 0.928 0.917 0.946 0.958 0.969 0.930
16 0.964 0.974 0.976 0.928 0.976 0.963 0.954 0.962
17 1.000 0.988 0.985 0.991 1.000 0.953 0.942 0.980
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Table 3. Cont.

Industry Classification 2001 2003 2005 2007 2009 2011 2013 Mean

Heavy industry

18 1.000 1.000 1.000 1.000 1.000 0.923 0.933 0.979
19 0.665 0.642 0.688 0.703 0.748 0.770 0.779 0.714
20 0.936 0.929 0.955 0.966 0.960 0.968 0.968 0.955
21 0.930 0.955 0.976 0.956 0.960 0.966 0.959 0.957
22 0.965 0.975 0.968 0.939 0.976 0.981 0.957 0.966
23 0.954 0.936 0.940 0.961 0.938 0.960 0.790 0.926
24 0.615 0.582 0.648 0.699 0.716 0.732 0.555 0.650
25 0.601 0.569 0.551 0.552 1.000 0.568 0.907 0.678
26 0.871 0.871 0.924 0.887 1.000 0.907 0.963 0.918
27 0.925 0.916 0.931 0.941 0.918 0.944 0.945 0.931
28 0.847 0.862 0.904 0.894 0.943 0.953 0.965 0.910
29 0.881 0.895 0.939 0.932 0.954 0.967 0.958 0.932
30 1.000 1.000 0.937 0.925 0.950 0.971 0.964 0.964
31 0.904 0.877 1.000 0.931 0.916 1.000 0.921 0.936
32 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
33 0.975 0.980 0.954 0.923 0.923 0.961 0.950 0.952

Electricity, gas, and
water industry

34 1.000 0.717 0.741 0.739 0.770 1.000 1.000 0.852
35 0.969 1.000 1.000 0.925 0.929 1.000 0.958 0.969
36 0.90 0.92 0.96 0.97 0.97 0.97 0.98 0.953

Mean 0.910 0.901 0.916 0.909 0.929 0.936 0.931 0.919
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Figure 4. Average unified efficiency values for the 36 Chinese industrial sectors in 2001–2013.

Two sectors (Figure 5B,C), namely, the tobacco and the manufacturing of communication device
and computer industries, exhibited the best efficiency performances and showed no variation over
the entire period. The leather, fur, and feather manufacturing industry and the oil processing, coking,
and nuclear fuel processing industry (Figure 5B,C) were often at the efficient frontier, except in certain
years. The efficiencies of the textile industry and the smelting and rolling process of ferrous metal and
manufacturing of ordinary machinery industry improved significantly over time (Figure 5B,C) but
were still far from the efficient frontier. The ferrous metal mining, the furniture manufacturing, and the



Sustainability 2017, 9, 451 12 of 18

manufacturing of transportation and equipment industries (Figure 5A,C) experienced a decline in the
study period, which suggests non-performance in an efficient way. The efficiency of production and
supply in the electricity and power industry (Figure 5D) fluctuated acutely and showed a dynamic
change, which first rose and then dropped, exhibiting a U-type curve. Furthermore, the unified
efficiencies of most of the industrial sectors, such as the coal mining and washing, manufacturing of
ordinary machinery, and water production and supply industries, continuously increased in the study
period, and positive changes occurred.
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Figure 5. Efficiency tendency of selected Chinese industrial sectors in 2001–2013. Note: (A) is for the
mining industry; (B) is for the light industry; (C) is for the heavy industry; and (D) is for the electric,
gas, and water supply industry.

3.3. Assignment of CO2 Emission Intensity Mitigation Target

The allocation of CO2 emission intensity mitigation targets for the 36 industrial sectors in 2013 is
illustrated and compared in Figure 6 and Table 4, respectively. The tobacco industry, the manufacturing
of communication device, computers, and other electronic equipment industry, and the production
and supply of electricity and power industry were efficient in 2013 and lay on the efficient frontier.
Their environmental and economic inefficiencies are zero (Table 4), indicating that no room for
improvement is observed. Thus, these sectors appear to have zero ratio for CO2 emission intensity
mitigation. In addition, the coal mining and washing industry, the textile industry, the papermaking
and paper products industry, the oil processing, coking, and nuclear fuel processing industry, the
manufacturing of chemical industry, and six other sectors also have 0% CO2 emission intensity
mitigation targets. At least one of their economic or environmental inefficiencies is zero or near zero.
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Thus, limitations of potential space exist for increasing output or reducing CO2 emission, resulting
in CO2 emission intensity mitigation targets of zero. In Equations (4) and (5), the economic and
environmental inefficiencies have a positive correlation with their slack variables. Accordingly, the
desirable and undesirable output slack variables of a sector are equivalent to the mitigation target
allocated. In Figure 6, the emission intensity mitigation spaces of the oil and natural gas mining
industry, the textile, clothes, shoes, and hat manufacturing industry, the manufacturing of ordinary
machinery industry, and the manufacturing of special equipment industry are relatively small, which
are less than 10%. The proportions of reducible CO2 emission intensity of the beverage manufacturing
industry, the leather, fur, and feather manufacturing industry, the furniture manufacturing industry,
and six other sectors are between 20%–40%; these sectors belong to the light industry or are the
equipment manufacturing industries. Furthermore, the ferrous metal mining industry, the non-metal
mining industry, and three other sectors can reduce the CO2 emission intensity by 40%–45% (close
to the 40%–45% goal). Among these five sectors, the ferrous metal mining industry, the non-ferrous
metal mining industry, and the non-metal mining industry are from the mining industry category;
the press and intermediary replication industry is from the light industry; and the manufacturing
of instruments, cultural, and official mechanics industry is from the heavy industry. The top three
sectors with high allocations of CO2 emission intensity mitigation from the highest to the lowest are
the water production and supply industry, the manufacturing of chemical fiber industry, and the gas
production and supply industry (47.28%, 45.47%, and 45.1%, respectively). A large allocation means a
large reduction potential. Notably, these sectors with high allocation of emission intensity mitigation
are generally efficient according to the comparison of Figures 4 and 6.
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Table 4. Indicators for emission reduction potential.

Sector Code NECO2 NEGDP ypk upk Sector Code NECO2 NEGDP ypk upk

1 0.00 0.13 0.00 2800.87 19 0.00 0.40 0.00 40,267.87
2 0.07 0.16 288.86 1886.88 20 0.31 0.11 4569.19 603.66
3 0.28 0.27 1083.36 2034.72 21 0.33 0.28 1824.84 1469.73
4 0.30 0.27 616.52 1294.26 22 0.19 0.08 1169.72 1151.17
5 0.33 0.25 871.18 998.34 23 0.00 0.38 0.00 33,847.26
6 0.19 0.16 5263.33 1619.74 24 0.00 0.44 0.00 93,540.70
7 0.28 0.20 3132.64 927.29 25 0.09 0.35 4408.57 19,849.17
8 0.32 0.11 3470.97 424.20 26 0.22 0.09 4664.17 1560.95
9 0.00 0.00 0.00 0.00 27 0.18 0.07 3791.77 823.33
10 0.00 0.19 0.00 4160.45 28 0.00 0.00 0.00 1.98
11 0.00 0.00 0.00 13.71 29 0.21 0.07 5349.97 239.45
12 0.25 0.17 2044.25 377.91 30 0.33 0.26 24,686.97 2349.50
13 0.28 0.22 2344.53 927.49 31 0.17 0.19 8642.17 2049.33
14 0.30 0.21 1441.81 163.64 32 0.00 0.00 0.00 0.00
15 0.00 0.26 0.00 2771.89 33 0.31 0.22 2897.15 46.44
16 0.35 0.24 1577.57 382.61 34 0.00 0.00 0.00 0.00
17 0.30 0.20 930.89 230.07 35 0.34 0.26 724.82 484.42
18 0.00 0.39 0.00 11,328.73 36 0.57 0.18 462.46 800.32

4. Discussion

4.1. General Analysis of the Low-Carbon Economy Efficiency

Overall, the low-carbon economy efficiencies of the four industrial categories improved over
the whole study period. The efficiencies of the four categories somewhat differed. The light industry
showed a better low-carbon economic performance than the three other sectors, indicating that
the industrial category depends minimally on resources and develops intensively. Meanwhile,
the technology and equipment of the light industry are close to world leading standards.
The efficiencies of electricity, gas, and water supply industry was generally higher than that of
the mining industry. The mining industry is reliant on high CO2 emissions, and thus depends
on technology breakthroughs, such as clean coal technologies to mitigate pollution. Furthermore,
supporting its sustainable development is crucial. The heavy industry was the least efficient. It is
energy intensive, has an extensive development mode, and lags in terms of technology equipment
because the industrial efficiency is not improving.

4.2. Analysis of the Low-Carbon Economy Efficiency of the Sectors

A significant difference in the inputs and outputs of various sectors leads to the considerable
difference in low-carbon economy efficiencies. The mean values of the unified efficiencies for the leather,
fur, and feather manufacturing industry, the cultural, educational, and sport goods manufacturing
industry, and others that exceed 0.96 are close to the efficient frontier. The unified efficiency of the coal
mining and washing industry is 0.790, which means that this industry can be upgraded by at least
20% to reach the efficient frontier. The average efficiency values of the manufacturing of non-metal
products industry and the smelting and rolling process of non-ferrous metal industry are less than 0.7,
which is far from the efficient frontier and have an enormous potential for improvement. These low
efficiency sectors are mainly distributed in the heavy industry, which has a serious energy wastage
and heavy environment load issues. The growth rate of the low-carbon economy efficiencies of the oil
processing, coking, and nuclear fuels processing industry, the manufacturing of plastics industry, and
the manufacturing of non-metal product industry are negative compared with the other sectors that
play a more prominent role in the efforts of China toward efficiency improvement.

The low-carbon economy efficiencies of the tobacco, the communications equipment, computers,
and other electronic equipment manufacturing, and the production and supply of water industries
are high. These industries generally have lower energy consumption and release less pollution,
thus attaining high unified efficiencies. However, the insufficient use of labor, capital, and limited
scale structure leads to the poor efficiency performance of chemical raw materials, the chemical
product manufacturing industry, and several other industries. Moreover, the coal mining and washing
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and the ferrous metal smelting and rolling processing industries also show relatively low unified
efficiencies. Notably, these sectors are capital-intensive and consumes excessive energy. By contrast,
the oil and gas industry is characterized by scarce labor input and shortage of resources, but acquires
a high efficiency. This case indicates that the oil and gas industry has serious problems in terms of
management mechanism, such as insufficient structure, causing dysfunctions among human resources
and restricting the development of the industry. Therefore, the execution of stringent controls to
expedite the improvement of management and the optimization of resource allocation is a practical
way of improving the efficiency.

4.3. Assignment Analysis of the CO2 Emission Intensity Mitigation Targets

The results for each sector identified above are closely linked with the improvement potential
measured because the approach for the emission intensity mitigation target assignment measures
the variable specifics according to the improvement potential associated with industrial outputs and
CO2 emissions.

The manufacturing of communication devices, computers, and other electronics and production
industry and the production and supply of electricity and power industry lie on the efficient frontier.
Minimal possibilities to attain further improvement in the current investment and technology level exist
in these industries. Thus, upgrading the industrial structure and accelerating the technology progress
are the inevitable options for further reduction. The manufacturing of the chemical fiber industry
and the gas production and supply industry with high economic and CO2 emissions inefficiency
characteristics have relatively high emission intensity mitigation targets, indicating significant room
for CO2 emissions reduction and GDP increase. Accordingly, these industries are the key sectors in
pollutant reduction. The water production and supply industry have a strenuous task and has the
biggest CO2 intensity reduction potential at approximately 47.28%, indicating that the industry will
have the largest contribution in terms of energy sources conservation and pollution reduction.

5. Conclusions

This study investigates the low-carbon economy efficiencies of the industrial sectors in China
using the RAM model, which accounts for the desirable and undesirable outputs in the production
process and measures the CO2 emission intensity mitigation targets of 36 industrial sectors in the period
of 2001–2013, providing a reasonable perspective for objectively evaluating the industry emission
performance. The main conclusions of this study are as follows.

The average unified efficiencies of the Chinese industrial sectors exhibit an increasing trend over
the study period. However, the efficiency of the entire industry is not optimistic (which is an average
of 0.919) and demands further improvement. Comparative disparities exist among the industrial
categories, and the order in a descending efficiency is: light industry; mining industry; electricity, gas,
and water supply industry; and heavy industry. Furthermore, a marked difference is observed in the
efficiencies of the sub-industries of these sectors. No sector has reached complete efficiency, except
the tobacco manufacturing and the manufacturing of communication devices, computers, and other
electronics industries throughout the period. Therefore, most of the industry sectors in China still have
areas for improvement in terms of efficiency. For example, the smelting and rolling process of the
non-ferrous metal industry has the lowest efficiency (0.641), which is far from ideal.

Furthermore, the target distributions are differentiated by the different sectors because great
disparities exist in the output increase potentials and CO2 emission mitigations of the sectors. In the
distribution of CO2 emission intensity mitigation targets, the electricity, gas, and water supply and
the mining industries have higher ratios than the light and the heavy industries in the overall level
and the number of sectors. The former two sectors include most of the sectors with reduction ratios
above 40%. Thus, these sectors are faced with the pressure and challenge of assuming responsibility
for emission reductions.
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To achieve sustainable economic, resource, and environmental development, the Chinese
government should exert efforts in promoting optimization and industrial structure upgrade to
control energy consumption and shut down enterprises with high pollution emissions and energy
consumption. In addition, the Chinese government should aim to veer away from the crude and
quantitative mode of economic growth and enhance efficiencies to catch up with industries in the
efficiency frontier. The emission reduction policies should be diverse and flexible and should consider
the condition of the specific industrial sectors and categories. The industry should acquire advanced
management experience, expand investments in labor and capital resources, and strengthen the
exchanges in low-carbon technologies among sectors.
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